Notes on Satisfiability-Based Problem Solving
Automated Planning as Satisfiability

David Mitchell
mitchell@cs.sfu.ca
October 8, 2013

This is a preliminary draft of these notes. Please do not distribute without permission. Corrections and suggestions are welcome.

In this section, we describe a method of solving planning problems by reduction to SAT.

1 Propositional STRIPS Planning

A propositional STRIPS planning instance Π is a tuple Π = ⟨F, I, A, G⟩ consisting of:

- **Set F of “Facts”**: Possible states of the world are described in terms of a set F of “state variables”, or “facts”, each of which may be true or false. Equivalently, we take F to be a set of propositional atoms, and each truth assignment to F is a possible state of the world. We denote by lits(F) be the set of literals over F, that is \{f, ¬f | f ∈ F\}. The maximal satisfiable subsets of lits(F) are one-to-one with the truth assignments for F, and thus with states of the world.

- **Initial state I**: The initial state is given by a truth assignment for F.

- **Set A of “Actions”**: Each action a ∈ A is defined by two satisfiable sets of literals over F:
 - The set pre(a) ⊂ lits(F) of preconditions of a;
 - The set eff(a) ⊂ lits(F) of effects of a.

- **Goal G**: A set of states, specified by a satisfiable set of literals from lits(F). Any state which satisfies G is a goal state.

An action a is executable in a state S if each literal in pre(a) is true in S, that is, if S |= pre(a). The result of executing a in S is the state S′ defined by:
\[S'(f) = \begin{cases}
 f & \text{if } f \in \text{eff}(a) \\
 \neg f & \text{if } \neg f \in \text{eff}(a) \\
 S(f) & \text{otherwise.}
\end{cases} \]

In other words, \(S' \) is the same as \(S \), except in-so-far as necessary so that \(S' \models \text{eff}(a) \).

A plan \(P \) for \(\Pi \) of length \(k \) is a sequence of actions \(P = \langle a_1, a_2, \ldots, a_n \rangle \) such that there is a sequence of states \(S_P = \langle s_0, s_1, \ldots, s_n \rangle \) satisfying

1. \(s_0 = I \);
2. For each \(1 \leq i \leq n \), action \(a_i \) is executable in \(s_{i-1} \);
3. For each \(1 \leq i \leq n \), state \(s_i \) is the result of executing action \(a_i \) in state \(s_{i-1} \);
4. \(s_n \) is a goal state, that is, \(s_n \models G \).

2 Representing Planning in CNF

Fact 1. Given as input a propositional STRIPS instance \(\Pi \), deciding if \(\Pi \) has a plan is PSPACE-complete.

Intuitively, the reason is that the shortest plan may be of length exponential in the size of the planning instance. As a consequence, representing the set of plans in propositional logic requires formulas which are of size exponential in the size of the instance, which seems undesirable. Instead of doing this, we consider a more convenient task: representing plans of a given length.

Fact 2. Given as input a propositional STRIPS planning instance \(\Pi \) and a natural number \(k \), deciding existence of a plan of length at most \(k \) is NP-complete.

Actually, we will not model plans of bounded length, but rather plans which are fairly naturally modelled with a bounded number of time-steps. In particular, we will devise a family of formulas \(\Phi^\Pi_T \), parameterized by planning instance \(\Pi \) and positive integer \(T \), with the property that

\[\Phi^\Pi_T \text{ is satisfiable iff there is a plan for } \Pi \text{ involving at most } T \text{ time steps.} \]

Often, we leave the planning instance \(\Pi \) implicit, writing simply \(\Phi_T \).

Notice the shift in perspective here: we defined plans as a sequence of actions, but the description of the formula refers to time steps rather than actions. In fact, the formula:
1. allows time steps in which no action is performed;
2. allows multiple actions to be performed at one time step (with some constraints);
3. bounds the number of time steps, but not (at least directly) the number of actions.

These properties seem to make solving easier. The first allows finding plans without an exactly specified number of steps. Any “no-op” steps can be trivially eliminated in post-processing. The second property allows us to make the formula smaller. The size of the formula needed to represent the plans grows linearly with the number of steps involved, so allowing multiple actions per step reduces the size of formula needed to find plans for a given instance. We call these “parallel plans”, but they do not model concurrent actions in any serious way. We require that they be serializable, and therefore we need to add clauses to ensure this.

To write the formula, we will use two sets of atoms:

- **State Atoms**: For each fact \(f \in F \) and each time \(t \in \{0, \ldots, T\} \), we have atom \(f_t \). The intuitive meaning of \(f_t \) is that \(f \) is true at time \(t \).

- **Action Atoms**: For each action \(a \in A \) and each time \(t \in \{1, \ldots, T\} \), we have atom \(a_t \). We think of an action being executed during the time step from a time \(t - 1 \) to a time \(t \). The intuitive meaning of \(a_t \) is that action \(a \) is executed in the \(t^{th} \) time step, transitioning from time \(t - 1 \) to time \(t \).

The formula will be the union of sets of clauses enforcing the following constraints on plans.

The sets of clauses are as follows. (In some cases, for improved readability, we do not write in clause form, but the translation to clauses is easy.)

1. **Initial State**: The state at time 0 corresponds to the initial state.

 For each fact \(f \in F \), include unit clause \((f_0) \) if \(f \) is in \(I \), and \((\neg f_0) \) otherwise.

2. **Goal States**: The state at time \(T \) satisfies the goal conditions.

 For each fact \(f \in F \), include unit clause \((f_T) \) if \(f \) is in \(G \), and the unit clause \((\neg f_T) \) if \(\neg f \) is in \(G \).

3. **Action Preconditions**: If action \(a \) is executed in time step \(t \), then the preconditions of \(a \) hold a time \(t - 1 \).

 For each action \(a \), and each time \(t \in \{1, \ldots, T\} \), include clauses equivalent to

 \[
 a_t \rightarrow \bigwedge_{l \in \text{pre}(a)} l_{t-1}.
 \]
4. **Action Effects**: If action \(a\) is executed in time step \(t\), then its effects hold at time \(t\).

For each action \(a\), and each time \(t \in \{1, \ldots, T\}\), include clauses equivalent to

\[
a_t \rightarrow \bigwedge_{l \in \text{eff}(a)} l_t.
\]

5. **Explanatory Frame Axioms**: These are to ensure that the state only changes as a result of actions being executed. In particular, if a “fact” changes truth value during some time step, then it must be the effect of an action executed during that step.

For each fact \(f \in F\), and each time \(t \in \{1, \ldots, T\}\) include clauses equivalent to:

\[
(f_{t-1} \land \neg f_t) \rightarrow \bigvee_{\{a | \neg f \in \text{eff}(a)\}} a_t,
\]

and

\[
(-f_{t-1} \land f_t) \rightarrow \bigvee_{\{a | f \in \text{eff}(a)\}} a_t.
\]

6. **Serializability of Actions**: We are allowing “parallel” if multiple actions \(\{a_1, a_2, \ldots, a_k\}\) are executed during time step \(t\), then there is an ordering of the actions which constitutes a plan. We may enforce this by requiring the actions \(a_1, \ldots, a_k\) to be pairwise non-conflicting, in the sense that the execution of one does not preclude the other being executed in the resulting state.

For each pair \(a, b\) of distinct actions, if \(\text{pre}(a) \cup \text{eff}(b)\) is unsatisfiable, then for each time \(t \in \{1, \ldots T\}\), include the clause

\[
(-a_t \lor -b_t).
\]

3 Planning via Satisfiability

We now have a family of formulas which allow us to use a SAT solver to find plans bounded by some number of time steps. Our goal is to find the shortest plans possible - measured by number of time steps rather than number of actions. Let \(T^*\) denote the minimum number of time steps for which a plan exists. To establish that we have an optimum plan, we will need two calls to the SAT solver: one to show that \(\Phi_{T^*}\) is satisfiable, and one to show that \(\Phi_{T^*-1}\) is unsatisfiable. Unless we are extremely lucky and guess \(T^*\), we will need to call the solver with a sequence of formulas generated from a sequence of time bounds \(\sigma = \langle T_1, \ldots T_k \rangle\).
The question is, how to choose this sequence to minimize time to find an optimum plan. The easiest scheme is to use $\sigma = \langle 1, 2, 3, \ldots, T^* - 1, T^* \rangle$. While this seems wasteful, since in most cases T^* is not close to 1, generating and testing the formulas when T is very small is very fast. This method has the obvious advantage that no guessing is required, and it works pretty well.

To minimize number of calls to the solver, it is easy to do better. For example, consider $\sigma = \langle 1, 2, 4, \ldots, 2^i, \ldots \rangle$, where 2^i is the smallest power of 2 with $2^i \geq T^*$, and following this is a binary search of the interval $(2^{i-1}, 2^i)$ for T^*. This strategy will find T^* in time $O(\log T^*)$, while the naive method requires time $\Omega(T^*)$. However, minimizing number of calls may not (and typically will not) minimize time, because the running time for the call varies dramatically with T. The typical pattern is, roughly, that time to solve Φ_1 is trivial; times increase dramatically as $T^* - 1$ is approached; solving time drops moderately just above $T^* - 1$, and then increases further (due primarily to the large size of the formula). Thus, the time to establish the optimum value tends to dominate, except in the case that poor guesses well beyond the optimum are not made.