Monitoring Creatures Great and Small: Computer Vision Systems for Looking at Grizzly Bears, Fish, and Grasshoppers

Greg Mori, Maryam Moslemi, Andy Rova, Payam Sabzmeydani, Jens Wawerla

Simon Fraser University

VAIB workshop - December 7, 2008
Captivating Cinema

video: Prof. Larry Dill, SFU Biological Sciences
Computer Vision for Data Collection

- “Looking at Animals” problems
 - Sifting through video to find animals
 - Determining what the animals are up to
 - Classifying species of animals

- Symbiotic relationship
 - Natural scientists receive data
 - Computer scientists receive
 - real-world datasets
 - ground truth for quantifiable success/failure
Outline

- Detection of animals in video
 - Grizzly bears
- Analyzing animal behaviours
 - Grasshoppers
- Recognizing animal species
 - Fish
Outline

- Detection of animals in video
 - Grizzly bears
- Analyzing animal behaviours
 - Grasshoppers
- Recognizing animal species
 - Fish
Grizzly Bear Monitoring

- New eco-tourism site on salmon spawning river
- Grizzly bears feed on salmon
- Will human presence negatively impact bears?
- “Bearcam” deployed to watch bears on-site in northern Yukon
Grizzly Bear Monitoring

- New eco-tourism site on salmon spawning river
- Grizzly bears feed on salmon
- Will human presence negatively impact bears?
- “Bearcam” deployed to watch bears on-site in northern Yukon

Ni’jinlii Njik Park
Bearcam system recorded approx. 4h video per day for 15 days.
Bear Detection

- Bears have distinct shape and pattern of motion
 - extract image gradients and background difference
 - build classifier to detect bears
• Build bear detector using variant of AdaBoost (Viola-Jones)
 • A set of weak learners is built from thresholded background subtraction and gradient features

\[h_t(x) = p_tf_t(x) < p_t\theta_t \]
Results

• Crop windows from video frames

• Training set
 • 451 windows containing bears
 • 45100 without bears

• Test set
 • 400 bear windows
 • 40000 without
Results on Frames

• Run classifier on entire frame, take highest response
• Same training set
 • bootstrap negative set
• Test set
 • 405 frames with at least 1 bear
 • 16000 with none
• detect 76% at 0.001 FPPI
• detect 88% at 0.01 FPPI
Outline

• Detection of animals in video
 • Grizzly bears

• Analyzing animal behaviours
 • Grasshoppers

• Recognizing animal species
 • Fish
Understanding Insect Actions

• How are grasshoppers’ actions affected by spiders?
 • Predator-prey relationship

• Environment variables
 • Temperature
 • Light
 • Presence of food

• Collect data on grasshopper movement rates and actions
 • Lab environment, glass case
 • Calibrated stereo cameras
Tracking

- Background subtraction tracker in each camera
Clustering with Action Features

- Smooth the 3D track
- For each non-overlapping window of size w of track compute the difference between $x(t)$ and $x(t + \Delta t)$
- Use spectral clustering on these features
Cluster purity measured

- 3530 hand-labelled frames
Clustering Visualization

- Take all frames in “jump” cluster
- Show all such clips in one shorter video
- Minimize spatial/temporal overlap of clips
- Rav-Acha, Pritch, Peleg CVPR06
Clustering Visualization

- Take all frames in “jump” cluster
- Show all such clips in one shorter video
- Minimize spatial/temporal overlap of clips

Rav-Acha, Pritch, Peleg CVPR06
Outline

- Detection of animals in video
 - Grizzly bears
- Analyzing animal behaviours
 - Grasshoppers
- Recognizing animal species
 - Fish
Counting Fish

• Biologists have many hours of underwater video footage
 • Require count of fish by species
 • Use as proxy for tiger shark count
 • Currently, people must watch and manually identify/count
 • Automatic system could save many hours of labour
Challenges

- Video has limited resolution and is interlaced
- Underwater lighting has shifts in intensity and color
- Plants and sediment can cause false positives when detecting movement
- Fish appear with arbitrary locations and poses
Method overview

1. Preprocess video frames to crop candidate subimages
2. Find correspondences between unknown images and known fish template images
3. Warp unknown images into alignment with the templates
4. Use support vector machines (SVMs) to classify the unknown images by fish species
query warped to template 1

find correspondences and warp

filter responses

SVM

Classification decision

find correspondences and warp

query warped to template 2

filter responses

SVM

template 1

query image

template 2
Warping examples

<table>
<thead>
<tr>
<th>Test Image</th>
<th>Template</th>
<th>Warped Test Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
<tr>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
</tr>
<tr>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
</tr>
</tbody>
</table>
Experimental results

Automatic classification of 320 hand-cropped video frames of two fish species

<table>
<thead>
<tr>
<th>SVM kernel</th>
<th>no warping</th>
<th>warped</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>84%</td>
<td>90%</td>
</tr>
<tr>
<td>polynomial</td>
<td>81%</td>
<td>86%</td>
</tr>
</tbody>
</table>

Some misclassifications
Acknowledgements

- graduate students
- natural scientist collaborators
 - Prof. Dill, Prof. Rothley, S. Marshall, G. Dutton
- funding from Canada Foundation for Innovation / BC Knowledge Development Fund
 - Scientific Data Acquisition, Transmission, and Storage (SDATS) project
Thank you