1 Halting Problem

Can we tell if a given TM is a decider? Or, even simpler, can we tell if a given TM halts on a given input string? No, the latter is the famous Halting Problem that was shown undecidable by Alan Turing in 1936.

Consider the language

\[A_{TM} = \{ \langle M, w \rangle \mid \text{TM } M \text{ accepts input } w \} \].

Theorem 1. \(A_{TM} \) is semi-decidable.

Proof. Recall our universal TM \(U \): “On input \(\langle M, w \rangle \), simulate TM \(M \) on input \(w \), accepting if \(M \) accepts \(w \).”

We argued that \(U \) exists. Obviously, \(U \) accepts \(A_{TM} \).

Theorem 2. \(A_{TM} \) is undecidable.

Proof. We’ll prove it in two stages.

- **Stage 1**: construct a language \(D \) such that \(D \) is not semi-decidable.

- **Stage 2**: show that if \(A_{TM} \) were decidable, then \(D \) would be decidable. A contradiction.

Now we provide more details.

Stage 1: Define \(D \) using the diagonalization method. Define

\[D = \{ \langle M_i \rangle \mid \text{TM } M_i \text{ does not accept input } \langle M_i \rangle \} \],

where \(M_i \) is the \(i \)th TM in the complete enumeration of all TMs.

Claim 1. \(D \) is not semi-decidable.

Proof of Claim: Suppose \(D \) is recognizable by some TM \(M_n \). Then consider the question "Is \(\langle M_n \rangle \) in \(L(M_n) \)?"

If the answer is Yes, then we get:

\(\langle M_n \rangle \in L(M_n) \Rightarrow (\text{by the definition of } D) \)

\(\langle M_n \rangle \notin D \Rightarrow (\text{since } D = L(M_n)) \)

\(\langle M_n \rangle \notin L(M_n) \). A contradiction.

If the answer is No, then we get:
\[\langle M_n \rangle \not\in L(M_n) \Rightarrow \text{(by the definition of } D) \]
\[\langle M_n \rangle \in D \Rightarrow \text{(since } D = L(M_n)) \]
\[\langle M_n \rangle \in L(M_n). \text{ A contradiction.} \]

Thus, in both cases we derive a contradiction. Hence, our assumption that \(D \) is semi-decidable must be false.

\[\square \]

Stage 2: Suppose \(A_{TM} \) is decidable by a TM \(H \). Then we obtain the decider TM for the language \(D \) as follows:

“On input \(\langle M_i \rangle \), simulate \(H \) on input \(\langle M_i, \langle M_i \rangle \rangle \). If \(H \) accepts its input, then Reject.
Otherwise, Accept.”

Since we just proved in Stage 1 that \(D \) is not even semi-decidable (let alone decidable), it must be the case that our assumption that \(A_{TM} \) is decidable is false. So, \(A_{TM} \) is undecidable.

Thus, we know that there are problems that are semi-decidable but not decidable (e.g., \(A_{TM} \) is such a problem). There are also problems that are not even semi-decidable (e.g., language \(D \) from the proof above).

2 Semi-decidable vs. decidable

We know that a language may be semi-decidable but not decidable. However, if both \(L \) and its complement \(\bar{L} \) are semi-decidable then \(L \) must in fact be decidable.

Claim 2. If a language \(L \) and its complement \(\bar{L} \) are both semi-decidable, then \(L \) is decidable.

Proof. Let \(M_L \) be a TM accepting \(L \), and let \(M_{\bar{L}} \) be a TM accepting \(\bar{L} \). On input \(x \), run both TMs “in parallel”, until one of them accepts. (At some finite point in time, one of the machines must accept as every input \(x \) is either in \(L \) or in \(\bar{L} \).) If \(M_L \) accepted, then halt and accept. If \(M_{\bar{L}} \) accepted, then halt and reject.

As a corollary, we get that the complement of \(A_{TM} \) is not semi-decidable! Do you see why?

We also have the following.

Theorem 3. The class of decidable languages is closed under complementation. On the other hand, the class of semi-decidable languages is not closed under complementation.

Proof. Given a DTM \(M \) deciding a language \(L = L(M) \), construct a new DTM \(M' \) by taking \(M \) and swapping \(q_{accept} \) and \(q_{reject} \) states. It’s easy to see that the new DTM \(M' \) accepts exactly those strings that are rejected by \(M \), and rejects exactly those strings that are accepted by \(M \). So, we have \(L(M') = \bar{L} \), as required.

On the other hand, \(A_{TM} \) is semi-decidable, but, as observed above, its complement is not semi-decidable.

3 Types of proofs of undecidability

There are two types of proof for undecidability:

1. diagonalization (e.g., language \(D \))
2. reduction (e.g., \(A_{TM} \))

Most of our proofs will be proofs by reduction. We give some examples next.
4 Examples of undecidable languages

Theorem 4. The language

\[\text{ETM} = \{ \langle M \rangle \mid L(M) \text{ is empty} \} \]

is undecidable.

Proof. Proof by reduction from \(A_{TM} \). Given input \(\langle M, w \rangle \), design a TM \(M' \) as follows:

\(M' \): “On input \(x \), simulate \(M \) on input \(w \). If \(M \) accepts, then Accept.”

Observe that

1. if \(M \) accepts \(w \), then \(L(M') = \Sigma^* \) (i.e., \(M' \) accepts every input \(x \)),
2. if \(M \) does not accept \(w \), then \(L(M') = \emptyset \).

Now, if we have a decider TM \(R \) for the language \(E_{TM} \), we can decide \(A_{TM} \) as follows:

“On input \(\langle M, w \rangle \),

1. Construct the TM \(M' \) for this pair \(\langle M, w \rangle \), as explained above.
2. Run \(R \) on input \(\langle M' \rangle \).
3. If \(R \) accepts \(\langle M' \rangle \), then Reject. If \(R \) rejects \(\langle M' \rangle \), then Accept.”

\[\square \]

Theorem 5. The language

\[\text{ALL}_{TM} = \{ \langle M \rangle \mid L(M) = \Sigma^* \} \]

is undecidable.

Proof. Suppose that \(\text{ALL}_{TM} \) is decidable by \(R \). Show how to decide \(A_{TM} \).

On input \(\langle M, w \rangle \), construct TM \(M' \) as follows:

\(M' \): “On input \(x \), simulate \(M \) on \(w \), accepting if \(M \) accepts \(w \)”.

Now, if \(M \) accepts \(w \), then \(L(M') = \Sigma^* \); and if \(M \) does not accept \(w \), then \(L(M') = \emptyset \).

So to decide \(A_{TM} \), do the following:

“On input \(\langle M, w \rangle \), construct TM \(M' \) defined above. Run \(R \) on input \(\langle M' \rangle \). If \(R \) accepts \(\langle M' \rangle \), then Accept; otherwise, Reject.”

Since \(A_{TM} \) is undecidable, we conclude that \(R \) cannot exist. \[\square \]