1 Conductors

We generalize the definition of extractors in this way:

Definition 1 \(\text{Con} : \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m \) is a \((k,\varepsilon,a)\)-conductor if, \(\forall k\)-source \(X \):

\[
\text{Con}(X,U_d) \approx (k+a) - \text{source}
\]

Remark 2 In the above definition we want \(m < n \). Also notice that:

- (1) If \(k + a = m \), we get a standard \((k,\varepsilon)\)-extractor.
- (2) If \(a = d \), we get a lossless conductor.

The following theorem shows that there is a two-sided relation between conductors and left \(D \)-regular bipartite graphs.

\[
\text{conductors} \leftrightarrow \text{left } D\text{-regular bipartite graphs}
\]

Theorem 3 \(\text{Con} \) is a \((k',\varepsilon,a)\)-conductor, \(\forall k' < k \), iff its bipartite graph is a \((k,(1-\varepsilon)D)\)-expander.

Proof: \((\Rightarrow)\) Take any left set \(S \), \(|S| = k' \leq k \). Let \(T = N(S) \) be the set of all neighbors of \(S \).

\[
|\Pr[\text{Con}(S,U_A) \in T] - \Pr[Y \in T]| \leq \varepsilon
\]

where \(Y \) is a \((k' + d)\)-source which is \(\varepsilon \)-close to \(\text{Con} \).

\[
1 - \Pr[Y \in T] \leq \varepsilon
\]

\[
1 - \frac{|T|}{k'D} \leq \varepsilon \implies \frac{|N(S)|}{|S|} \geq (1-\varepsilon)D
\]

This means that we have almost \(D \) expansion ((1 - \(\varepsilon \))\(D \) indeed) in a \(D \)-regular graph.

According to the above proof, the expansion is better than Ramanujan graphs. Let’s compare it with extractors:

\[
M \leq K\varepsilon^2
\]

\[
\implies \frac{M}{K} \leq D\varepsilon^2
\]

since a set of size \(K \) can not expand to a set of size more than \(M \). Mainly, because extractors have significant entropy loss, the best expansion for them is \(\varepsilon^2D \) while here we have \((1-\varepsilon)D\) using conductors.
Remark 4 Doing zig-zag product on conductors, we can achieve: $\forall \alpha, \epsilon > 0, M = \alpha N, D = O(1), K = \Omega(N)$.

Open problem: Construct non-bipartite expanders with vertex expansion more than $\frac{\Delta}{2}$. ($\frac{\Delta}{2}$ is achieved by Ramanujan graphs.)

Open problem: Construct expanders with vertex expansion more than $(1 - \epsilon)D$ (say: $D - O(1)$).

2 Pseudorandom Generators

Intuitively, pseudorandom generators are efficient algorithms $G : \{0,1\}^{l(n)} \rightarrow \{0,1\}^n$ such that $G(U_l)$ is computationally distinguishable from U_m.

Definition 5 Random variables X_n, Y_n are $\epsilon(n)$-indistinguishable for time $t(n)$, denoted by $X_n \approx_{(\epsilon,t)} Y_n$, if for any probability time $t(n)$ algorithm T and for all large n:

$$|\Pr[T(X_n) = 1] - \Pr[T(Y_n) = 1]| \leq \epsilon$$

where the probabilities are over the random choices of T as well as X_n and Y_n.

Note: Here $T^{-1}(1)$ is our statistical test.

Notation: We write $X_n \equiv Y_n$ if for all polynomial $t(n)$ and $\epsilon = 1/t(n)$, $X_n \approx_{(\epsilon,t)} Y_n$.

Definition 6 (Non-uniform indistinguishability) Random variables X_n, Y_n are $\epsilon(n)$-indistinguishable for non-uniform time $t(n)$, if for any non-uniform time $t(n)$ algorithm T (e.g. a boolean circuit of size $t(n)$) and for all large n:

$$|\Pr[T(X_n) = 1] - \Pr[T(Y_n) = 1]| \leq \epsilon$$

Definition 7 X_n is pseudorandom if $X_n \equiv Y_n$.

Definition 8 $G : \{0,1\}^{l(n)} \rightarrow \{0,1\}^n$ is a pseudorandom generator if $G(U_l) \equiv U_m$ (or more formally, $G(1^n, U_l(1^n)) \equiv U_m$) and G is computable in polynomial time. Usually $l(n) \ll n$.

Theorem 9 If $X_n \equiv Y_n$ non-uniformly, $\forall k = \text{poly}(n)$, $X^k_n \equiv Y^k_n$ non-uniformly. Here $X^k_n = X_n \times \cdots \times X_n$.

Proof: Notation, will drop subscript n. Suppose there is a poly-time non-uniform algorithm T such that:

$$|\Pr[T(X^k) = 1] - \Pr[T(Y^k) = 1]| > \epsilon$$

with out loss of generality, we can drop the absolute sign. (otherwise consider $\neg T$). Interpolate between X^k and X^k:

$$X \ldots XX = H_0$$
$$X \ldots XY = H_1$$
$$\vdots$$
$$XY \ldots Y = H_{k-1}$$
$$Y \ldots Y = H_k$$
To show that:
\[
\left| \sum_{i=1}^{k} \Pr[T(H_{i-1}) = 1] - \Pr[T(H_i) = 1] \right|
\]
\[
= \left| \Pr[T(H_0) = 1] - \Pr[T(H_k) = 1] \right|
\]
\[
= \left| \Pr[T(X^k) = 1] - \Pr[T(Y^k) = 1] \right| > \epsilon
\]
which implies there is at least one \(0 \leq i \leq k\) such that:
\[
\epsilon_i \overset{\text{def}}{=} \left| \Pr[T(X^k - i XY^i - 1) = 1] - \Pr[T(X^k - i YY^i - 1) = 1] \right| > \frac{\epsilon}{k}
\]
Look at this averaging:
\[
\text{Ave} \left| \Pr[T(X^k - i XY^i - 1) = 1] - \Pr[T(X^k - i YY^i - 1) = 1] \right| > \frac{\epsilon}{k}
\]
where the average is taken over all \(x_1, \ldots, x_{k-i} \leftarrow X^k - i\) and \(Y_1, \ldots, Y_{i-1} \leftarrow Y^{i-1}\). So there exists \((x_1, \ldots, x_{k-i}, y_1, \ldots, y_{i-1})\) such that the above equality is preserved. Define:
\[
T'(z) = T(x_1, \ldots, x_{k-i}, z, y_1, \ldots, y_{i-1})
\]
\(T'\) can distinguish between \(X\) and \(Y\), a contradiction! (time(\(T'\)) = time(\(T\)) + O(nk))

Theorem 10 If \(X_n \overset{c}{=} Y_n\) uniformly, then \(X_n^k \overset{c}{=} Y_n^k\), assuming \(X\) and \(Y\) are efficiently sampleable. (e.g. there is a probabilistic polynomial time algorithm \(M\) such that \(M(1^n) \equiv X_n\).)

Proof: Recall that in the previous proof, we had: \(\sum_{i=1}^{k} \epsilon_i \geq \epsilon\).

\(T'(z)\) : randomly pick \(0 \leq i \leq k\,

- randomly sample \(x_1, \ldots, x_{k-i} \leftarrow X^k - i\)
- randomly sample \(Y_1, \ldots, Y_{i-1} \leftarrow Y^{i-1}\)

and output \(T(x_1, \ldots, x_{k-i}, z, y_1, \ldots, y_{i-1})\).

Similarly we get:
\[
\left| \Pr[T'(X) = 1] - \Pr[T'(Y) = 1] \right| \geq \frac{1}{k} \sum_{i=1}^{k} \epsilon_i > \frac{\epsilon}{k}
\]
A contradiction!

3