Undirected graphs

Notation. \(G = (V, E) \)
- \(V \) = nodes.
- \(E \) = edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: \(n = |V|, m = |E| \).

\[
V = \{1, 2, 3, 4, 5, 6, 7, 8\} \\
E = \{1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6, 7-8\} \\
m = 11, n = 8
\]
Some graph applications

<table>
<thead>
<tr>
<th>graph</th>
<th>node</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>communication</td>
<td>telephone, computer</td>
<td>fiber optic cable</td>
</tr>
<tr>
<td>circuit</td>
<td>gate, register, processor</td>
<td>wire</td>
</tr>
<tr>
<td>mechanical</td>
<td>joint</td>
<td>rod, beam, spring</td>
</tr>
<tr>
<td>financial</td>
<td>stock, currency</td>
<td>transactions</td>
</tr>
<tr>
<td>transportation</td>
<td>street intersection, airport</td>
<td>highway, airway route</td>
</tr>
<tr>
<td>internet</td>
<td>class C network</td>
<td>connection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>social relationship</td>
<td>person, actor</td>
<td>friendship, movie cast</td>
</tr>
<tr>
<td>neural network</td>
<td>neuron</td>
<td>synapse</td>
</tr>
<tr>
<td>protein network</td>
<td>protein</td>
<td>protein-protein interaction</td>
</tr>
<tr>
<td>molecule</td>
<td>atom</td>
<td>bond</td>
</tr>
</tbody>
</table>
Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- Two representations of each edge.
- Space proportional to n^2.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

```
   1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 0 1 0 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0
```
Graph representation: \textit{adjacency lists}

\textbf{Adjacency lists.} Node indexed array of lists.
- Two representations of each edge.
- Space is $\Theta(m + n)$.
- Checking if (u, v) is an edge takes $O(\text{degree}(u))$ time.
- Identifying all edges takes $\Theta(m + n)$ time.

degree = number of neighbors of u

\[
\text{size} = \deg(1) = 2 \cdot m
\]
Paths and connectivity

Def. A path in an undirected graph $G = (V, E)$ is a sequence of nodes v_1, v_2, \ldots, v_k with the property that each consecutive pair v_{i-1}, v_i is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.
Cycles

Def. A cycle is a path v_1, v_2, \ldots, v_k in which $v_1 = v_k$, $k > 2$, and the first $k-1$ nodes are all distinct.

![Diagram of a graph with labeled nodes 1 to 8 and a cycle 1-2-4-5-3-1 highlighted.]

$\text{cycle } C = 1-2-4-5-3-1$
Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has $n - 1$ edges.
Rooted trees

Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

Claim: Tree on n nodes has $n-1$ edges.
Connectivity

s-t connectivity problem. Given two node s and t, is there a path between s and t?

s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Applications.

- Friendster.
- Maze traversal.
- Kevin Bacon number.
- Fewest number of hops in a communication network.
Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.
- $L_0 = \{ s \}$.
- L_1 = all neighbors of L_0.
- L_2 = all nodes that do not belong to L_0 or L_1, and that have an edge to a node in L_1.
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i.

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.
Breadth-first search

Property. Let T be a BFS tree of $G = (V, E)$, and let (x, y) be an edge of G. Then, the level of x and y differ by at most 1.
Breadth-first search: analysis

Theorem. The above implementation of BFS runs in $O(m + n)$ time if the graph is given by its adjacency representation. \[\text{size } \Theta(m+n) \] \[\text{linear time} \]

Pf.

- Easy to prove $O(n^2)$ running time:
 - at most n lists $L[i]$
 - each node occurs on at most one list; for loop runs $\leq n$ times
 - when we consider node u, there are $\leq n$ incident edges (u, v),
 and we spend $O(1)$ processing each edge

- Actually runs in $O(m + n)$ time:
 - when we consider node u, there are $\text{degree}(u)$ incident edges (u, v)
 - total time processing edges is $\sum_{v \in V} \text{degree}(u) = 2m$.

\[\text{each edge } (u, v) \text{ is counted exactly twice} \]
\[\text{in sum: once in degree}(u) \text{ and once in degree}(v) \]
Connected component

Connected component. Find all nodes reachable from *s*.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.
Connected component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
 Add v to R
Endwhile

Theorem. Upon termination, R is the connected component containing s.
- BFS = explore in order of distance from s.
- DFS = explore in a different way.
Bipartite graphs

Def. An undirected graph $G = (V, E)$ is **bipartite** if the nodes can be colored blue or white such that every edge has one white and one blue end.

Applications.
- Stable marriage: men = blue, women = white.
- Scheduling: machines = blue, jobs = white.

![Diagram of a bipartite graph]
Testing bipartiteness

Many graph problems become:

- Easier if the underlying graph is bipartite (matching).
- Tractable if the underlying graph is bipartite (independent set).

Before attempting to design an algorithm, we need to understand structure of bipartite graphs.
An obstruction to bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

- [Diagram of bipartite graph]
- [Diagram of non-bipartite graph]
Bipartite graphs

Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).
Bipartite graphs

Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)

- Suppose no edge joins two nodes in the same layer.
- By BFS property, each edge joins two nodes in adjacent levels.
- Bipartition: white = nodes on odd levels, blue = nodes on even levels.

![Diagram of layers L0 to Lk]

Case 1: no edges in same layer.

This algo 2-colors the graph unless it has an odd cycle.

Run time $O(m+n)$
Bipartite graphs

Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

- Suppose (x, y) is an edge with x, y in same level L_j.
- Let $z = \text{lca}(x, y) =$ lowest common ancestor.
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y,
 then path from y to z, then path from z to x.
- Its length is $1 + (j-i) + (j-i)$, which is odd. •
The only obstruction to bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

bipartite (2-colorable)

not bipartite (not 2-colorable)
Directed graphs

Notation. $G = (V, E)$.
- Edge (u, v) leaves node u and enters node v.

Ex. Web graph: hyperlink points from one web page to another.
- Orientation of edges is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.
World wide web

Web graph.
- Node: web page.
- Edge: hyperlink from one page to another (orientation is crucial).
- Modern search engines exploit hyperlink structure to rank web pages by importance.
Some directed graph applications

<table>
<thead>
<tr>
<th>directed graph</th>
<th>node</th>
<th>directed edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>one-way street</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>hyperlink</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey relationship</td>
</tr>
<tr>
<td>WordNet</td>
<td>synset</td>
<td>hypernym</td>
</tr>
<tr>
<td>scheduling</td>
<td>task</td>
<td>precedence constraint</td>
</tr>
<tr>
<td>financial</td>
<td>bank</td>
<td>transaction</td>
</tr>
<tr>
<td>cell phone</td>
<td>person</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>citation</td>
<td>journal article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>inheritance hierarchy</td>
<td>class</td>
<td>inherits from</td>
</tr>
<tr>
<td>control flow</td>
<td>code block</td>
<td>jump</td>
</tr>
</tbody>
</table>
Graph search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path from s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.
Strong connectivity

Def. Nodes \(u \) and \(v \) are \textbf{mutually reachable} if there is a both path from \(u \) to \(v \) and also a path from \(v \) to \(u \).

Def. A graph is \textbf{strongly connected} if every pair of nodes is mutually reachable.

Lemma. Let \(s \) be any node. \(G \) is strongly connected iff every node is reachable from \(s \), and \(s \) is reachable from every node.

Pf. \(\Rightarrow \) Follows from definition.

Pf. \(\Leftarrow \) Path from \(u \) to \(v \): concatenate \(u \rightarrow s \) path with \(s \rightarrow v \) path.

Path from \(v \) to \(u \): concatenate \(v \rightarrow s \) path with \(s \rightarrow u \) path.

\(\quad \checkmark \)

ok if paths overlap
Strong connectivity: algorithm

Theorem. Can determine if G is strongly connected in $O(m + n)$ time.

Pf.

- Pick any node s.
- Run BFS from s in G.
- Run BFS from s in $G_{reverse}$.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma.

Run Time $O(m + n)$

![Diagram showing strongly connected and not strongly connected graphs]

Size of data structure $O(m + n)$
Strong components

Def. A strong component is a maximal subset of mutually reachable nodes.

Theorem. [1]

In $O(m+n)$ time, to find all strong components.

Depth-First Search (DFS)

DFS (u)

u explored

for each edge $u-v$

if v not explored

then $\text{DFS} (v)$

end if

end for

mark u explored
DFS tree

Observe:

\[\text{DFS}(u) \]
- \(v \) explored
- \(w \) explored
- exit \(\text{DFS}(u) \)

descendants of \(u \) in \(T \)

DFS Tree Property:

\[u \rightarrow v \rightarrow w \rightarrow \]
DFS Tree Property:

Let T be a DFS tree of $G = (V,E)$.

If $(x,y) \in E$ but not an edge of T,

Then one of x, y is an ancestor of the other in T.

Proof: Say $\text{DFS}(x)$ is called before $\text{DFS}(y)$ was discovered.

www.cs.sfu.ca/~kabanets/307
Directed acyclic graphs

Def. A **DAG** is a directed graph that contains no directed cycles.

Def. A **topological order** of a directed graph $G = (V, E)$ is an ordering of its nodes as v_1, v_2, \ldots, v_n so that for every edge (v_i, v_j) we have $i < j$.

![Diagram of a DAG and a topological ordering]
Precedence constraints

Precedence constraints. Edge \((v_i, v_j)\) means task \(v_i\) must occur before \(v_j\).

Applications.
- Course prerequisite graph: course \(v_i\) must be taken before \(v_j\).
- Compilation: module \(v_i\) must be compiled before \(v_j\). Pipeline of computing jobs: output of job \(v_i\) needed to determine input of job \(v_j\).
Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. [by contradiction]

- Suppose that G has a topological order v_1, v_2, \ldots, v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i; thus (v_j, v_i) is an edge.
- By our choice of i, we have $i < j$.
- On the other hand, since (v_j, v_i) is an edge and v_1, v_2, \ldots, v_n is a topological order, we must have $j < i$, a contradiction.

![Diagram of directed cycle and supposed topological order](image)
Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
Directed acyclic graphs

Lemma. If G is a DAG, then G has a node with no entering edges.

Pf. [by contradiction]

- Suppose that G is a DAG and every node has at least one entering edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one entering edge (u, v) we can walk backward to u.
- Then, since u has at least one entering edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle. —
Directed acyclic graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. [by induction on n]
- **Base case:** true if $n = 1$.
- Given DAG on $n > 1$ nodes, find a node v with no entering edges.
- $G - \{v\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G - \{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G - \{v\}$ in topological order. This is valid since v has no entering edges.

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of $G - \{v\}$
and append this order after v

Topological sorting algorithm: running time

Theorem. Algorithm finds a topological order in $O(m + n)$ time.

Pf.
- Maintain the following information:
 - $\text{count}(w)$ = remaining number of incoming edges
 - S = set of remaining nodes with no incoming edges
- Initialization: $O(m + n)$ via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement $\text{count}(w)$ for all edges from v to w
 and add w to S if $\text{count}(w)$ hits 0
 - this is $O(1)$ per edge
and add \(w \) to \(S \) if \(\text{count}(w) \) hits \(0 \)
this is \(O(1) \) per edge

\[
\frac{O(m+n)}{\text{init}} + \frac{O(m)}{\text{over all iterations}} = T
\]

BFS \& DFS Implementations

- BFS: use queues
- DFS: use stacks

Recursive algo \(\rightarrow\) stacks