Scheduling to minimizing lateness

Minimizing lateness problem.
- Single resource processes one job at a time.
- Job j requires t_j units of processing time and is due at time d_j.
- If j starts at time s_j, it finishes at time $f_j = s_j + t_j$.
- Lateness: $\ell_j = \max \{ 0, f_j - d_j \}$.
- Goal: schedule all jobs to minimize maximum lateness $L = \max_j \ell_j$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_j</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$d_3 = 9$</th>
<th>$d_2 = 8$</th>
<th>$d_6 = 15$</th>
<th>$d_4 = 6$</th>
<th>$d_5 = 14$</th>
<th>$d_4 = 9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

lateness = 2 lateness = 0 max lateness = 6
Minimizing lateness: greedy algorithms

Greedy template. Schedule jobs according to some natural order.

- [Shortest processing time first] Schedule jobs in ascending order of processing time t_j.

- [Earliest deadline first] Schedule jobs in ascending order of deadline d_j.

- [Smallest slack] Schedule jobs in ascending order of slack $d_j - t_j$.

Minimizing lateness: greedy algorithms

Greedy template. Schedule jobs according to some natural order.

- [Shortest processing time first] Schedule jobs in ascending order of processing time t_j.

 ![Counterexample Table 1]

- [Smallest slack] Schedule jobs in ascending order of slack $d_j - t_j$.

 ![Counterexample Table 2]
Minimizing lateness: earliest deadline first

Earliest-Deadline-First \((n, t_1, t_2, ..., t_n, d_1, d_2, ..., d_n)\)

Sort \(n\) jobs so that \(d_1 \leq d_2 \leq ... \leq d_n\).

\(t \leftarrow 0\)

For \(j = 1\) to \(n\)

Assign job \(j\) to interval \([t, t + t_j]\).

\(s_j \leftarrow t; \quad f_j \leftarrow t + t_j\)

\(t \leftarrow t + t_j\)

Return intervals \([s_1, f_1], [s_2, f_2], ..., [s_n, f_n]\).

Max lateness = 1

<table>
<thead>
<tr>
<th>(d_1 = 6)</th>
<th>(d_2 = 8)</th>
<th>(d_3 = 9)</th>
<th>(d_4 = 9)</th>
<th>(d_5 = 14)</th>
<th>(d_6 = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Minimizing lateness: no idle time

Observation 1. There exists an optimal schedule with no idle time.

Observation 2. The earliest-deadline-first schedule has no idle time.
Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that: $i < j$ but j scheduled before i.

![Diagram showing an inversion between jobs i and j.]

[as before, we assume jobs are numbered so that $d_1 \leq d_2 \leq \ldots \leq d_n$]

Observation 3. The earliest-deadline-first schedule has no inversions.

Observation 4. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.
Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that: $i < j$ but j scheduled before i.

Claim. Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

Pf. Let ℓ be the lateness before the swap, and let ℓ' be it afterwards.

- $\ell'_k = \ell_k$ for all $k \neq i, j$.
- $\ell'_i \leq \ell_i$.
- If job j is late, $\ell'_j = f'_i - d_i$ (definition)
 - $\leq f_i - d_i$ (since i and j inverted)
 - $\leq \ell_j$ (definition)

Minimizing lateness: analysis of earliest-deadline-first algorithm

Theorem. The earliest-deadline-first schedule S is optimal.

Pf. [by contradiction]

Define S^* to be an optimal schedule that has the fewest number of inversions, and let's see what happens.

- Can assume S^* has no idle time.
- If S^* has no inversions, then $S = S^*$.
- If S^* has an inversion, let i–j be an adjacent inversion.
- Swapping i and j
 - does not increase the max lateness
 - strictly decreases the number of inversions
- This contradicts definition of S^*.

Exercise: two schedules with no idle time & no inversions, are they actually good?
Divide-and-conquer paradigm

Divide-and-conquer.
- Divide up problem into several subproblems.
- Solve each subproblem recursively.
- Combine solutions to subproblems into overall solution.

Most common usage.
- Divide problem of size n into two subproblems of size $n/2$ in linear time.
- Solve two subproblems recursively.
- Combine two solutions into overall solution in linear time.

Consequence.
- Brute force: $\Theta(n^2)$.
- Divide-and-conquer: $\Theta(n \log n)$.

\[T(n) = \frac{1}{2} T\left(\frac{n}{2}\right) + O(n) \]
Sorting problem

Problem. Given a list of n elements from a totally-ordered universe, rearrange them in ascending order.

Sorting applications

Obvious applications.
- Organize an MP3 library.
- Display Google PageRank results.
- List RSS news items in reverse chronological order.

Some problems become easier once elements are sorted.
- Identify statistical outliers.
- Binary search in a database.
- Remove duplicates in a mailing list.

Non-obvious applications.
- Convex hull.
- Closest pair of points.
- Interval scheduling / interval partitioning.
- Minimum spanning trees (Kruskal’s algorithm).
- Scheduling to minimize maximum lateness or average completion time.
- ...
Mergesort

- Recursively sort left half.
- Recursively sort right half.
- Merge two halves to make sorted whole.

input

```
ALGORITHM
```

sort left half

```
AGLOR
ITHMS
```

sort right half

```
AGLOR
HIMST
```

merge results

```
AGHILMORST
```

Merging

Goal. Combine two sorted lists A and B into a sorted whole C.

- Scan A and B from left to right.
- Compare a_i and b_j.
- If $a_i \leq b_j$, append a_i to C (no larger than any remaining element in B).
- If $a_i > b_j$, append b_j to C (smaller than every remaining element in A).

<table>
<thead>
<tr>
<th>sorted list A</th>
<th>sorted list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 a_i 18</td>
<td>2 11 b_j 17 23</td>
</tr>
</tbody>
</table>

merge to form sorted list C

```
2 3 7 10 11
```

$\min\{a_i, b_j\} = a_i$
A useful recurrence relation

Def. $T(n) = \max$ number of compares to mergesort a list of size $\leq n$.

Note. $T(n)$ is monotone nondecreasing.

Mergesort recurrence.

$$T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lfloor n/2 \rfloor) + n & \text{otherwise}
\end{cases}$$

Solution. $T(n)$ is $O(n \log_2 n)$.

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace \leq with $=$.
Divide-and-conquer recurrence: proof by recursion tree

Proposition. If $T(n)$ satisfies the following recurrence, then $T(n) = n \log_2 n$.

$$T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2 \frac{T(n/2)}{2} + n & \text{otherwise}
\end{cases}$$

Pf 1.

![Recursion Tree Diagram]

Proof by induction

Proposition. If $T(n)$ satisfies the following recurrence, then $T(n) = n \log_2 n$.

$$T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2 \frac{T(n/2)}{2} + n & \text{otherwise}
\end{cases}$$

Pf 2. [by induction on n]

- **Base case:** when $n = 1$, $T(1) = 0$.
- **Inductive hypothesis:** assume $T(n) = n \log_2 n$.
- **Goal:** show that $T(2n) = 2n \log_2 (2n)$.

$$T(2n) = 2T(n) + 2n$$
$$= 2n \log_2 n + 2n$$
$$= 2n (\log_2 (2n) - 1) + 2n$$
$$= 2n \log_2 (2n).$$

\[\Box \]
Analysis of mergesort recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n \lfloor \log_2 n \rfloor$.

$$T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n & \text{otherwise}
\end{cases}$$

Pf. [by strong induction on n]

- Base case: $n = 1$.
- Define $n_1 = \lceil n/2 \rceil$ and $n_2 = \lfloor n/2 \rfloor$.
- Induction step: assume true for $1, 2, \ldots, n - 1$.

\[
\begin{align*}
T(n) & \leq T(n_1) + T(n_2) + n \\
& \leq n_1 \lfloor \log_2 n_1 \rfloor + n_2 \lfloor \log_2 n_2 \rfloor + n \\
& \leq n_1 \lfloor \log_2 n_2 \rfloor + n_2 \lfloor \log_2 n_2 \rfloor + n \\
& = n_1 \lfloor \log_2 n_2 \rfloor + n \quad \text{by induction} \\
& \leq n_1 \lfloor \log_2 n_2 \rfloor - 1 + n \\
& = n \lfloor \log_2 n_2 \rfloor.
\end{align*}
\]
Counting inversions

Music site tries to match your song preferences with others.
• You rank \(n \) songs.
• Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
• My rank: \(1, 2, ..., n \).
• Your rank: \(a_1, a_2, ..., a_n \).
• Songs \(i \) and \(j \) are inverted if \(i < j \), but \(a_i > a_j \).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>me</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>you</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

2 inversions: 3–2, 4–2

Brute force: check all \(\Theta(n^2) \) pairs.

Counting inversions: applications

• Voting theory.
• Collaborative filtering.
• Measuring the "sortedness" of an array.
• Sensitivity analysis of Google's ranking function.
• Rank aggregation for meta-searching on the Web.
• Nonparametric statistics (e.g., Kendall's tau distance).

Rank Aggregation Methods for the Web

Cynthia Dwork1 Ravi Kumar1 Moni Naor1 D. Sivakumar1

ABSTRACT

We consider the problem of combining ranking results from various sources. In the context of the Web, the main applications include building news-watch engines, combining ranking functions, selecting documents based on multiple criteria, and improving search precision through word associations. We develop a set of techniques for the rank-aggregation problem and compare their performance to that of well-known methods. A primary goal of our work is to design rank-aggregation techniques that are effectively robust to "spam," a serious problem in Web search. Experiments show that our methods are simple, efficient, and effective.

Keywords: rank aggregation, ranking functions, meta-search, multi-weather systems, spam
Counting inversions: divide-and-conquer

- Divide: separate list into two halves \(A \) and \(B \).
- Conquer: recursively count inversions in each list.
- Combine: count inversions \((a, b)\) with \(a \in A\) and \(b \in B\).
- Return sum of three counts.

Input

| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 3 | 7 |

Count inversions in left half A

| 1 | 5 | 4 | 8 | 10 |

- 5-4

Count inversions in right half B

| 2 | 6 | 9 | 3 | 7 |

- 6-3 9-3 9-7

Count inversions \((a, b)\) with \(a \in A\) and \(b \in B\)

| 1 | 5 | 4 | 8 | 10 |

- 4-2 4-3 5-2 5-3 8-2 8-3 8-6 8-7 10-2 10-3 10-6 10-7 10-9

Output \(1 + 3 + 13 = 17\)
Counting inversions: how to combine two subproblems?

Q. How to count inversions \((a, b)\) with \(a \in A\) and \(b \in B\)?
A. Easy if \(A\) and \(B\) are sorted!

Warmup algorithm.
- Sort \(A\) and \(B\).
- For each element \(b \in B\),
 - binary search in \(A\) to find how elements in \(A\) are greater than \(b\).

```
list A
7   10  18  3   14
sort A
3   7   10  14  18

list B
17  23  2   11  16
sort B
2   11  16  17  23
```

binary search to count inversions \((a, b)\) with \(a \in A\) and \(b \in B\)

```
3   7   10  14  18

2   11  16  17  23
5   2   1   1   0
```

Counting inversions: how to combine two subproblems?

Count inversions \((a, b)\) with \(a \in A\) and \(b \in B\), assuming \(A\) and \(B\) are sorted.
- Scan \(A\) and \(B\) from left to right.
- Compare \(a_i\) and \(b_j\).
 - If \(a_i < b_j\), then \(a_i\) is not inverted with any element left in \(B\).
 - If \(a_i > b_j\), then \(b_j\) is inverted with every element left in \(A\).
- Append smaller element to sorted list \(C\).

```
count inversions \((a, b)\) with \(a \in A\) and \(b \in B\)
3   7   10  \(a_i\)  18
2   11  \(b_j\)  17  23
5   2

merge to form sorted list \(C\)
2   3   7   10  11
```

17
Counting inversions: divide-and-conquer algorithm implementation

Input. List \(L \).

Output. Number of inversions in \(L \) and sorted list of elements \(L' \).

\[
\text{SORT-AND-COUNT}(L)
\]

- **If** list \(L \) has one element
 - **RETURN** \((0, L)\).

- **DIVIDE** the list into two halves \(A \) and \(B \).
 - \((r_A, A) \leftarrow \text{SORT-AND-COUNT}(A)\).
 - \((r_B, B) \leftarrow \text{SORT-AND-COUNT}(B)\).
 - \((r_{AB}, L') \leftarrow \text{MERGE-AND-COUNT}(A, B)\).

- **RETURN** \((r_A + r_B + r_{AB}, L')\).

\text{time} \ O(1A1+1B1)

Counting inversions: divide-and-conquer algorithm analysis

Proposition. The sort-and-count algorithm counts the number of inversions in a permutation of size \(n \) in \(O(n \log n) \) time.

Pf. The worst-case running time \(T(n) \) satisfies the recurrence:

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & \text{otherwise}
\end{cases}
\]

\[
T(n) = 2 \cdot T \left(\frac{n}{2} \right) + \Theta(n)
\]

\[
T(1n) = \Theta(n \cdot \log n)
\]
Integer addition

Addition. Given two \(n \)-bit integers \(a \) and \(b \), compute \(a + b \).

Subtraction. Given two \(n \)-bit integers \(a \) and \(b \), compute \(a - b \).

Grade-school algorithm. \(\Theta(n) \) bit operations.

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
+ & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline
1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
\end{array}
\]

Remark. Grade-school addition and subtraction algorithms are asymptotically optimal.
Integer multiplication

Multiplication. Given two \(n \)-bit integers \(a \) and \(b \), compute \(a \times b \).

Grade-school algorithm. \(\Theta(n^2) \) bit operations.

![Multiplication Diagram]

Conjecture. [Kolmogorov 1952] Grade-school algorithm is optimal.

Theorem. [Karatsuba 1960] Conjecture is wrong.

Divide-and-conquer multiplication

To multiply two \(n \)-bit integers \(x \) and \(y \):
- Divide \(x \) and \(y \) into low- and high-order bits.
- Multiply four \(\frac{1}{2}n \)-bit integers, recursively.
- Add and shift to obtain result.

\[
m = \lceil \frac{n}{2} \rceil \\
a = \lfloor x / 2^m \rfloor \quad b = x \mod 2^m \\
c = \lfloor y / 2^m \rfloor \quad d = y \mod 2^m
\]

\[
(2^m a + b) (2^m c + d) = 2^{2m} ac + 2^m (bc + ad) + bd
\]

\[
\text{Ex. } x = 10001101 \quad y = 11100001
\]

\[
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c} \\
\text{d}
\end{array}
\]

\[
\begin{array}{c}
\text{x} \\
\text{y}
\end{array}
\]
Divide-and-conquer multiplication

\textbf{MULTIPLY}(x, y, n)

\textbf{IF} \ (n = 1)
 \textbf{RETURN} \ x \times y.

\textbf{ELSE}
 \hspace{1em} m \leftarrow \lfloor \frac{n}{2} \rfloor.
 \hspace{1em} a \leftarrow \lfloor \frac{x}{2^m} \rfloor; \ b \leftarrow x \mod 2^m.
 \hspace{1em} c \leftarrow \lfloor \frac{y}{2^m} \rfloor; \ d \leftarrow y \mod 2^m.
 \hspace{1em} e \leftarrow \text{MULTIPLY}(a, c, m).
 \hspace{1em} f \leftarrow \text{MULTIPLY}(b, d, m).
 \hspace{1em} g \leftarrow \text{MULTIPLY}(b, c, m).
 \hspace{1em} h \leftarrow \text{MULTIPLY}(a, d, m).
 \hspace{1em} \text{RETURN} \ 2^{2m}e + 2^m (g + h) + f.

Divide-and-conquer multiplication analysis

\textbf{Proposition.} The divide-and-conquer multiplication algorithm requires \(\Theta(n^2) \) bit operations to multiply two \(n \)-bit integers.

\textbf{Pf.} Apply case 1 of the master theorem to the recurrence:

\[T(n) = 4T(n/2) + \Theta(1) \Rightarrow T(n) = \Theta(n^2) \]
Karatsuba trick

To compute middle term $bc + ad$, use identity:

$$bc + ad = ac + bd - (a - b)(c - d)$$

$$m = \lfloor n / 2 \rfloor$$
$$a = \lfloor x / 2^m \rfloor \quad b = x \mod 2^m$$
$$c = \lfloor y / 2^m \rfloor \quad d = y \mod 2^m$$

Middle term

$$(2^m a + b) (2^m c + d) = 2^{2m} ac + 2^m (bc + ad) + bd$$

$$= 2^{2m} ac + 2^m (ac + bd - (a - b)(c - d)) + bd$$

Bottom line. Only three multiplication of $n/2$-bit integers.
Karatsuba multiplication

\text{KARATSUBA-MULTIPLY}(x, y, n)

\textbf{IF} \ (n = 1)
\quad \text{RETURN} \ x \times y.
\textbf{ELSE}
\quad m \leftarrow \lfloor n / 2 \rfloor.
\quad a \leftarrow \lfloor x / 2^m \rfloor; \quad b \leftarrow \mod{x, 2^m}.
\quad c \leftarrow \lfloor y / 2^m \rfloor; \quad d \leftarrow \mod{y, 2^m}.
\quad e \leftarrow \text{KARATSUBA-MULTIPLY}(a, c, m).
\quad f \leftarrow \text{KARATSUBA-MULTIPLY}(b, d, m).
\quad g \leftarrow \text{KARATSUBA-MULTIPLY}(a - b, c - d, m).
\quad \text{RETURN} \ 2^{2m} e + 2^{m} (e + f - g) + f.

Combining in time $\Theta(n)$

Karatsuba analysis

\textbf{Proposition.} Karatsuba's algorithm requires $O(n^{1.585})$ bit operations to multiply two n-bit integers.

\textbf{Pf.} Apply case 1 of the master theorem to the recurrence:

\[T(n) = 3 T(n/2) + \Theta(n) \quad \Rightarrow \quad T(n) = \Theta(n^{\log_2 3}) = O(n^{1.585}). \]

\textbf{Practice.} Faster than grade-school algorithm for about 320-640 bits.
\[T(n) = 3 \cdot T \left(\frac{n}{2} \right) + \eta \]

Total time:
\[n + \frac{3}{2} n + \left(\frac{3}{2} \right) n + \ldots \]

\[= n \cdot \left(1 + \frac{3}{2} + \left(\frac{3}{2} \right)^2 + \ldots + \left(\frac{3}{2} \right)^t \right) \]

\[\sum_{i=0}^{t} \left(\frac{3}{2} \right)^i = \frac{1 - q^t}{1 - q} \]
\[q = \frac{3}{2} \]

\[t = \log_2 \left(\frac{n}{1 - \left(\frac{3}{2} \right)^{\frac{3}{2}}} \right) \]

\[\text{time} = n \cdot \frac{\log_2 n + 1}{1 - \frac{3}{2}} \]

\[-n \cdot \frac{\left(\frac{3}{2} \right)^{\frac{3}{2}} \log_2 n}{\log_2 n} \]

\[\approx \frac{n}{2} \cdot \left(\frac{3}{2} \right)^{\frac{3}{2}} \log_2 n \]

\[-\frac{3}{2} \cdot \frac{3}{n} = \frac{3}{2} \cdot \left(\log_2 \frac{3}{2} \right) \log_2 n \]

\[\left(\log_2 \frac{3}{2} \right)^{\log_2 3} \leq \frac{\log_2 3}{n} \]
Integer arithmetic reductions

Integer multiplication. Given two \(n \)-bit integers, compute their product.

<table>
<thead>
<tr>
<th>problem</th>
<th>arithmetic</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer multiplication</td>
<td>(a \times b)</td>
<td>(\Theta(M(n)))</td>
</tr>
<tr>
<td>integer division</td>
<td>(a / b, \ a \mod b)</td>
<td>(\Theta(M(n)))</td>
</tr>
<tr>
<td>integer square</td>
<td>(a^2)</td>
<td>(\Theta(M(n)))</td>
</tr>
<tr>
<td>integer square root</td>
<td>(\lfloor \sqrt{a} \rfloor)</td>
<td>(\Theta(M(n)))</td>
</tr>
</tbody>
</table>

integer arithmetic problems with the same complexity as integer multiplication

History of asymptotic complexity of integer multiplication

<table>
<thead>
<tr>
<th>year</th>
<th>algorithm</th>
<th>order of growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td>Karatsuba-Ofman</td>
<td>(\Theta(n^{1.585}))</td>
</tr>
<tr>
<td>1963</td>
<td>Toom-3, Toom-4</td>
<td>(\Theta(n^{1.465}), \Theta(n^{1.408}))</td>
</tr>
<tr>
<td>1966</td>
<td>Toom-Cook</td>
<td>(\Theta(n^{1.8}))</td>
</tr>
<tr>
<td>1971</td>
<td>Schönhage–Strassen</td>
<td>(\Theta(n \log n \log \log n))</td>
</tr>
<tr>
<td>2007</td>
<td>Fürer</td>
<td>(n \log n 2^{O(\log^*n)})</td>
</tr>
</tbody>
</table>

number of bit operations to multiply two \(n \)-bit integers

Remark. GNU Multiple Precision Library uses one of five different algorithm depending on size of operands.