Efficient k-Coverage Algorithms for Wireless Sensor Networks

Mohamed Hefeeda
(joint work with Majid Bagheri)

INFOCOM Minisymposium 07
7 May 2007
Motivations

- Wireless sensor networks have been proposed for many real-life monitoring applications
 - Habitat monitoring, early forest fire detection, …

- *k*-coverage is a measure of quality of monitoring
 - *k*-coverage \equiv every point is monitored by $k+$ sensors
 - Improves reliability and accuracy

- *k*-coverage is essential for some applications
 - E.g., intruder classification, object tracking
Our k-Coverage Problem

- Given n already deployed sensors in a target area, and a desired coverage degree $k \geq 1$, select a minimal subset of sensors to k-cover all sensor locations

- **Assumptions**
 - Sensing range of each sensor is a disk with radius r
 - Sensor deployment can follow any distribution
 - Nodes **do not** know their locations
 - Point coverage approximates area coverage (dense sensor network)
Our k-Coverage Problem (cont’d)

- k-coverage problem is NP-hard [Yang 06]

- Proof: reduction to minimum dominating set problem
 - Model network as graph
 - An edge between any two nodes if they are within the sensing range of each other
 - Finding the minimum number of sensors to 1-cover yields a minimum dominating set

Mohamed Hefeeda
Our Contributions: k-Coverage Algorithms

- **We propose two approximation algorithms**
 - Randomized k-coverage algorithm (RKC)
 - Simple and efficient
 - Distributed RKC (DRKC)

- **Basic idea:**
 - Model k-coverage as a hitting set problem
 - Design an approximation algorithm for hitting set
 - Prove its correctness, verify using simulations
 - Decentralize it
Set Systems and Hitting Set

- Set system \((X, R)\) is composed of
 - set \(X\), and
 - collection \(R\) of subsets of \(X\)

- \(H\) is a hitting set if it has a nonempty intersection with every element of \(R\):

\[
H \subseteq X \\
\forall s \in R, \quad H \cap s \neq \emptyset
\]
Set System for k-Coverage

- X: set of all sensor locations
- For each point p in X, draw circle of radius r (sensing range) centred at p
- All points in X which fall inside that circle constitute one set s in R
- The hitting set must have at least one point in each circle

- Thus all points are covered by the hitting set
Example: 1-Coverage
Example: k-Coverage ($k = 3$)

Elements of the hitting set are centers of k-flowers

Mohamed Hefeeda
Centralized Algorithm (RKC)

- **Build an approximate hitting set**
 1. Assign weights to all points, initially 1
 2. Select a **random** set of points, referred to as ε-net
 - Selection biased on weights
 3. If current ε-net covers all points, terminate
 4. Else double weight of one under-covered point, goto 2 if number of iterations is below a threshold ($\sim \log |X|$)
 5. Double size of ε-net, goto 1
\(N \) is an \(\varepsilon \)-net for set system \((X,R)\) if it has nonempty intersection with every element \(T \) of \(R \) such as \(|T| \geq \varepsilon |X| \)

Thus, \(\varepsilon \)-net is required to hit only large elements of \(R \)

- (hitting set must hit every element of \(R \))

Idea:

- Find \(\varepsilon \)-nets of increasing sizes (decreasing \(\varepsilon \)) till one of them hits all points
\(\varepsilon \)-net Construction

- \(\varepsilon \)-nets can be computed efficiently for set systems with finite VC-dimension [Bronnimann 95]
 - We prove that our set system has VC-dimension = 3

- **Randomly** selecting

 \[
 \max \left\{ \frac{4}{\varepsilon \log \frac{2}{a}}, \frac{8d}{\varepsilon \log \frac{8d}{\varepsilon}} \right\}
 \]

 points of \(X \) constitutes an \(\varepsilon \)-net with probability \(1-a \) for \(0 < a < 1 \) where \(d \) is the VC-dimension
Details of RKC

Randomized K-Coverage: RKC(X, r, k)

1. $c = 1$; \(//\) sets the initial size of ϵ-net
2. while (net-size($\frac{1}{c}$) $\leq n$) do
3. set weights of all points to 1;
4. $\epsilon = 1/c$;
5. for $i = 1$ to $4c \log \frac{n}{c}$
6. $N = net$-finder(X, k, ϵ, r);
7. $u = verifier (X, N, k, r)$;
8. if ($u ==$ null)
9. return N;
10. else
11. double weight of u;
12. $c = 2 \times c$;
13. return \emptyset;
Theorem 1: RKC …

- ensures that every point is k-covered,
- terminates in $O(n^2 \log^2 n)$ steps, and
- returns a solution of size at most $O(P \log P)$, where P is the minimum number of sensors required for k-coverage.
Distributed Algorithm: DRKC

- RKC maintains only two global variables:
 - size of ε-net
 - aggregate weight of all nodes

- Idea of DRKC: Emulate RKC by keeping local estimates of global variables
 - Nodes construct ε-net in distributed manner
 - Nodes double their weights with a probability
 - Each node verifies its own coverage
Theorem 2:

The average number of messages sent by a node in DRKC is $O(1)$, and the maximum number is $O(\log n)$
Performance Evaluation

- Simulation with thousands of nodes
- Verify correctness (k-coverage is achieved)
- Show efficiency (output size compared optimal)
- Compare with other algorithms
 - LPA (centralized linear programming) and PKA (distributed based on pruning) in [Yang 06]
 - CKC (centralized greedy) and DPA (distributed based on pruning) in [Zhou 04]
Correctness of RKC

- RKC achieves the requested coverage degree

Requested k = 1

Requested k = 8
Efficiency of RKC

- Compare against necessary and sufficient conditions for k-coverage in [Kumar 04]
Correctness of DRKC

- DRKC achieves the requested coverage degree

Requested $k = 1$

Requested $k = 8$

Mohamed Hefeeda
Efficiency of DRKC

- DRKC performs closely to RKC, especially in dense networks

Mohamed Hefeeda
DRKC consumes less energy and prolongs network lifetime.
Conclusions

- **Presented a centralized k-coverage algorithm**
 - Simple, and efficient (log-factor approximation)
 - Proved its correctness and complexity

- **Presented a fully-distributed version**
 - Low message complexity, prolongs network lifetime

- **Simulations verify that our algorithms are**
 - Correct and efficient
 - Outperform other k-coverage algorithms
Thank You!

Questions??

- Details are available in the extended version of the paper at:

http://www.cs.sfu.ca/~mhefeeda