Derandomization vs. Circuit Lower Bounds

Valentine Kabanets (IAS & SFU)
Summary

Your circuit lower bound, please !!!

BPP = P
Derandomization

Goal: Do efficiently deterministically what we can do efficiently probabilistically.

Impossible in general: - crypto, - comm. complexity, …

Our Focus:
• Randomized decision algorithms
• Randomized search algorithms
Decision: BPP vs. P

Poly Id Testing:

Given arithmetic circuit C, decide if C computes identically zero polynomial.

Search: Construct “random-like” combinatorial objects
- expander graphs,
- error-correcting codes,
- truth tables of hard Boolean functions
Decision: BPP vs. P

Poly Id Testing:
Given arithmetic circuit C, decide if C computes identically zero polynomial.

Search: Construct “random-like” combinatorial objects
- expander graphs,
- error-correcting codes,
- truth tables of hard Boolean functions
Constructing Hard Functions

$s(n)$ - Hardness Generator:

Given n, output a binary string of length 2^n which (as n-variate Boolean function) has circuit complexity at least $s(n)$. The running time should be $\text{poly}(2^n)$.

Trivial: Randomized $2^n/n$-Hardness Generator exists (may produce an easy string).
Hardness Generator (HG)

- Deterministic $s(n)$-Hardness Generator exists iff E has circuit complexity at least $s(n)$.

- Open: for $s(n) > \omega(n)$.

- Also open:
 - Nondeterministic HG,
 - Zero-Error Randomized HG, ...
Hardness Generation
vs.
Derandomization of BPP
Want to estimate the acceptance probability of circuit C (or find an accepted string, if C accepts many strings).
PseudoRandom Generator (PRG)

Definition [Nisan, Wigderson]: $s(n)$-PRG is a function $G: \{0,1\}^n \rightarrow \{0,1\}^{s(n)}$, with output distribution indistinguishable from uniform by any $s(n)$-size circuit; G is computable in time $2^{O(n)}$.

random seed

PRG

pseudorandom string

look indistinguishable to any small circuit

random string
Hardness Generators yield Pseudorandom Generators
Incompressibility Argument

Each \(r \in B \) has “small” description relative to \(C \): \(\log |B| \) bits specifying the rank of \(r \) in \(B \), plus the description of \(C \) (common to all \(r \) in \(B \)).

Corollary: Any string incompressible relative to \(C \) is accepted by \(C \).
Incompressibility Argument

Assume: $|B| < 2^{n/n}$, and $|C| < n$.
Let R be any incompressible n^2-bit string.
Partition R into n-bit strings r_1, \ldots, r_n.

Claim: At least one r_i is accepted by C.

Proof: Else R is described by $< n (n - \log n) + n < n^2$ bits.

QED
Incompressibility Argument

Problem: Generating incompressible strings is algorithmically impossible! (by definition)

[Nisan, Wigderson'88]: Enough to generate strings of HIGH CIRCUIT COMPLEXITY !!!
Hardness-Randomness
Tradeoffs

[NisanWigderson, BabaiFortnowNisanWigderson, Impagliazzo, ImpagliazzoWigderson, ImpagliazzoShaltielWigderson, SudanTrevisanVadhan, ShaltielUmans, Umans, ...]:

Deterministic $s(n)$-Hardness Generator yields $s(n)$-Pseudorandom Generator, and vice versa.

Thm: $s(n)$-HG exists iff $s(n)$-PRG exists
Can we prove \(\text{BPP} = \text{P} \) without proving circuit lower bounds?
BPP=P implies circuit lower bounds

Thm [K., Impagliazzo]:
If BPP = P, then
- either \(\text{NEXP} \) not in \(P/poly \),
- or \(\text{Permanent} \) does not have polysize arithmetic circuits.

Why should a fast (deterministic) algorithm (for BPP) lead to any circuit lower bounds?
Warm-up
Constructing a hard function from \(P = NP \)

Thm [Kannan]: There is a \(2^{n/n} \)-Hardness Generator computable in \(\text{Time}(2^{O(n)}) \), given \(\Sigma_3 \) oracle.

Proof Idea: Use alternating quantifiers to express “\(f \) is the first truth table not computable by any small circuit”. QED

Corollary: \(P=NP \Rightarrow \exists \) deterministic \(2^{n/n} \)-HG \((\Leftrightarrow E \) has language of \(2^{n/n} \) circuit complexity)
How to construct a hard function:

1. By diagonalization, construct a hard function in a “large” complexity class.

2. Using an efficient meta-algorithm, collapse the “large” class to a “smaller” class.
How to construct a hard function: Application

1. By diagonalization, construct a hard function in a “large” complexity class.

 $E_{\Sigma_3}^{\Sigma_3}$ has $2^n/n$ circuit complexity

2. Using an efficient meta-algorithm, collapse the “large” class to a “smaller” class.

 $P = NP \implies E_{\Sigma_3}^{\Sigma_3} = E$
Constructing a hard function from $\text{BPP} = \text{P}$

Main Observation: If PIT in P, then can test in P if a given arithmetic circuit computes Permanent.

(downward self-reducibility of Perm)
Downward self-reducibility of \(\text{Perm} \)

\[
\text{Perm}(A) = \sum_i a_i \times \text{Perm}(A_i)
\]

\(a_1, a_2, a_3, \ldots, a_k \)

\(A_{1 \text{st}} \) row

\(A \)

\(A_i \)

\(i^{\text{th}} \) minor of \(A \)

along 1\(^{\text{st}} \) row
Let C_1, \ldots, C_n be arithmetic circuits, where C_k has k^2 input variables.

The circuits C_1, \ldots, C_n compute Permanent iff

1. $C_1(x) = x$, and
2. $\forall 1 < k \leq n$, and $k \times k$ matrix $X = [x_{i,j}]$ of variables,

\[
C_k(X) = \sum_{i=1}^{k} x_{1,i} \ast C_{k-1}(X_i),
\]

where X_i is X without 1^{st} row and i^{th} column.
Main Observation

If PIT in P, then can test in P if a given arithmetic circuit computes Permanent.
Constructing a hard function from PIT in P

Assume PIT in P, and Perm has polysize arithmetic circuits. Then \(P^{\text{Perm}} \subseteq \text{NP} \).

Corollary 1: \(\text{P}^{\#P} \subseteq \text{NP} \). [Valiant]

Corollary 2: \(\text{PH} \subseteq \text{P}^{\#P} \subseteq \text{NP} = \text{coNP} \). [Toda]

Corollary 3: \(\text{E}^{\text{PH}} = \text{NE} = \text{coNE} \) requires \(2^n/n \) circuit size.

Thanks [Aaronson, van Melkebeek].
Derandomization of PIT from Arithmetic Circuit Lower Bounds
Thm [K., Impagliazzo]: If Perm requires arithmetic circuits of size 2^{n^c} (over rationals), then $\text{PIT} \in \text{DTIME} (n^{\text{polylog } n})$.

Hitting set H for $\text{poly}(n)$-size n-variate arithmetic circuits (computing $\text{poly}(n)$-deg polynomials):

$$H = \{ (\text{Perm}(a_i, 1), \ldots, \text{Perm}(a_i, n)) : a_{i,j} \in [n^c]^d \log n \text{ chosen using the NW design} \}$$
PIT is easy
iff
can prove circuit lower bounds
Meta-algorithms vs. Lower Bounds

Meta-algorithm = an algorithm that takes algorithms as input (e.g., SAT, Poly Id Test, ...)

Zane's thesis: Progress on meta-algorithms is linked to progress on lower bounds.

Linial, Mansour, Nisan, Paturi, Pudlak, Saks, Saks, Zane, Razborov, Rudich, Nisan, Wigderson, Braverman, ...
Constant Depth
PIT for constant-depth circuits

[DvirShpilkaYehudayoff]: Derandomization iff lower bounds (similar to [KI])

Depth-3 derandomization (bounded top fanin):
[DvirShpilka, KayalSaxena, ArvindMukhopadyay, KarninShpilka, SaxenaSeshadri, KayalSaraf, ...]

Challenge: Depth-3 circuits (unbounded fanin)
PIT from constant-depth lower bounds

[AgrawalVinay]:
Exponential depth-4 circuit lower bounds \implies exponential (any depth) circuit lower bounds
\implies \text{general Circuit-PIT} \in n^{\text{polylog } n} \text{ time}

[Raz'09]:
Exponential depth-3 formula lower bounds \implies superpoly (any depth) formula lower bounds
\implies \text{general Formula-PIT} \in ??? \text{ time}
Derandomization without circuit lower bounds?
Derandomization without circuit lower bounds?
Typically-correct derandomization

Relaxation: Allow derandomized algorithms to make mistakes on “few” inputs.

[Impagliazzo, Wigderson ’01]:
A language L is in Heur-P if there is a deterministic polytime algorithm A s.t.
\[
\Pr_{x \leftarrow D} [A(x) \neq L(x)] \text{ is “small”, for any polytime-sampleable } D.
\]

[Goldreich, Wigderson ’02]: $D = \text{Uniform}$
[Impagliazzo, Wigderson ’01]:

\[\text{EXP} \not= \text{BPP} \implies \text{BPP} \subseteq \text{io- Heur-SUBEXP}. \]

Cf. [BabaiFortnowNisanWigderson]:

\[\text{EXP not in P/poly} \implies \text{BPP} \subseteq \text{io- SUBEXP} \]

“EXP \not= BPP” is not known to imply any circuit lower bounds ...

Cf. [IKW]: NEXP \not= MA \iff NEXP not in P/poly
Typically-correct derandomization

[IW’01, K’01, TV’07, GSTS’03, SU’07, GW’02, Zim’08, Sha’09, KMS’09]

[Kinne, Melkebeek, Shaltiel’09]: Under assumption (*), every BPP language has a P-algorithm that is correct on almost all inputs (of every length).

Assumption (*): P has a language that is average-hard for n^d-size circuits.
Typically-correct derandomization and circuit lower bounds

[Kinne, Melkebeek, Shaltiel’09]: If every BPP language has a SUBEXP-algorithm that is correct on all but subexp-many inputs, then

- either NEXP not in P/poly,
- or Perm is not computable by polysize arithmetic circuits.

(extends [KI’04] to “typically-correct” setting.)
More on Hardness
Hardness Testing

Given a binary string x, test if x has “high” circuit complexity.

- Sound test accepting “many” strings is unlikely in P ("natural property" [RazborovRudich]).

- Sound test accepting “few” strings?

[IKW'02]: \exists sound test in $NP \Rightarrow \text{NEXP not in } P/poly$.

That is, NP-constructivity \Rightarrow lower bounds
Open Questions

- Strongly exponential arithmetic circuit lower bounds $\Rightarrow \text{PIT} \in P$?

- Strong arithmetic formula lower bounds \Rightarrow derandomization of Formula-PIT ?

- $\text{BPP} \neq \text{EXP} \Rightarrow$ circuit lower bounds ?
 (extending [KMS'09] ???)