Continuous Latent Variables
Oliver Schulte - CMPT 419/726

Bishop PRML Ch. 12
Outline

Principal Component Analysis
Outline

Principal Component Analysis
PCA: Motivation and Intuition

- Basic Ideas over 100 years old (stats). Still useful!
- Think about linear regression. If basis functions are not given, can we learn them from data?
- Goal: find a small set of hidden basis functions that explains the data as well as possible.
- Intuition: Suppose that your data is generated by a few hidden causes or factors. Then you could compactly describe each data point by how much each cause contributes to generate it.
- Principal Component Analysis (PCA) assumes that the contribution of each factor to each data point is linear.
Informal Example: Student Performance

- Each student’s performance is summarized in 4 assignments, 1 midterm, 1 project = 6 numbers.
- Suppose that on each item, a student’s performance can be explained in terms of two factors.
 - Her intelligence I_n
 - Her diligence D_n.
 - Combine these into a vector z_n.
- The importance of each factor varies with the assignment. So we have 6 numbers for each. Put them in a 6x2 matrix W.
- Then the performance numbers of student n can be predicted by the model

$$x_n = Wz_n + \varepsilon,$$

where ε is (Gaussian) noise.
Informal Example: Blind Source Separation

- Two people are talking in a room, sometimes at the same time. http://www.youtube.com/watch?v=Qr74sM7oqQc&feature=related
- Two microphones are set up at different parts of the room. Each mike catches each person from a different position. Let x_i be the combined signal at microphone i.
- The contribution of person 1 to mike i depends on the position of mike i, can be summarized as a pair of numbers w_{i1}, w_{i2}.
- Similarly for person 2. Combine these into a 2x2 matrix W.
- Let z_i be the (amplitude of) the voice signal of person i. Then the combined signal at mike 1 is given by
 $$x_1 = w_{11} \cdot z_1 + w_{12} \cdot z_2.$$
- Similarly for mike 2. Overall, we have that
 $$x = Wz.$$
Example: Digit Rotation

- Take a single digit (3), make 100x100 pixel image
- Create multiple copies by translating and rotating
- This dataset could be represented as vectors in $\mathbb{R}^{100 \times 100} = \mathbb{R}^{10000}$
- But the dataset only has 3 degrees of freedom... why are 10,000 needed?
 - Shouldn’t a manifold or subspace of intrinsic dimension 3 suffice?
- Teapot demo
 http://www.youtube.com/watch?v=BfTMmoDFXyE
• An auto-associative neural net has just as many input units as output units, say D.

• The error is the squared difference between input unit x_i and output unit o_i, i.e. the network is supposed to recreate the input.
Suppose we have 1 hidden layer with just one node. The network then has to map each input to a single number that allows it to recreate the entire input as well as possible.

More generally, we could have $M \ll D$ hidden nodes. The network then has to map each input to a lower-dimensional vector that allows it to recreate the entire input as well as possible.

You can in fact use this set-up to train an ANN to perform dimensionality reduction.

But because of the linearity assumption, we can get a fast closed-form solution.
Component Analysis: Pros and Cons

Pros

• Reduces dimensionality of data: easier to learn.
• Removes noise, filters out important regularities.
• Can be used to standardize data (whitening).

Cons

• PCA is restricted to linear hidden models. (Relax later).
• Black box: data vectors become hard to interpret.
After preprocessing the original data (left), we obtain a data set with mean 0 and unit covariance.
We will study one simple method for finding a lower dimensional manifold – principal component analysis (PCA).

PCA finds a lower dimensional linear space to represent data.

How to define the right linear space?
- Subspace that maximizes variance of projected data
- Minimizes projection cost

Turns out they are the same!
Principal Component Analysis

Maximum Variance

- Consider dataset \(\{ x_n \in \mathbb{R}^D \} \)
- Try to project into space with dimensionality \(M < D \)
- For \(M = 1 \), space given by \(u_1 \in \mathbb{R}^D \), \(u_1^T u_1 = 1 \)
- Optimization problem: find \(u_1 \) that maximizes variance
Projected variance

- The projection of a datapoint $x_n \in \mathbb{R}^D$ by u_1 is $u_1^T x_n$
- The mean of the projected data is

$$\frac{1}{N} \sum_{n=1}^{N} u_1^T x_n = u_1^T \left(\frac{1}{N} \sum_{n=1}^{N} x_n \right) = u_1^T \bar{x}$$

- The variance of the projected data is

$$\frac{1}{N} \sum_{n=1}^{N} \left(u_1^T x_n - u_1^T \bar{x} \right)^2 = u_1^T \left(\frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})(x_n - \bar{x})^T \right) u_1 = u_1^T S u_1$$

where S is the sample covariance.
Principal Component Analysis

Optimization

• How do we maximize the projected variance $u_1^T Su_1$ subject to the constraint that $u_1^T u_1 = 1$?
 • Lagrange multipliers:

 $$u_1^T Su_1 + \lambda_1 (1 - u_1^T u_1)$$

 • Taking derivatives, stationary point when

 $$Su_1 = \lambda_1 u_1$$

 i.e. u_1 is an eigenvector of S
Optimization – Which Eigenvector

- There are up to D eigenvectors, which is the right one?
- Maximize variance!
- Variance is:

$$u_1^T Su_1$$

$$= u_1^T \lambda_1 u_1 \text{ since } u_1 \text{ is an eigenvector}$$

$$= \lambda_1 \text{ since } ||u_1|| = 1$$

- Choose the eigenvector u_1 corresponding to the largest eigenvalue λ_1
 - This is the first direction ($M = 1$)
 - If $M > 1$, simple to show eigenvectors corresponding to largest M eigenvalues are the ones to choose to maximize projected variance
Reconstruction Error

- Can also phrase problem as finding set of orthonormal basis vectors \(\{u_i\} \) for projection
- Find set of \(M < D \) vectors to minimize reconstruction error

\[
J = \frac{1}{N} \sum_{n=1}^{N} \|x_n - \tilde{x}_n\|^2
\]

where \(\tilde{x}_n \) is projected version of \(x_n \)
- \(\tilde{x}_n \) will end up being same as before – mean plus leading eigenvectors of covariance matrix \(S \)

\[
\tilde{x}_n = \bar{x} + \sum_{i=1}^{M} \beta_{ni} u_i
\]
PCA Example – MNIST Digits

- Principal Component Analysis
- Mean
- $\lambda_1 = 3.4 \cdot 10^5$
- $\lambda_2 = 2.8 \cdot 10^5$
- $\lambda_3 = 2.4 \cdot 10^5$
- $\lambda_4 = 1.6 \cdot 10^5$

- PCA of digits “3” from MNIST
- First ≈ 100 dimensions capture most variance / low reconstruction error
PCA approximation to a data vector x_n is:

$$\tilde{x}_n = \bar{x} + \sum_{i=1}^{M} \beta_{ni} u_i$$

As M is increased, this reconstruction becomes more accurate.

$D = 784$, but with $M = 250$ quite good reconstruction.
Kirby and Sirovich, PAMI 1990

http://en.wikipedia.org/wiki/Eigenface
Probabilistic PCA

- Probabilistic model of PCA: For each data point x_n, there is a latent variable vector z_n.
- Linear Gaussian model:
 \[
 x = Wz + \mu + \varepsilon.
 \]
- Can train using EM.
- Handles missing data.
- Can take mixtures of PCA models.
- Closely related to factor analysis.
 [Link](http://cscs.umich.edu/~crshalizi/weblog/).
- (see text).
Nonlinear PCA: Kernel Methods

- Can use the kernel trick: replace dot products with kernel evaluations.
- In the figure, the first 2 eigenvectors separate 3 clusters.
- The next 3 split the clusters in halves.
- The last 3 split the clusters in orthogonal halves.
With more than one hidden layers, neural nets perform non-linear dimensionality reduction.
Conclusion

- Readings: Ch. 12.1
- We discussed one method for finding a lower dimensional manifold – principal component analysis (PCA)
- PCA is a basic technique
 - Finds linear manifold (hyperplane)
- In general, manifold will be non-linear
 - Simple example – translating digit 1
 - Also “dimensions” corresponding to style of digit
- Other important techniques for non-linear dimensionality reduction: independent component analysis (ICA), isomap, locally linear embeddings