“Search-to-Decision” Reductions

Suppose that $P = NP$. That would mean that all NP languages can be decided in deterministic polytime. For example, given a graph, we could decide in deterministic polytime whether that graph is 3-colorable. But could we find an actual 3-coloring? It turns out that yes, we can.

In general, we can define an NP search problem: Given a polytime relation R, a constant c, and a string x, find a string y, $|y| \leq |x|^c$, such that $R(x, y)$ is true, if such a y exists. As the following theorem shows, if $P = NP$, then every NP search problem can also be solved in deterministic polytime.

Theorem 1. If $NP = P$, then there is a deterministic polytime algorithm that, given a formula $\phi(y_1, \ldots, y_n)$, finds a satisfying assignment to ϕ, if such an assignment exists.

Proof. We use a kind of binary search to look for a satisfying assignment to ϕ. First, we check if $\phi(x_1, \ldots, x_n) \in SAT$. Since we assumed that $P = NP$, this can be done in deterministic polytime. Then we check if $\phi(0, x_2, \ldots, x_n) \in SAT$, i.e., if ϕ with x_1 set to False is still satisfiable. If it is, then we set a_1 to be 0; otherwise, we make $a_1 = 1$. In the next step, we check if $\phi(a_1, 0, x_3, \ldots, x_n) \in SAT$. If it is, we set $a_2 = 0$; otherwise, we set $a_2 = 1$. We continue this way for n steps. By the end, we have a complete assignment a_1, \ldots, a_n to variables x_1, \ldots, x_n, and by construction, this assignment must be satisfying.

The amount of time our algorithm takes is polynomial in the size of ϕ: we have n steps, where at each step we must answer a SAT question. Since, by our assumption, $P = NP$, each step takes polytime.

Theorem 1 shows the true importance of proving that $NP = P$. If $NP = P$, we could efficiently generate a correct solution for any problem with an efficient recognition algorithm for correct solution. For instance, if $P = NP$, then we could efficiently find a login password of any user of a network, since checking if a password matches a login name can be done efficiently. Thus, if $P = NP$, essentially any secret could be found out efficiently.
Remark 2. Consider the language

$$\text{Composite} = \{N \mid \text{some prime } p < N \text{ divides } N\}.$$

This language is clearly in NP. Moreover, there is a known deterministic polytime algorithm for this problem (as Primality Testing is in P.)

The corresponding Search-version is basically the Factoring problem: Given N, find its nontrivial prime factor.

If there were a polytime “search-to-decision” reduction for this problem, we would get a polytime algorithm for factoring integers! However, no such algorithm is currently known (and conjectured not to exist).

2 Levin’s Universal Search

Suppose we are told that $\text{SAT} \in \text{P}$, yet we are not given an actual polytime algorithm for SAT. Can we still solve SAT in polytime, without knowing the actual algorithm, but just knowing that it exists? Surprisingly, the answer is Yes! We can use a certain universal SAT algorithm, based on Levin’s Universal Search algorithm (for inverting one-way functions).

First, suppose that $\text{SAT} \in \text{TIME}(n^c)$. Also suppose that we know c. (If we don’t know c, the actual polytime bound on solving SAT, we can still solve SAT ourselves, but it will take slightly more than polynomial time.)

Theorem 3. Suppose $\text{SAT} \in \text{TIME}(n^c)$ for a known constant $c > 0$, but an unknown algorithm (solving SAT in time $O(n^c)$). Then one can find an explicit polytime algorithm that solves SAT in time $O(n^{c+2} \cdot \log^2 n + t_0(n) \cdot n)$, where $t_0(n) \in \text{poly}(n)$ is the time it takes to check if a given assignment satisfies a given SAT instance of size n.

Proof. By the “Search-to-Decision” reduction for SAT, we know that SAT-Search is solved in time $O(n^{c+1})$. That is, there is a Turing machine, running in time $O(n^{c+1})$, that on a given SAT instance ϕ of size n, either finds a satisfying assignment for ϕ, or decides that ϕ is unsatisfiable. (Note that we only know that such a TM exists. We don’t know the actual TM, as it relies on the decision algorithm for SAT that is not given to us.)

Here’s an algorithm to solve SAT:

“On input ϕ of size n,
1. for $i = 1$ to n
2. simulate TM M_i on ϕ for $O(n^{c+1} \cdot \log^2 n)$ steps;
3. if M_i produces a satisfying assignment for ϕ, then Accept (and halt)
4. endfor
5. Reject”

For the analysis, first observe that the described algorithm never accepts an unsatisfiable formula. On the other hand, if given a satisfiable formula ϕ of size n, the algorithm will eventually simulate the TM for SAT-Search (which we know exists) that runs in time n^{c+1}.

2
Let M_d be the TM solving SAT-Search in time n^{c+1}. The simulation time of this M_d on a universal TM (used by our algorithm) requires time $d \cdot n^{c+1} \cdot (c+1) \log n$. When $i = d$, this TM M_d will be simulated on ϕ for the amount of time which is bigger than $d \cdot n^{c+1} \cdot (c+1) \log n$ for n large enough (for $n > d$). Thus, for large enough n, our algorithm will discover a satisfying assignment for ϕ and correctly accept. This shows that the described algorithm is correct.

For the running time analysis, we simulate n TMs for $O(n^{c+1} \cdot \log^2 n)$ time each, so the total time our algorithm takes is $O(n^{c+2} \cdot \log^2 n) + O(n \cdot t_0(n))$ for checking if any of the n possible strings (produced by the TMs M_i) is a satisfying assignment.

Remark 4. The described universal algorithm for SAT is good theoretically: it runs only slightly slower than the assumed fastest algorithm for SAT. However, this algorithm is not very practical as it starts to work only for very large inputs sizes $n \gg d$, where d is the index of a correct SAT algorithm. Presumably, a fast algorithm for SAT (if it exists at all!) would be quite complex and long, and so its index d may be a huge constant (exponential in the description size of the program for M_d)!

3 Motivation: Lower bounds for SAT

Even though it is widely believed that $\text{NP} \neq \text{P}$, and so that SAT is not in P, we are so far unable to prove that SAT requires time n^2, or even that SAT requires time $n^{1.1}$.

What if we impose an additional requirement of small space? For proper functions $t, s : \mathbb{N} \rightarrow \mathbb{N}$, define the class $\text{TISP}(t, s)$ (for simultaneous Time and Space) to contain exactly those languages L such that some TM M decides L in time at most t and space at most s.

With the extra restriction, we are able to prove the following time-space tradeoff for SAT:

Theorem 5 (Fortnow). $\text{SAT} \not\in \text{TISP}(n^{1.1}, n^{0.1})$.

That is, if we restrict our attention to algorithms using space at most $n^{0.1}$, we get that any such algorithm solving SAT would need to use strictly more time than $n^{1.1}$. (Equivalently, if we consider algorithms running in time at most $n^{1.1}$, we get that any such algorithm solving SAT would have to use more than $n^{0.1}$ space.)

The proof of this result requires the concept of alternating Turing machines, which generalize NP-machines and coNP-machines by allowing alternating “existential” and “universal” guesses. We explain this next.

4 Polynomial-Time Hierarchy

Recall that a language $L \in \text{NP}$ can be described by the formula: $x \in L$ iff \exists (short y) $R(x, y)$, where y is of length polynomial in the length of x, and R is a polytime predicate.

Similarly, a language $L \in \text{coNP}$ can be described by the formula: $x \in L$ iff \forall (short y) $R(x, y)$, where y is of length polynomial in the length of x, and R is a polytime predicate.
What happens if we allow some k alternating quantifiers over short strings? We get the kth level of the polynomial-time hierarchy!

We call a k-ary relation R *polynomially balanced* if, for every tuple $(a_1, \ldots, a_k) \in R$, the lengths of all a_i’s are polynomially related to each other.

Definition 6. For any $i \geq 1$, a language $L \in \Sigma_i^p$ iff there is a polynomially balanced $(i + 1)$-ary relation R such that

$$L = \{ x \mid \exists y_1 \forall y_2 \exists y_3 \ldots Q_i y_i R(x, y_1, \ldots, y_i) \}.$$

Here, Q_i is \exists if i is odd, and \forall if i is even.

For example, $\Sigma_1^p = \text{NP}$.

Definition 7. For any $i \geq 1$, a language $L \in \Pi_i^p$ iff there is a polynomially balanced $(i + 1)$-ary relation R such that

$$L = \{ x \mid \forall y_1 \exists y_2 \forall y_3 \ldots Q_i y_i R(x, y_1, \ldots, y_i) \}.$$

For example, $\Pi_1^p = \text{coNP}$.

Note that, in general, for every i, $\Pi_i^p = \text{co}\Sigma_i^p$.

Definition 8. $PH = \bigcup_{i \geq 0} \Sigma_i^p$.

Theorem 9. $PH \subseteq \text{PSPACE}$

Proof. Recall that $\text{NP} \subseteq \text{PSPACE}$ since we can just enumerate (re-using space) over all candidate witnesses, and check if any one of them is valid. The case of $PH \subseteq \text{PSPACE}$ is a generalization of this idea. (Exercise!)

4.1 **Examples of problems in PH**

Unique-SAT = \{ ϕ | ϕ is a formula with exactly one satisfying assignment \}

Theorem 10. Unique-SAT is in Σ_2^p.

Proof. Note that $\phi \in \text{Unique} – \text{SAT}$ iff there is y such that for all z, $z \neq y$, we have $\phi(y)$ is True and $\phi(z)$ is False.

Min-Circuit = \{ C | C is a Boolean circuit s.t. no smaller equivalent circuit exists \}

Here, the size of a Boolean circuit is the number of logical operations (ANDs, ORs, and NOTs), or gates, used in the circuit.

Theorem 11. Min-Circuit is in Π_2^p.

Proof. Note that C is in Min-Circuit iff for every smaller circuit C' there is an input x such that $C(x) \neq C'(x)$.
4.2 Alternative definition of \(\text{PH} \)

Definition 12. An oracle TM is a TM \(M \) with special tape, called oracle tape, and special states \(q_f, q_{\text{yes}}, q_{\text{no}} \). When run with some oracle \(O \) (where \(O \) is just some language), \(M \) can query \(O \) on some strings \(x \) by writing these \(x \) onto its oracle tape, and then entering the state \(q_f \). In the next step, TM \(M \) (miraculously) finds itself in the state \(q_{\text{yes}} \) if \(x \in O \), or the state \(q_{\text{no}} \) if \(x \notin O \).

This definition of an oracle TM captures the notion of “having access to an efficient algorithm deciding \(O \)”.

For complexity classes \(C_1 \) and \(C_2 \), we say that a language \(L \in C_1^{C_2} \) if there is an oracle TM \(M \) from class \(C_1 \) that, given oracle access to some language \(O \in C_2 \), decides \(L \).

For example, \(\text{Unique} - \text{SAT} \in \text{NP}^{\text{NP}} \). Given a formula \(\phi \), nondeterministically guess an assignment \(\alpha \). Check that \(\phi(\alpha) \) is True. If not, then Reject; otherwise, construct a new formula \(\phi'(x_1, \ldots, x_n) \equiv \phi(x_1, \ldots, x_n) \land [x_1 \ldots x_n \neq a_1 \ldots a_n] \). Ask the SAT oracle whether \(\phi' \) is satisfiable. If it is, then Reject; otherwise, Accept.

Alternative definition of \(\text{PH} \). Define \(\Sigma_i^p = \Pi_i^p = \text{P} \). For all \(i \geq 0 \), define \(\Sigma_{i+1}^p = \text{NP}^{\Sigma_i^p} \) and \(\Pi_{i+1}^p = \text{coNP}^{\Sigma_i^p} \). Finally, set \(\text{PH} = \cup_{i \geq 0} \Sigma_i^p \).

Theorem 13. The original definition and the alternative definition of \(\text{PH} \) are equivalent.

Proof. The base case of \(i = 0 \) is immediate: in both definitions, the 0th level is just the class \(\text{P} \).

Just for the sake of this proof, let us denote by \(\Sigma_i^1 \) and by \(\Sigma_i^2 \) the \(i \)th level of polytime hierarchy according to definitions 1 and 2, respectively. (The first definition is in terms of logical formulas; the second definition is in terms of oracle TMs.)

We need to show that \(\Sigma_i^1 = \Sigma_i^2 \), for all \(i \). The case of \(i = 0 \) is already argued. Let us assume the equivalence of the two definitions for \(i \), and prove it for \(i + 1 \).

Let us start by proving that \(\Sigma_{i+1}^1 \subseteq \Sigma_{i+1}^2 \). By definition, \(L \in \Sigma_{i+1}^1 \) iff there is a polybalanced relation \(R \) such that \(x \in L \iff \exists y_1 \forall y_2 \ldots R(x, y_1, y_2, \ldots, y_{i+1}) \). Consider the language \(L' = \{ (x, y) \mid \forall y_2 \ldots R(x, y, y_2, \ldots, y_{i+1}) \} \). It is easy to see that \(L' \in \Pi_i^1 \), and hence, by the induction hypothesis, \(L' \in \Pi_i^2 \). Now, to test if \(x \in L \) we can do the following: Nondeterministically guess a \(y \), then check if \((x, y) \in L' \) by querying the \(\Pi_i^2 \) oracle. This algorithm shows that \(L \in \Sigma_{i+1}^2 \).

Let us now prove the other direction, i.e., that \(\Sigma_{i+1}^2 \subseteq \Sigma_{i+1}^1 \). Consider an arbitrary language \(L \in \Sigma_{i+1}^2 \). By definition, there is an \(\text{NP}^{\Sigma_i^2} \) TM \(M \) that decides \(L \). Also, we have that \(x \in L \) iff there is an accepting computation of \(M \) on \(x \).

For any input \(x \), consider a run of the TM \(M \) on \(x \). During that computation, the TM \(M \) may ask (up to a polynomial number of) oracle queries to the \(\Sigma_i^2 \) oracle. Some of these oracle queries have the answer Yes, and the others No. Note that the Yes answers can be verified in \(\Sigma_i^2 \), which is equal to \(\Sigma_i^1 \), by the inductive hypothesis. The No answers can be verified in \(\Pi_i^2 \), which is equal to \(\Pi_i^1 \), by the inductive hypothesis.
Thus, to test if \(x \in L \), we can guess (using the \(\exists \) quantifier) an accepting computation path of \(M \) on \(x \) together with all answers to the oracle queries, and check the correctness of our path, including all the answers to the oracle queries, in \((\Sigma_i^1 \cup \Pi_i^1) \). Put together, this gives us a way to check whether \(x \in L \) by a \(\Sigma_i^{1+1} \) formula. Hence, we get \(L \in \Sigma_i^{1+1} \).

Finally, since \(\Pi_i = \text{co}\Sigma_i \) for each of the two definitions, we immediately obtain the equality \(\Pi_i^{1+1} = \Pi_i^{2+1} \).