1. 1-to-k Matchings

We saw in class that a bipartite graph $G = (L \cup R, E)$ with the bipartition L, R where $|L| = |R|$, has a perfect matching if and only if the following condition holds: for every subset $S \subseteq L$, the size of the neighborhood $|\Gamma(S)| \geq |S|$.

We shall generalize this as follows. Suppose $G = (L \cup R, E)$ is a bipartite graph where $|R| = k \cdot |L|$, for some integer constant $k > 0$. Call a matching between L and R 1-to-k if every vertex $x \in L$ is matched with exactly k vertices in R so that no two vertices $x \neq y \in L$ have a common matched node from R.

(a) Prove that G has a 1-to-k matching if and only if, for every subset $S \subseteq L$, we have $|\Gamma(S)| \geq k \cdot |S|$.

(b) Give an efficient algorithm (based on Max Flow) for finding a 1-to-k matching in a given input graph G, when it exists. (Your algorithm should also determine if such a matching exists.)

2. Network flows

Suppose you’re in charge of the Mars mission. There are possible experiments E_1, \ldots, E_m to perform on Mars. Each experiment E_j brings the profit of p_j dollars (integer amount). These experiments depend on the set of instruments $I = \{I_1, \ldots, I_n\}$, where each experiment E_j depends on the subset $R_j \subseteq I$ of instruments. Taking instrument I_k to Mars costs c_k dollars (integer amount).

You want to maximize your net revenue which is the total income from all experiments performed minus the total cost of all instruments taken to space.

Solve this problem using network flows. Consider the following network G. Its vertices are source s, vertices I_1, \ldots, I_n, vertices E_1, \ldots, E_m, and the sink t. The source s has a directed edge to each vertex I_k with capacity c_k. Each vertex E_j is connected to the sink t with a directed edge of capacity p_j. Finally, for each $1 \leq k \leq n$ and $1 \leq j \leq m$, vertex I_k is connected with a directed edge to E_j iff $I_k \in R_j$; the edges between I_k and E_j are of infinite capacity.

(a) Let (A, B) be any st-cut of the network G defined above such that the capacity $c(A, B)$ is finite (i.e., no infinite-capacity edge goes from A to B). Show that if some $E_j \in B$, then $I_k \in B$ for every $I_k \in R_j$.

(b) Show how to determine the maximum net revenue from the capacity of the minimum cut of G and the given p_j values.

(c) Give an efficient algorithm to determine which experiments to perform and which instruments to carry. What is the running time of your algorithm in terms of $n, m,$ and $r = \sum_{j=1}^{m} |R_j|$?

3. Problems 6, 12, and 19 from Chapter 7 of [KT].

4. **NP-completeness** Prove that each of the following problems is NP-complete.

 (a) Given an undirected graph on n vertices (for an even number n), decide if the graph contains a clique of size $n/2$.

 (b) Given a propositional formula $\phi(x_1, \ldots, x_n)$, decide if ϕ has at least 2 satisfying assignments.