1. **Recurrences** Give asymptotic upper and lower bounds for $T(n)$ in each of the following recurrences. Assume that $T(n)$ is constant for $n \leq 2$. Make your bounds as tight as possible, and justify your answers:

 (a) $T(n) = 2T(n/2) + n^3$.
 (b) $T(n) = 16T(n/4) + n^2$.
 (c) $T(n) = T(n-1) + n$.
 (d) $T(n) = T(\sqrt{n}) + 1$.
 (e) $T(n) = \sqrt{n}T(\sqrt{n}) + n$.

For each of the following problems, give a dynamic-programming solution, and give the worst-case time analysis of your algorithm (using the asymptotic notation). Your solution should follow the 4-step format: (i) describe an array and say how to obtain an optimal value from your array; (ii) give a recurrence for your array, and prove its correctness; (iii) give a pseudo-code algorithm for filling in the array; and (iv) give an algorithm for finding an optimal solution to the original problem, using the values in the array (if such an optimal solution exists).

2. **Making Change** You’re given an unlimited supply of coins of denominations d_1, d_2, \ldots, d_k (where each d_i is a positive integer), and a positive integer number n (all in binary). Your goal is to give the amount n of money, using in total as few coins as possible.

 More formally, you need to design an algorithm for the following problem.

 Given: positive integers d_1, d_2, \ldots, d_k and n (in binary).
 Find: a sequence of nonnegative integers v_1, v_2, \ldots, v_k (where each v_i is the number of coins of denomination d_i) so that $\sum_{i=1}^{k} v_id_i = n$, and $\sum_{i=1}^{k} v_i$ is minimized.

 (For example, for denominations 100, 25, 10, 5, 1, the value 57 is best given using coins $25 + 25 + 5 + 1 + 1$, for the total of 5 coins.)

3. **String Matching** Given $n, m \in \mathbb{N}$ and binary strings s, t_1, \ldots, t_m, where n is the length of s, decide whether s can be expressed as a concatenation of some of the strings t_j (allowing repetitions), and if so, output such a representation of s. (For example, if $n = 8$, $m = 3$, $s = 01110101$, $t_1 = 000$, $t_2 = 01$, $t_3 = 11$, then the answer is YES since $s = t_2t_3t_2t_2$, and $\langle 2; 3; 2; 2 \rangle$ is the representation.)
4. **Maximum Weight Independent Set of a Path**

A *path* on n nodes is a graph where all edges are of the form $(i, i + 1)$, for $i = 1, \ldots, (n - 1)$. With each node i, $1 \leq i \leq n$, we associate a positive integer weight w_i.

The problem Max Weight Independent Set of a Path is: Given a path graph on n nodes, with node weights w_1, \ldots, w_n, find an independent set $S \subseteq \{1, \ldots, n\}$ of the graph (where no two nodes in S are connected by an edge) such that the weight $\sum_{i \in S} w_i$ of S is maximized.

(For example, given a path on 5 nodes 1, 2, 3, 4, 5, with the corresponding weights 1, 8, 6, 3, 6, the max weight independent set is $S = \{2, 5\}$ of the total weight $8 + 6 = 14$.

So your algorithm must return $S = \{2, 5\}$.)

5. Also, the following three problems from the textbook [KT], Chapter 6: #3, #8, #11.