1 Random Walks on Expanders and Error Reduction for BPP

Notation: For any vector \(v \), the \(l_1 \)-norm of \(v \) is \(\|v\|_1 = \sum_{i=1}^{n} |v_i| \) where \(v = (v_1, \ldots, v_n) \).

Define \(P \) to be the projection matrix for the set \(B \subseteq V \), where \(|V| = n \), i.e.,

\[
P = \begin{pmatrix}
p_1 & 0 & 0 & 0 & \cdots & 0 \\
0 & p_2 & 0 & 0 & \cdots & 0 \\
0 & 0 & p_3 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & 0 & \cdots & p_n
\end{pmatrix}
\]

where

\[
p_i = \begin{cases}
1 & \text{if } i \in B, \\
0 & \text{if } i \notin B
\end{cases}
\]

and \(i \in [n] \).

Theorem 1 (Hitting Property of Expander Graphs) Let \(G \) be any \(d \)-regular expander on \(n \) vertices, with \(\lambda_2(G) \leq \lambda \). Let \(B \subseteq V \) be any subset of vertices of density \(\beta = \frac{|B|}{n} \). Then the probability that a random walk on a graph \(G \) starting from uniformly random vertex, will stay inside \(B \) for \(t \) steps of the random walk is \(\leq (\lambda + \beta)^t \).

Claim 2 \(\|(PA)^t Pu\|_1 \) is the probability that a \(t \)-step random walk, starting from a uniformly random vertex, never leaves \(B \).

Lemma 3 For any non-negative vector, \(\|PAPv\| \leq (\lambda + \beta)\|v\| \)

Proof of Theorem 1:

Using Claim 2, we need to show that \(\|(PA)^t Pu\|_1 \leq (\lambda + \beta)^t \). We proceed to show this using Lemma 3. We have

\[
\|(PA)^t Pu\|_1 = \|(PAP) \ldots (PAP)u\|_1 = \|(PAP)^t u\|_1.
\]

Note that \(PP = P \) because projecting once, projecting one more time does not change anything. By Cauchy-Schwarz, we can write

\[
\|(PAP)^t u\|_1 \leq \sqrt{n}\|(PAP)^t u\| \leq \sqrt{n}(\lambda + \beta)^t\|u\| = (\lambda + \beta)^t,
\]

completing the proof of the theorem.

\[\square\]
Proof of Lemma 3:
Idea: Projection matrix P will shrink the uniform component of a vector. Matrix A will shrink the orthogonal to uniform component. Therefore, together they shrink the entire vector.

Let $y = Pv$. Write $y = y^\parallel + y^\perp$, where, as usual, y^\parallel is the component of y that is parallel to the uniform distribution u, and y^\perp is the component of y that is orthogonal to u. We have

$$\|PAy\| \leq \|PAy^\parallel\| + \|PAy^\perp\|$$

$$\leq \|Py^\parallel\| + \|Ay^\perp\|. \tag{1}$$

We have $\|Ay^\perp\| \leq \lambda \|y^\perp\| \leq \lambda \|y\|$. Now for $\|Py^\parallel\|$, we have $y^\parallel = cu$, for some scalar c.

$$c = \frac{(y, u)}{\|u\|^2} = \frac{1}{n} \sum y_i = \sum y_i.$$

Hence, $y^\parallel = (\sum y_i)u$. This implies

$$\|Py^\parallel\| = \sqrt{\beta n \left(\frac{\sum y_i}{n} \right)^2} = \sqrt{\beta} \|y^\parallel\|.$$

By Cauchy-Schwarz, $\sum y_i \leq \|y\| \sqrt{n}$. Therefore,

$$\|y^\parallel\| = \left(\sum y_i \right) \|u\| \leq \frac{\|y\| \sqrt{n} \sqrt{\beta}}{\sqrt{n}}.$$

Continuing with inequalities (1), we have

$$\leq \beta \|y\| + \lambda \|y\| \leq (\beta + \lambda) \|v\|,$$

completing the proof of the lemma.

How pseudorandom numbers generated by a random walk on an expander graph can be used to simulate a BPP-type algorithm?

Let $G = (V, E)$ be an expander graph. Pick a random vertex $v_0 \in V$ uniformly and at random; collect vertex labels v_0, v_1, \ldots, v_t over a random walk with length t on G starting from a uniformly random vertex v_0.

Theorem 4 Let $B_0, B_1, \ldots, B_t \subseteq V$ be subsets of densities β_i, then

$$\Pr \left[\bigwedge_{i=0}^{t} v_i \in B_i \right] \leq \prod_{i=0}^{t-1} \left(\sqrt{\beta_i \beta_{i+1}} + \lambda \right).$$

Exercise 5 For a randomized algorithm A that on input x uses random strings of length equal to length of the vertex labels of G, show that

$$\Pr \left[\text{maj } A(x, v_i) \text{ is wrong} \right] \leq 2^{-\Omega(t)}.$$
2 Some Known Expander Constructions

(1) (Margulis ’73) (Gaber & Galil ’80) Define $G = (V_m, E)$, where $V_m = \mathbb{Z}_m \times \mathbb{Z}_m$, $E = \{(\bar{v}, \bar{w})|\bar{v} \in V_m, \bar{w} \in \{T_1 \bar{v}, T_2 \bar{v}, T_3 \bar{v}, T_4 \bar{v}\}, T_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $T_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $T_3 = T_1^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$, $T_4 = T_2^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$. Graph G is a Cayley graph of degree 4. Its spectral expansion is some constant less than 1.

(2) (Lubotzky, Phillips & Sarnak ’88) Define $G = (V_p, E)$ where, for a prime p, $V_p = \mathbb{Z}_p \cup \{\infty\}$, ∞ is a special symbol called infinity, and $E = \{(x, y)|x \in V_p, y \in \{x + 1, x - 1, \frac{1}{2}\}\}$. Graph G is a Cayley graph of degree 3, with spectral expansion bounded by some constant less than 1.