In this lecture, by a PRG we mean the definition where the generator is assumed secure with respect to tests running in specific time. This should be contrasted with the BMY-style definition where we assume that the generator is secure against all (non/uniform) polynomial time tests.

Theorem 1 \(\forall t(n), \exists \text{PRG}, G : \{0,1\}^{\log t(n)} \rightarrow \{0,1\}^t(n) \text{ that is secure against nonuniform } t(n). \)

Proof: Take \(G \) at random. Then for any fixed \(t(n) \)-time \(T \), Chernoff inequality implies,
\[
\Pr_{\text{choose } G} \left[T \text{ breaks } G \right] \leq 2^{\Omega(2^{O(\log t)})}
\]

The number of all possible nonuniform time \(t(n) \) tests is at most \(2^{t^2(n)} \). So,
\[
\Pr[\exists t(n) \text{ time test, breaking } G] \leq 2^{t^2(n)}2^{\Omega(2^{O(\log t)})} \ll 1
\]
for \(t = \frac{1}{\epsilon} \) and taking large constant in \(O(\log t) \).

Corollary 2 \(\text{BPP} \subseteq \text{non-uniformP} \).

(For any \(\text{BPP} \) algorithm, there is a family of polynomial size circuits that decide the same language.)

An other notation for non-uniform\(\text{P} \) is \(\text{P/poly} \).

Proof: (idea) Non-uniformity gives us a way to "hardwire" a PRG, \(G : \{0,1\}^{O(\log t)} \rightarrow \{0,1\}^t \) for each input length. Then we can use this "hardwired" PRG to simulate true randomness of a given \(\text{BPP} \)-algorithm.

Big Open: How to construct such PRG’s efficiently, uniformly?

Theorem 3 If there is a BMY-style PRG, then \(\text{P} \neq \text{NP} \).

Proof: Contrapositive \(\text{P} = \text{NP} \implies \exists \text{BMY-style PRG} \)

This algorithm breaks any PRG, \(G : \{0,1\}^{t(n)} \rightarrow \{0,1\}^{t(n)} \):

- Given \(x \in \{0,1\}^n \)
- non-deterministically guess \(s \in \{0,1\}^{t(n)} \)
- if \(G(s) = x \), then Accept else Reject.

Since \(\text{P} = \text{NP} \) the above algorithm can be done in polynomial time.
For **BPP** derandomization it is sufficient to have a PRG secure against specific poly-time rather than all possible poly-tests. In particular, PRG may run in more time than the test.

Remark 4 $P = NP$ implies there is a PRG secure against fixed poly-time.

Remark 5 Existence of PRG secure against fixed poly-time implies lower bounds proofs.

Definition 6 (one-way function (OWF)) A function $f : \{0,1\}^* \rightarrow \{0,1\}^*$ is a one-way function if:

- (1) f is polynomial time (probabilistic) computable.
- (2) For any probabilistic polynomial time algorithm A, $\Pr[A(1^n, f(x)) \in f^{-1}(f(x))]$ is less than any inverse polynomial.

Theorem 7 (Høastad, Impagliazzo, Levin, Luby) \(\exists \text{OWF} \iff \exists \text{BMY-style PRG} \).