Stock Price Prediction

- Problems in which t_i is continuous are called regression.
- E.g. t_i is stock price, x_i contains company profit, debt, cash flow, gross sales, number of spam emails sent, ...
• Only x_i is defined: unsupervised learning
• E.g. x_i describes image, find groups of similar images
• Suppose we are given training set of N observations (x_1, \ldots, x_N) and (t_1, \ldots, t_N), $x_i, t_i \in \mathbb{R}$

• Regression problem, estimate $y(x)$ from these data
Polynomial Curve Fitting

- What form is $y(x)$?
 - Let’s try polynomials of degree M:

 $$y(x, w) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M$$

 - This is the hypothesis space.

- How do we measure success?
 - Sum of squared errors:

 $$E(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2$$

- Among functions in the class, choose that which minimizes this error.
Polynomial Curve Fitting

- What form is \(y(x) \)?
 - Let’s try polynomials of degree \(M \):
 \[
y(x, w) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M
 \]
 - This is the hypothesis space.

- How do we measure success?
 - Sum of squared errors:
 \[
 E(w) = \frac{1}{2} \sum_{n=1}^{N} \{ y(x_n, w) - t_n \}^2
 \]
 - Among functions in the class, choose that which minimizes this error.
Polynomial Curve Fitting

- What form is $y(x)$?
 - Let’s try polynomials of degree M:
 $$y(x, w) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M$$
 - This is the hypothesis space.

- How do we measure success?
 - Sum of squared errors:
 $$E(w) = \frac{1}{2} \sum_{n=1}^{N} \left(y(x_n, w) - t_n \right)^2$$
 - Among functions in the class, choose that which minimizes this error.
Polynomial Curve Fitting

- Error function
 \[E(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2 \]

- Best coefficients
 \[w^* = \arg \min_w E(w) \]

- Found using pseudo-inverse (more later)
Which Degree of Polynomial?

- A model selection problem
- $M = 9 \rightarrow E(w^*) = 0$: This is over-fitting
Generalization

- Generalization is the holy grail of ML
 - Want good performance for new data
- Measure generalization using a separate set
 - Use root-mean-squared (RMS) error: $E_{RMS} = \sqrt{\frac{2E(w^*)}{N}}$