CollectCast: A Tomography-Based Network Service for P2P Streaming

Mohamed Hefeeda, Ahsan Habib, Dongyan Xu, Bharat Bhargava
Computer Sciences Department, Purdue University

1. Motivation
- Target environment (e.g., P2P)
 - Multiple-to-one streaming
 - Heterogeneous, failure-prone suppliers
 - Dynamic network conditions
- Challenge
 - Achieve and maintain full-quality
- Our Solution
 - CollectCast: based on tomography

2. CollectCast
- Infer approximate network conditions (avail bw, loss, topology)
- Select best peers from a candidate set
- Adaptive assignment of rate and data to suppliers
- Seamless supplier switching to maintain full quality

3. Inference
- Adapt tomography techniques, e.g.,
 - Not interested in “exact” avail bw, rather, can a path support aggregate rate from sullying peers?
 - Probe with real (movie) data!
 - Peers are weak: coordinate probing from multiple peers
- Result
 - Topology annotated with segment-wise loss and avail bw

4. Suppliers Selection
- Find suppliers \((P_{actv}) \) that:
 - \(\max E [\sum_p G_p R_p] \)
 - Subject to \(a_p R_p \leq \sum_p R_p \leq a_q R_q \)
- \(G_p \): How good peer \(p \) is for this session:
- \(\alpha \): weight based on avail bw and level of sharing

5. Rate/ Data Assignment
- Assign rate/data to suppliers with adaptive FEC
 - Pre-encode segments, \(\text{FEC}(\alpha_u) \)
 - Send at \(\alpha R_0 \) to tolerate current aggregate loss rate
 - Typical: \(1 \leq \alpha \leq \alpha_u = 1.25 \)
- \(\hat{R}_p \): Assigned Rate
- \(\hat{D}_p \): Assigned Data

6. Adaptation
- Peer failure/degradation \(\Rightarrow \) switch suppliers
 - Update topology, labels
 - Solve the maximization problem
 - Note: keep the good peers that you already have!
- Network fluctuations
 - Adjust \(\alpha \) (loss tolerance level)
 - Reduce redundancy if network is fine
 - Increase, otherwise
 - If new \(\alpha \) is greater than what current peers can support, add/replace peer(s)

7. Overhead
- Communication overhead
 - We use real data for probing \(\Rightarrow \) little overhead!
 - Larger receiver buffer, though (order of Mbytes)
- Processing overhead
 - To run the estimation procedures and construct the topology
 - Not a big concern (order of milliseconds)
- Frequency of update
 - Internet path properties (loss, bw, delay) exhibit a relative constancy, at least in order of minutes \([Zhang et al., IMW'01]\)

8. Evaluation: Sample Results
- Setup
 - Large topology, Markov losses, random avail bw
 - Peers fail
 - Select peers using
 - CollectCast (tomography)
 - E2E (no notion of shared segments)
 - Random
 - Measure aggregate received rate
- How much do we gain?
- How many candidates?
- Candidate set size depends on reliability

9. Application
- PROMISE—P2P Streaming Using CollectCast
 - Integrated Pastry, CollectCast
- More Info at
 - www.cs.purdue.edu/~mhefeeda
- Support
 - NSF grant ANI-0219110