Universal Turing Machine (UTM)

\[w \rightarrow M \rightarrow \text{Acc/Rej} \]

(particular TM)

Need to build a new TM for each new algorithm?
No!
One TM can do it all!

Set of Universal TM U:

\[M \rightarrow W \rightarrow U \]

accept if \(M \) accepts \(W \)
reject if \(M \) rejects \(W \)
\(\text{run forever if } M \text{ on } W \text{ runs forever} \)

* \(U \) is a fixed TM (with some fixed alphabet, ...
But, \(U \) needs to simulate any given TM \(M \) (with any alphabet, \# tapes, etc.)

Thm [Universal TM]: There is a 2-tape UTM \(U \) that can simulate any given TM \(M \) on any given input \(w \).

Moreover, if \(M \) takes time \(t \), then \(U \) takes time \(O(\text{log} t) \).

Attempt 1: \[M, w \]

\(M \) has \(K \) tapes

\[U \]

\(\text{(K tracks)} \)

\(\times \) One step of \(M \) takes \(O(t) \) steps of \(U \)!
Attempt 2:

To update the tape after 1 step of M, need to shift each track. Takes time $O(t)$.

Keep the tracks "in sync".

Attempt 3:

Idea: Don't shift the entire track at a time, but just a portion!

1, 1, R, R
new symbol: \(b \) (new blank)

Set:
- \(R_i \) is full if it contains no \(b \)'s
- \(R_i \) is half-full if it contains \(2^i \) \(b \)'s
- \(R_i \) is empty if it contains only \(b \)'s

Ex:

\[R_i \]

\[
\begin{array}{ccccccc}
\text{empty} \\
\hline
b & b & b & b & b & b & b \\
\hline
\end{array}
\]
Invariant:

1. Position 0 contains non-0's in each track (symbols currently scanned by M)

2. For $0 \leq i \leq \log t$,
 - either both L_i & R_i half-full
 - or one full & the other empty.

Performing a shift (right to left)
Claim: After a shift of index \(i_0 \), we don't perform any shift of index \(i_0 \) (or greater) for at least \(2^{i_0} \) shifts.

Time +
index \(i_0 \), shift + times
This shift takes time $O(2^i)$. The total time to simulate t steps of M on w is

\[
\sum_{i=0}^{\log t} \frac{t}{2^i} \cdot O(2^i) = O(1) \cdot t \cdot \sum_{i=0}^{\log t} \frac{1}{2^i} = O(t \cdot \log t).
\]
k-tape TM \ t^2
\rightarrow
k\text{-tape TM } t^2
2
O(H \cdot \log t)

Linear Speedup Thm

Ignore any constant factors when talking TM's run times.

10 \cdot n \ vs. \ 100 \cdot n

\sum \in \Sigma^*
q_1, q_2, q_3, q_4, \ldots, q_k

k
\[\sum_l = \sum_k \]

With \(\geq 6 \) moves, the new TM can simulate \(K \) moves of the original TM.

\[\Rightarrow t \rightarrow t \frac{K}{k} = 3 + \sum a \rightarrow \text{const} \]

Reductions: less hard than

\[L_1 \leq L_2 \]

polytime reducible

there is some efficient \(f: \Sigma^* \rightarrow \Sigma^* \)

\[\forall x, x \in L_1 \Leftrightarrow f(x) \in L_2 \]
Example

3 SAT = \{ \psi \mid \psi \text{ is a satisfiable } 3 \text{- CNF} \}

IS = \{ \phi (y, k) \mid \text{\phi is a graph with independent set of size } \geq k \}

3 SAT \leq IS

m = \# clauses

\psi = (x \lor y \lor w \lor \overline{z}) \land (\overline{x} \lor u \lor v \lor z) \land \ldots

G_{\psi} \vdash x \lor \overline{x} \lor z \

k = m

Completeness

C complexity class
L is C-complete

- $L \in C$
- $\forall L' \in C, L \leq L'$

$C = \mathsf{NP}, \leq = \mathsf{polytime}$

$C = \mathsf{P}, \leq = \mathsf{logspace}$

$C = \mathsf{EXP}, \leq = \mathsf{polytime}$

Extended Church-Turing Thesis

Efficient $\equiv \mathsf{P}$