Evolutionary Equilibria in Computer Networks: Specialization and Niche Formation

Oliver Schulte
Petra Berenbrink
Simon Fraser University
oschulte@cs.sfu.ca
Modelling User Communities

- A system provides users with access to resources, e.g. a network.
- Centralized planning: gather requests, compute optimal allocation.
- “Anarchy”: users individually choose resources, e.g. routes for messages.
- Individual choice → strategic interactions (≈ traffic models).
Central Allocation

Users → Messages → Router → Network

- 500K
- 250K
- 750K

Evolutionary Equilibria in Network Games
Decentralized Individual Choice

Users → Messages → Network

- 500K
- 250K
- 750K
Motivation for Game-Theoretic Modelling

Use game theory to predict outcome of “selfish” user choices (Nash equilibrium)

1. Assess “price of anarchy”
2. Improve network design/protocols
Outline

- Parallel Links Model
- Bayesian Parallel Links Game
- Intro to Evolutionary Stability
- ESS for Parallel Links Game
 - Characterization
 - Structural Conditions
Parallel Links Model

<table>
<thead>
<tr>
<th>Tasks</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100K</td>
<td>500K</td>
<td>250K</td>
<td>750K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Links</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speeds</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

delay of task w on link $l = \frac{w}{\text{speed of } l}$

Evolutionary Equilibria in Network Games
Parallel Links Model as a Game
(Koutsoupias and Papadimitriou 1999)

1. Players 1,..,n with tasks \(w_1, \ldots, w_n\)
2. Pure strategy = (choice of) link
3. Fix choices \((w_1,l_1), \ldots, (w_n,l_n)\).
 \[\Rightarrow \text{load on link } l = \sum_{i=1}^{n} w_i \text{ for } l_i = l.\]
 \[\Rightarrow \text{utility } u_i \text{ for player } i = \]
 \[\text{- load on link } l_i\]
 \[\text{speed of link } l_i\]
Bayesian Routing Game
(Gairing, Monien, Tiemann 2005)

• Agents are uncertain about tasks.
 • common dist. μ over tasks W
 • strategy \sim "program" p for routing tasks
 • $p(l|w)$ = probability that program p chooses link l when given task w.

• $u_i(p_1,\ldots,p_n) = \sum_{\text{task assignments } <w_1,\ldots,w_n>} \prod_{j=1..n} \mu(w_j) \cdot u_i [(w_1,p_1|w_1),\ldots,(w_n,p_n|w_n)]$
Motivation for Evolutionary Analysis

1. Under “anarchy”, we expect successful strategies to spread → evolutionary dynamics.

2. Highly successful predictions in biology.

3. Distinguishes stable from unstable equilibria.

4. May be useful in network design:
 see W. Sandholm’s (2002) pricing scheme for traffic congestion. “evolutionary implementation in computer networks seems an important topic for future research”.

Evolutionary Equilibria in Network Games
Hawk vs. Dove As A Population Game

<table>
<thead>
<tr>
<th></th>
<th>Hawk (H)</th>
<th>Dove (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawk</td>
<td>-2, -2</td>
<td>6, 0</td>
</tr>
<tr>
<td>Dove</td>
<td>0, 6</td>
<td>3, 3</td>
</tr>
</tbody>
</table>

- Assume a large population of agents.
- Agents are either hawks (H) or doves (D).
- We randomly draw 2 at a time to play.
Population Interpretation of Nash Equilibrium

1. Consider a population of agents with frequency distribution π.
 e.g. [H,H,H,H,H,H,D,D,D,D]

2. π is in equilibrium
 \Leftrightarrow H does as well as D
 \Leftrightarrow (π, π) is a symmetric Nash equilibrium.

3. (π, π) does not represent the choices of 2 players.

4. (π, π) says that both positions are drawn from the same population of agents with distribution π.
Stable vs. Unstable Equilibrium

unstable

stable within a neighbourhood
Evolutionarily Stable Strategies (ESS)

mixed population dist. = (1-\(\varepsilon\)) \(\pi^*\) + \(\varepsilon\pi\)

<table>
<thead>
<tr>
<th>current dist (\pi^*)</th>
<th>mutant dist (\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHHHHH DDDD</td>
<td>H D</td>
</tr>
<tr>
<td>10/12 = 1-(\varepsilon)</td>
<td>2/12 = (\varepsilon)</td>
</tr>
</tbody>
</table>

1. A distribution \(\pi^*\) is an ESS if and only if for all sufficiently small mutations \(\pi\) the incumbents in \(\pi^*\) do better in the mixed population than the mutants.

2. A distribution \(\pi^*\) is an ESS if and only if there is an \(\varepsilon^*\) such that for all sizes \(\varepsilon < \varepsilon^*\) \(u(\pi^*; (1-\varepsilon) \pi^* + \varepsilon\pi) > u(\pi; (1-\varepsilon) \pi^* + \varepsilon\pi)\) for all mutations \(\pi \neq \pi^*\).
Characterization of ESS in Bayesian Routing Game B

Define:

- the load on link l due to strategy p:
 $$\text{load}(p,l) = \sum_{tasks} w \mu(w) \cdot p(l|w) \cdot w$$

- the (marginal) probability of using link l:
 $$\text{prob}(p,l) = \sum_{tasks} w \mu(w) \cdot p(l|w)$$

Theorem. A strategy p^* is an ESS in $B \iff$ for all best replies $p \neq p^*$ we have

$$\sum_{\text{links}} \left[\text{load}(p^*,l)-\text{load}(p,l) \right] \cdot \left[\text{prob}(p^*,l)-\text{prob}(p,l) \right] > 0$$

Intuition: to defeat mutation p:

- if load on link increases, use link less (- x -)
- if load decreases, use link more (+ x +)

Evolutionary Equilibria in Network Games
Proposition. Let B be a Bayesian routing routing game with ESS p^*. If two links l_1, l_2 have the same speed, then $p^*(l_1|w) = p^*(l_2|w)$ for all tasks w.

<table>
<thead>
<tr>
<th>Links</th>
<th>Speeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1:50%, w_2:50%, w_3:0$</td>
<td>10</td>
</tr>
<tr>
<td>$w_1:50%, w_2:50%, w_3:0$</td>
<td>10</td>
</tr>
<tr>
<td>$w_1:0, w_2:0, w_3:100%$</td>
<td>15</td>
</tr>
</tbody>
</table>
Necessary Condition: bigger tasks get faster links

Proposition. Let B be a Bayesian routing game with ESS p^*. Suppose that

1. link 1 is faster than link 2
2. p^* uses link 1 for task w_1, link 2 for task w_2.

Then $w_1 \geq w_2$.

<table>
<thead>
<tr>
<th>Links</th>
<th>Speeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2 = 10: 50%</td>
<td>10</td>
</tr>
<tr>
<td>w_1 = 20:100%, w_2: 50%</td>
<td>15</td>
</tr>
</tbody>
</table>
Single Task: Unique ESS

Proposition. Let B be a Bayesian network routing game with just one task w.

1. B has a unique ESS p^*.

2. If all m links have the same speed, $p^*(l_j | w) = 1/m$ is the unique ESS.

<table>
<thead>
<tr>
<th>Links</th>
<th>Speeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>w: 1/3</td>
<td>10</td>
</tr>
<tr>
<td>w: 1/3</td>
<td>10</td>
</tr>
<tr>
<td>w: 1/3</td>
<td>10</td>
</tr>
</tbody>
</table>
Strong Necessary Condition: No Double Overlap

- Fix a Bayesian network game B.
- Strategy p^* **uses** link l for weight w \iff $p^*(l|w) > 0$.

Proposition. Let p^* be an ESS in B. Suppose that p^* uses two distinct links $l_1 \neq l_2$ for task w. Then p^* does not use both l_1 and l_2 for any other task w'.

<table>
<thead>
<tr>
<th>Links</th>
<th>Speeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1:70%, w_2:30%</td>
<td></td>
</tr>
<tr>
<td>w_1:30%, w_2:70%</td>
<td></td>
</tr>
<tr>
<td>w_3:100%</td>
<td></td>
</tr>
</tbody>
</table>
Proposition. Let B be a Bayesian network game with >1 link, >1 task, all links the same speed. Then there is no ESS for B.

$$
\begin{array}{c|c|c}
\text{Links} & \text{Speeds} \\
\hline
\text{double overlap} & \text{50\%} & \text{50\%} & \text{10} \\
\text{50\%} & \text{50\%} & \text{10} \\
\end{array}
$$
Clusterings are typical ESS’s

- Fix a Bayesian network game B with strategy p^*.
- A link l is **optimal** for task w given p^* ⇔ l minimizes w/speed(l) + load(l, p^*).
- A strategy p^* **clusters** ⇔ if two distinct links $l_1 \neq l_2$ are optimal for task w, then neither l_1 nor l_2 is optimal for any other task $w' \neq w$.

Proposition. If p^* clusters, then p^* is an ESS.
Does A Clustered Equilibrium Exist?

- Fix an assignment A of links to tasks.

Proposition.

1. There is \textit{at most one} clustered ESS p^* whose clustering is A.
2. The candidate p^* can be computed in polynomial time.
3. The question: is there a clustered ESS p^* for a game B? is in NP.
Future Work

- Conjecture: if an ESS exists, it’s unique.
- Conjecture: the “no double overlap” condition is sufficient as well as necessary.
- Computational Complexity and Algorithms for computing ESS’s.
Conclusion

- ESS *refines* Nash equilibrium and defines *stable* equilibria.
- Analysis of evolutionary stability in Bayesian network games:
 - characterization of *successful mutations*
 - *structure* of stable *task/link allocations*.
- Finding:
 - evolutionary dynamics leads to formation of “niches” or *clusters* for task/link combinations.
 - Symmetric outcomes tend to be socially suboptimal.