of Computing:
From circuit lower bounds to compression and SAT algorithms, and back

Valentine Kabanets (SFU)
(joint work with Antonina Kolokolova (MUN))
Are lower bounds useful?

“Obviously, $P \neq NP$! Why spend so much time trying to prove it?!”

- We want to understand efficient computation.
- The proof will give us important new insights.
- The proof will likely lead to new algorithms.
Applications of lower bounds

• Cryptography:
 hard problems \Rightarrow security of crypto protocols
 \[\text{[BM, Yao, ...]}\]

• Derandomization:
 – hard problems \Rightarrow BPP = P \[\text{[NW, IW, ...]}\]
 – hard problems \Rightarrow derandomization of Noether’s Normalization Lemma \[\text{[Mulmuley]}\]
Looking inside the lower-bound proof

“A natural proof contains an efficient algorithm to distinguish an easy Boolean function from a random function, when given the truth table of the function as input.”

Corollary: A natural proof of circuit lower bounds against a class $C \Rightarrow C$ cannot compute strong Pseudo-Random Generators.
Distinguishing easy functions from random functions: A dream version

Dream: A function is easy iff it compressible by our efficient compression algorithm.
Boolean-function Compression

2\(^n\)-size truth table of Boolean function \(f \)

From some class \(C \) of easy functions (e.g., \(\text{AC}^0[\text{poly}] \))

\[\text{Circuit} \]

Runtime: \(\text{poly}(2^n) \)

Want \(|\text{circuit}| < 2^n/n\).

The circuit needn’t be from \(C \).

Circuit computes \(f \)

- **Exactly** (lossless compression), or
- Approximately (lossy compression)

Locally decodable compression
Compression

• Data Compression:
 mp3, JPEG, zip, ...

• Computational Learning:
 PAC learning, Exact learning

• Circuit Minimization:
 min-DNF, min-AC0, ...
Complexity-theoretic motivation

• Understanding easy functions:
 – how to extract a small circuit from the truth table of an easy function,

• Understanding hard functions:
 – circuit lower bounds from compression.
Circuit Minimization vs. Boolean-function Compression

- **C-Minimization** asks to find a min-size circuit of the type \(C \) that computes a given \(n \)-variate Boolean function.

- **C-Compression** asks for a “small” circuit, not necessarily of the type \(C \).

 \((C\)-compression is proper if it produces a circuit of the type \(C \).)
Learning implies Compression

L.G. Valiant '84: PAC Learning

PAC learning algorithm (with membership queries) for uniform distribution implies a randomized lossy-compression algorithm.

D. Angluin '87: Exact Learning

Exact learning algorithm (with membership and equivalence queries) implies a lossless-compression algorithm.
Learning vs. Compression

• **Learning:** Small runtime of the learning algo \Rightarrow small size of the hypothesis.

• **Compression:** Want circuits of size $< 2^n/n$, but allow time $\text{poly}(2^n)$.
Our result

“Circuit lower bound proofs based on random restrictions \(\Rightarrow\) Compression.”

Can compress functions computable by

- \(\text{AC}^0\) circuits of size \(< 2^{n^{1/(d-1)}}\),
- de Morgan formulas of size \(< n^{2.5}\),
- general formulas & branching programs of size \(< n^2\),
- read-once branching programs of size \(< 2^{n/3}\).
Related early work

O.B. Lupanov '58: Every n-variate Boolean function has a circuit of size $2^n/n (1 + o(1))$.

Can be constructed efficiently, using (k,s)-representation of the function.

S.V. Yablonski '59: Every n-variate Boolean function “with few distinct subfunctions” has a circuit of size $\sigma 2^n/n$, for some $\sigma < 1$.

Uses Lupanov's (k,s)-representation.
Restriction-based lower bounds \(\Rightarrow \) structure of easy functions

If \(f: \{0,1\}^n \rightarrow \{0,1\} \) is computable by a small circuit, then

\[
f = g_1 \lor g_2 \lor \ldots \lor g_t,
\]

where

- \(t << 2^n \), and
- almost all \(g_i \)'s are simple (have \(O(n) \) description size).
Warm-up: DNF-Compression

Given truth table of n-variate Boolean function f, can efficiently compute DNF for f of size $O(n \cdot \text{OPT})$, where OPT is the min-DNF size.

Using greedy heuristic for SetCover [Johnson’74, Lovasz’75, Chvatal’79]
Greedy heuristic for SetCover

Let S_1, \ldots, S_t be subsets of U. Suppose U can be covered by at most m of the subsets.

Greedy Algorithm:
Repeat until all of U is covered: Find S_i that covers the most of not-yet-covered points in U, and add S_i to the set cover.

This algorithm finds a set cover of size $O(m \log |U|)$.
Finding small DNF via Set Cover

• Given $f : \{0,1\}^n \rightarrow \{0,1\}$, find all conjunctions ϕ_i of n literals such that $\phi^{-1}_i(1) \subseteq f^{-1}(1)$.

• Run the Set Cover heuristic on $U = f^{-1}(1)$ and the sets $S_i = \phi^{-1}_i(1)$.

Runtime: $\text{poly}(2^n)$

(# conjunctions on n literals $< \text{poly}(2^n)$)
DNF- Compression vs DNF- Minimization

- There is a deterministic polynomial-time proper DNF- Compression algorithm.

- **Theorem** [Masek’79; Feldman’09; Allender et al.’08]: DNF- Minimization is NP-hard (even for n^γ-approximation, for some constant $1 > \gamma > 0$).
Theorem: Can compress n-variate f computable by a depth d circuit of size s into a DNF of size at most $\text{poly}(s) \cdot 2^{n(1-\mu)}$, where $\mu \approx 1/(\log s)^{d-1}$.

Nontrivial compression for $s \leq 2^{n^{1/(d-1)}}$.

AC0 - Compression
AC⁰ to DNF via Switching Lemma [IMP’12]

\[\text{AC}^0 \text{ circuit:} \]
size \(cn \), depth \(d \)

\[\text{DNF: } \leq 2^n (1 - \mu) \text{ ANDs, with } \mu = 1/(\log c + d \log d)^{d-1} \]

Switching Lemma [Hastad’86, Razborov’93, IMP’12]: Almost all restricted sub-circuits have shrunk size \(\leq \# \text{ variables} \). So, usually, no need to query all \(n \) vars!
Theorem: Can compresses n-variate f of de Morgan formula size $c \cdot n$ into a DNF of size at most $n \cdot 2^{n(1-\mu)}$, where $\mu < 1$ is a constant dependent on c.
Formula to DNF via Shrinkage [San’10]

De Morgan formula:
size cn

DNF: $\leq 2^{n(1 - \mu)}$ ANDs, with $\mu = \mu(c)$

High-probability shrinkage [Sub’61, San’10]: Almost all restricted subformulas have shrunk size $< \#$ variables. So, usually, no need to query all n vars!
Compression of superlinear-size (general) formulas & BPs

Theorem: Can compress n-variate f of formula-size n^d into a formula of size at most 2^{n-n^ε}, where $\varepsilon < 1$ is a constant dependent on d, and

- $d < 2.5$ for de Morgan formulas,
- $d < 2$ for general formulas & branching programs.
De Morgan Formulas Shrink [San’10, KR’12]

De Morgan formula: size s on n variables, where $s < n^{2.48}$

Decision tree: depth $n-k$, all but 2^{-k} fraction of leaves are formulas of size $< n^{0.99}$, on k vars, where $k = n^{o(1)}$.

Note: a typical leaf-formula is small, but not smaller than $\#$ vars. (n^{2}-size de Morgan computes PARITY.)
Restriction Decision Trees

Decision tree: depth $n-k$, all but 2^{-k} fraction of leaves are formulas of size $< n^{0.99}$, where $k = n^{o(1)}$.

This decision tree = Disjunction of 2^{n-k} formulas, almost all of description size $O(n)$, while the rest are responsible for very few inputs.

Generalized Set Cover heuristic:
Find $O(n 2^{n-k})$ linear-size formulas plus one “not too large” DNF, whose disjunction computes the original function. The overall size of the circuit is $O(n^2 2^{n-k})$.
#SAT Algorithms
from
circuit lower bounds
#SAT Algorithms from restriction-based circuit lower bounds
#SAT Algorithms [IMP’12, San’10]

AC0 circuit, or linear-size de Morgan formula

DNF: $\leq 2^n(1-\mu)$ ANDs, with $\mu < 1$.

ANDs have disjoint sets of satisfying assignments

Algo: (1) Convert to DNF. (2) Sum $\#$ sat assignments over all ANDs

Run Time $< 2^{n(1-\mu)}$. Better than the naive runtime $2^n \text{ poly}(n)$.
Our \#SAT-Algorithm

Theorem: Can solve \#SAT for \(n \)-variate formula of size \(n^d \) in time \(2^{n-n^\varepsilon} \), where

- \(d < 2.5 \) for de Morgan formulas,
- \(d < 2 \) for full-basis formulas, and general branching programs.
Related work

- [Santhanam’10; Seto, Tamaki’12]: non-trivial \#SAT algorithms for linear-size de Morgan and general formulas.

- [IMZ’12]: “pseudorandomness from shrinkage” for n^3-size de Morgan and n^2-size general formulas/branching programs.
W.h.p., Formulas Shrink \[\text{[San'10, KR'12]}\]

Full-basis formula:
Size s on n variables, where $s < n^{1.98}$

Decision tree: depth $n-k$, all but 2^{-k} fraction of leaves are formulas of size $O(s(k/n)) < n^{0.99}$, where $k = n^{o(1)}$.

DT construction is the greedy heuristic: branch on the most frequent variable $(n-k)$ times.
#SAT Algorithm: Main Idea

Decision tree: depth $n-k$, all but 2^{-k} fraction of leaves are formulas of size $O(s(k/n)) < n^{0.99}$, where $k = n^{o(1)}$.

Observation: $\# n^{0.99}$-size formulas $<< 2^{n-k} = \# \text{leaves in the decision tree}$. So many leaf formulas are the same.

- Precompute $\#\text{SAT}$ for all $n^{0.99}$-size formulas!
#SAT Algorithm: Details

Decision tree: depth $n-k$, all but 2^{-k} fraction of leaves are formulas of size $O(s(k/n)) < n^{0.99}$, where $k = n^{o(1)}$.

1. Construct the decision tree of depth $n - k = n - n^\varepsilon$.
2. Solve & store #SAT values for all formulas of size $n^{0.99}$.
3. For each leaf of the decision tree,
 If the corresponding leaf formula has size $< n^{0.99}$, then look up the precomputed answer,
 else compute the answer by “brute force” in time 2^k.
 Add the answer to the running sum.

Overall running time: $2^{n-k} + 2^{n^{0.99}1} + 2^{n-k} + 2^{n-k}2^{-k}2^k < 2^{n-k}$
Circuit lower bounds from Compression
Theorem: Let $C \subseteq P/poly$ be any circuit class. Suppose that for every c, there is a deterministic polytime compression algorithm mapping $f \in C[n^c]$ to a circuit of size $< 2^n/n$. Then NEXP not in C.

Informally: Slightly nontrivial compression for C-PolySize \Rightarrow NEXP not in C-PolySize.
Theorem [Williams '10]: There is \(k > 0 \) such that:

If \(\mathcal{C} \text{- SAT} \) for \(n^c \)-size \(n \)-input circuits is in time \(O\left(\frac{2^n}{n^k}\right) \) for every \(c \), then \(\text{NTime}(2^n) \) is not in \(\mathcal{C} \text{- PolySize} \).

Informally: Slightly nontrivial \(\mathcal{C} \text{- SAT} \) algorithm \(\Rightarrow \) \(\text{NEXP} \) not in \(\mathcal{C} \text{- PolySize} \).
Compression of ACC^0?

Open: Nontrivial compression for ACC^0?

Would give a **different proof** of NEXP not in ACC^0.
Compression \Rightarrow Circuit lower bounds

Theorem: Let $C \subseteq \text{P/poly}$. Suppose that for every c, there is a deterministic polytime compression algorithm mapping $f \in C \left[n^c\right]$ to a circuit of size $< 2^{n/n}$. Then NEXP not in C.

Generalizes Theorem [IKW’02]: Natural property useful against $\text{P/poly} \Rightarrow \text{NEXP}$ not in P/poly.
Proof Sketch

Claim ([IKW’02]): If $\text{NEXP} \subseteq C \subseteq \text{P/poly}$, then $\exists \ c > 0$ s.t. every NE language has witnesses in $C[n^c]$.

• Define NE language L': On x, $|x|=n$, nondeterministically guess 2^n-bit string, and accept if it is not compressible.

• L' doesn’t have witnesses in $C[n^c]$, contrary to the Claim.

QED
Monotone functions

Theorem: If can compress m-variate Boolean functions of monotone circuit complexity $\text{poly}(m)$ to (not necessarily monotone) circuit size $< 2^m / m^{1.51}$, then get a natural property useful against P/poly.

Proof Idea: Monotone and non-monotone circuit complexities are same for slice functions.
Use optimal embedding of an arbitrary Boolean function into a slice function.
Summary

- Restriction-based circuit lower bound techniques \Rightarrow Meta-Algorithms: Compression & SAT

- Nontrivial Compression or SAT algorithm for a circuit class C implies NEXP not in $C \text{ [poly]}$
Questions

• Better compression for AC^0? (polysize?)

• Compression for $\text{AC}^0[\oplus]$?

• Compression for ACC^0?

• Every C-circuit lower bound proof we know yields Compression & SAT algorithms for the circuit class C?
Thank you!
$\text{ACC}^0 - \#\text{SAT Algorithm} \quad \quad \text{[Williams]}

\[\text{[Yao; Beigel, Tarui; Allender, Gore]}\]

ACC^0 circuit: size s, depth d

$\text{SYM-AND: } s^{\text{poly(log } s)}$ of ANDs

$\#\text{SAT}$ for $\text{SYM-AND}: \text{Time } (2^n + \text{poly}(S)) \text{ poly}(n)$ via Dynamic Programming (zeta-transform)