Video Stabilization with a Depth Camera

Shuaicheng Liu1 Yinting Wang 1,2 Lu Yuan3 Jiajun Bu2 Ping Tan1 Jian Sun3

1National University of Singapore 2Zhejiang University 3Microsoft Research Asia

Abstract

Previous video stabilization methods often employ homographies to model transitions between consecutive frames, or require robust long feature tracks. However, the homography model is invalid for scenes with significant depth variations, and feature point tracking is fragile in videos with textureless objects, severe occlusion or camera rotation. To address these challenging cases, we propose to solve video stabilization with an additional depth sensor such as the Kinect camera. Though the depth image is noisy, incomplete and low resolution, it facilitates both camera motion estimation and frame warping, which make the video stabilization a much well posed problem. The experiments demonstrate the effectiveness of our algorithm.

1. Introduction

Videos captured by a handheld camera often suffer from serious frame jitters, which is the most obvious difference from professional videos. Video stabilization techniques can make casually captured videos look professional by removing these undesirable jitters. However, existing methods are limited by two key issues. First, methods relied on homography based frame registration such as [12, 6] suffer from image distortion when there are significant depth changes in a scene. In principle, a homography can register two frames only when the scene is flat, or when there is no camera translation at all. These two conditions are not precisely true in most real videos, and can cause serious distortions in the stabilized results, especially when the distance between scene objects and camera is small such as indoor scenes. Second, long feature tracks are difficult to obtain in scenes with severe occlusion, sudden camera rotation, motion blur, or textureless objects (e.g. white walls in indoor scenes). Hence, methods requiring feature tracking such as [9, 10] tend to fail in these challenging cases.

We propose to address these two challenging problems using additional depth sensors. Depth sensors such as the Kinect camera are cheap, compact and widely available in the market. This additional depth information provides video stabilization with a much robust solution in camera motion estimation and frame warping. Since we have depth information, we can estimate an accurate camera pose for each frame by only performing motion estimation between every two consecutive frames. Thus, our method does not rely on fragile feature tracking, or structure-from-motion algorithms [7]. According to our knowledge, this is the first to exploit depth sensors for video stabilization.

Since the depth measure from sensors (e.g., Kinect) is noisy, incomplete and low resolution at each frame, directly applying depth for stabilization is nontrivial. To achieve this goal, we first combine color and depth images to robustly compute 3D camera motion. We match corresponding 2D feature points between two neighboring frames, and use their depths to estimate relative camera motion. We then smooth the recovered 3D camera trajectories following cinematography principles [6], which removes both high frequency camera jitters and low frequency shakes. Since the depth measure is incomplete, the novel video frames cannot be generated by directly projecting 3D scene points (generated from the depth image) according to the new camera poses. To solve this problem, we generate a dense non-linear motion field by combing 3D projection and 2D image warping to create the final results.

2. Related Work

Previous methods on video stabilization can be roughly divided as 2D and 3D stabilization. 2D video stabilization methods use a series of 2D transformations to represent the camera motion, and smooth these transformations to stabilize the video. Early 2D video stabilization methods such as [13, 12] computed affine or homography transformations between consecutive frames and applied low pass filtering to reduce high frequency camera jitter. To reduce low frequency camera shakes, Chen et al.[4] fit polynomial curves to represent camera trajectories. Gleicher and Liu [5] further broke camera trajectories into segments and fit smooth motion to each of them for better camera motion. More recently, Grundman et al.[6] applied cinematography rules.
and represented camera motion by a combination of constant, linear or parabolic motion. All these methods share a common disadvantage that the assumed 2D motion model (e.g. affine or homography transformations) is insufficient to model frame changes when the scene contains significant depth changes.

3D video stabilization methods reconstruct the 3D camera trajectories and smooth them for stable videos. Buehler et al. [3] proposed a 3D video stabilization method based on a projective reconstruction of the scene with an uncalibrated camera. When a Euclidean reconstruction can be obtained, Zhang et al. [16] smoothed the camera trajectories to minimize its acceleration in rotation, translation and zooming. However, video frames at the new camera poses were generated by applying a per-frame homography to original frames. A full 3D stabilization method was proposed by Liu et al. [9]. After smoothing the 3D camera trajectories, the projections of reconstructed 3D points were used to control a ‘content-preserving’ warping of the original frames to create the final result. These methods are limited by their employed 3D reconstruction algorithms. Though there is significant progress [14, 1] in 3D reconstruction, reconstructing a general video is still difficult. Videos with zooming, quick rotation and significant moving objects will make the reconstruction algorithm fail. Besides these problems, robust 3D reconstruction requires long feature tracks, which are difficult to obtain in amateur videos.

A trade-off between 2D and 3D stabilization techniques is to directly smooth the trajectories of tracked image feature points. Lee et al. [8] directly searched for a serious of similarity or affine transformations between neighboring frames to minimize the acceleration of image feature points. To better capture the scene 3D structure, Liu et al. [10] proposed to smooth the bases of the subspace formed by these feature trajectories. However, in real amateur videos, feature point tracking is also complicated by occlusion and camera rotation, which makes these methods fragile.

Smith et al. [15] employed specialized hardware, a light field camera, to solve the video stabilization problem. Here, we also employ additional hardware, a depth sensor, for stabilization. Depth cameras are cheap and widely available in the market, such as the Kinect camera and other time-of-flight cameras. A depth camera helps us in camera motion estimation as well as the creation of novel frames. Though we demonstrate our method with the Kinect camera in indoor scenes, we believe the same algorithm can be applied to time-of-flight cameras to work in outdoor environments.

3. Challenges in Video Stabilization

Before going to the details of our method, we first highlight two key challenges to previous video stabilization methods, which commonly exist in indoor scenes. Indoor scenes are particularly important, because many amateur videos (such as family event, party, shopping, etc) are captured in indoors. Many of previous methods employed 2D transformations such as similarity [8], affine or homography [12, 6] transformations to register neighboring frames. However, these simple motion models are invalid when there are large depth changes in the scene, especially when the scene is close to the camera. Figure 1 shows such an example where three cubes in front of a wall are captured by a handheld video camera. The first row shows two frames of the original shaky video. The second row are the corresponding frames from the video stabilized according to [6]. The results are clearly distorted. For example, the first-aid box on the left image is subject to a shearing mapping. This is because the sudden depth change between the cubes and the wall makes homography based registration invalid. For a comparison, the same frames from the video stabilized

1 We uploaded our videos to Youtube (http://www.youtube.com) with the ‘stabilize’ feature enabled. The uploaded videos are stabilized by the website server according to the method in [6]. We then downloaded the results for comparison.
Our method is free from this distortion by exploiting rough depth information from a depth camera.

3D video stabilization methods such as [3, 16, 9] require feature correspondence in different frames for robust 3D reconstruction. Methods based on feature track smoothing such as [8, 10] also need long tracks of feature points. As commented in [10], typically, features should be tracked for about 50 frames to make their algorithm robust. However, robust tracking of feature points is a difficult problem, which could be affected by textureless regions, sudden camera rotation or severe occlusion. The third row of Figure 1 shows the results from [10]. Most of the tracked feature points locate on the foreground cubes, which leads to wobble artifacts on the background first-aid box (please refer to the supplementary videos for a clearer comparison).

To further demonstrate the tracking difficulty, we show two typical amateur videos in Figure 2. Each row shows two frames from one video. The video in the first row has quick rotation, while the one in the second row suffers from severe occlusion caused by pedestrians. We overlay the trajectories of tracked feature points. Here we used the KLT tracker [11] to trace detected SURF features [2]. On each trajectory, the red points are the feature positions in tracked frames. When rotation or occlusion happens, both the number of tracked feature points and the length of feature tracks drop significantly, which makes feature tracking based video stabilization fragile. The average lengths of feature tracks in the left two images are 10 and 23 frames. In comparison, the average lengths in the right are 6 and 2 frames. The numbers of tracked points are also reduced from 248 and 158 on the left to 21 and 37 on the right. With an additional depth camera, we compute camera motion between any two consecutive frames from corresponding pixels with known depth. This method does not require long feature tracks. Hence, we avoid this challenging tracking problem.

4. Our Method

The input to our method is a video with an accompany depth image for each frame. In developing our algorithm, we use the Kinect camera in indoor scenes for data capturing, though other depth sensors might also be used. Similar to most of the video stabilization methods, our method includes mainly three steps. We first estimate the 3D camera motion from neighboring color and depth images. Since we have depth information, we do not require long feature tracks for 3D reconstruction. Once the 3D camera trajectory is known, we smooth it following [6] to reduce both high frequency jitters and low frequency shakes. We then generate video frames according to the smoothed camera poses, again by combling information from color and depth images.

4.1. Camera motion estimation

We begin by recovering camera motion in the original shaky video. Our input are the video frames \(I_1, I_2, \ldots, I_n \), and their corresponding depth images \(P_1, P_2, \ldots, P_n \) measured in local camera coordinate system. We seek to estimate a \(4 \times 4 \) matrix \(C_t \) at each time \(t \) that represents the camera pose in a global coordinate system, i.e.

\[
C_t = \begin{pmatrix} R_t & O_t \\ 0 & 1 \end{pmatrix}.
\]

Here, \(R_t \) and \(O_t \) are the \(3 \times 3 \) rotation matrix and \(3 \times 1 \) translation vectors representing the camera orientation and position in the global coordinate system respectively.

As shown in Figure 3, the relative camera motion at time \(t \) can be represented by a 3D Euclidean transformation \(H_t \) satisfying \(C_t = C_{t-1} H_t \). \(H_t \) has similar form as \(C_t \), where

\[
H_t = \begin{pmatrix} \hat{R}_t & \hat{O}_t \\ 0 & 1 \end{pmatrix}.
\]
Here, \hat{R}_t, \hat{O}_t are the rotation and translation components of H_t. We set the world coordinate system at the first frame. Hence, camera poses can be computed by chaining the relative motions between consecutive frames as $C_t = H_1 H_2 \ldots H_t$.

To estimate H_t, we first detect and match SURF features [2] between two frames I_{t-1} and I_t. Since depth images are incomplete (shown on the grayscale image in Figure 5 (a)), some matched feature points might not have depth recorded. Here, we only choose those corresponding feature points whose depths in both P_{t-1} and P_t are known. Each pair of correspondence introduces a constraint about H_t as, $\hat{R}_t p_{t-1} + \hat{O}_t = p_t$. As illustrated in Figure 3, p_t, p_{t-1} are the coordinates of the same 3D point in the two local camera coordinate systems of the frame t and $t - 1$ respectively.

Suppose N pairs of features are collected, we can then estimate H_t (i.e. \hat{R}_t, \hat{O}_t) by minimizing
\[
\sum_{i=1}^{N} \rho(||\hat{R}_t p_{t-1} + \hat{O}_t - p_t||_2).
\] (1)

Here, $\rho(\cdot)$ is the M-estimator (we use the Tukey bi-weight function [17]) for robust estimation defined as
\[
\rho(x) = \begin{cases}
\beta^2/6(1 - [1 - (x/\beta)^2]^3) & \text{if } |x| \leq \beta \\
\beta^2/6 & \text{otherwise.}
\end{cases}
\]

Equation 1 is minimized by the standard iteratively reweighted least squares (IRLS) method [17]. During the computation, RANSAC is also applied to skip outliers. Specifically, we repetitively draw three random pairs of corresponding points at a time to solve Equation 1 until we find the largest set of inliers. We then solve Equation 1 again with all inliers to decide the camera motion. For computation efficiency, during the random sampling, we set $\beta = +\infty$ (i.e. without using M-estimator), while we set β as the standard deviation of the fitting residual in all inliers in the final estimation.

4.2. Camera trajectory smoothing

We smooth the estimated camera trajectory for stable motion. We follow [6] to adopt cinematography principles to remove both high frequency jitters and low frequency shakes. The smoothed camera trajectory should be a combination of constant, linear and parabolic motion. Note that the key difference from [6] is that we work with real 3D camera poses (i.e. orientations and positions), while [6] used a series of homographies to indicate the camera motion.

We represent the camera rotation matrix R_t by its quaternions, which offer a better representation for interpolation than Eulerian angles. For notation simplicity, we still denote these quaternions by \hat{R}_t. We then concatenate the 4D quaternions R_t and the 3D translation vector O_t to a 7D vector F_t to represent the camera pose at time t. The optimal camera trajectory is obtained by minimizing the following objective function,
\[
O(F) = w_1 |D(F)|_1 + w_2 |D^2(F)|_1 + w_3 |D^3(F)|_1
\]

where $|D(F)|_1, |D^2(F)|_1$ and $|D^3(F)|_1$ are the L-1 norms of the first order, second order and third order camera pose derivatives respectively. We set $w_1 = 10, w_2 = 1, w_3 = 100$ for all our examples. The optimization is solved by linear programming with the first camera pose F_1 unchanged. Following [6], we also require new camera poses to be close to the original ones. Specifically we require the angles in R_t do not change more than 3 degrees and the components in O_t do not change more than 20(20mm).

Figure 4 shows the camera trajectories before and after smoothing in red and green respectively.

4.3. Video frame generation

Once we obtain the stabilized camera poses, we are ready to synthesize the output video. In principle, if the depth sensor returns a dense and complete depth for each pixel, we can generate the stabilized frame by simply projecting all 3D points according to smoothed camera poses. However, the depth image is often incomplete, as shown by the grayscale images in Figure 5 (a). Figure 5 (b) shows a projection of the 3D points (generated from the color and depth image in Figure 5 (a)) to the stabilized video frame, where many pixels are missing because of the incomplete depth map. Hence, we apply the ‘content-preserving’ image warping [9] to fill-in these missing regions.

To seamlessly blend results from projecting 3D points and image warping, we use morphological dilation operator to create a r-pixel width ($r = 1.5\%$ of image width in our experiments) buffer band surrounding all missing regions. We use all pixels in this band as ‘control points’ for image warping, so that the warping will be as consistent as possible with the projection. Figure 5 (d) shows the green control points and the image warping grid (a clearer version is provided in the left of Figure 6). We combine these two methods in the band by linearly interpolating the two motion fields introduced by them.

Motion field from depth images. We project pixels with depth measure according to the smoothed camera pose. Given the original camera pose C_t and its smoothed pose...
Figure 5. Video frame generation pipeline. We use the color and depth images in (a) to generate the projection (b) and motion field (c). Many pixels are missing because of the incomplete depth image. Hence, we warp the color image by the ‘content-preserving’ warping [9] in (d) according to the green control points and a regular grid. This warping generate a color image (e) and a motion field (f). We then generate a complete motion field (g) by fusing (c) and (f). The final video frame (h) is created by warping the original frame with (g).

We evaluated our method with some challenging videos captured by a Kinect camera. To avoid the calibration between the color and depth cameras, we used the embedded color camera in Kinect whose calibration is known.

\(C'_t \), we can compute the image coordinates of a 3D point \(p \) in both original and stabilized video frames. The difference between these two coordinates gives a motion vector, which maps a pixel from original video to the stabilized one. Specifically, the motion vector \(v \) for a 3D point \(p \) is obtained by:

\[
v = K R_t[I(t)][O_t(p) - K R'_t[I][O'_t(p)]]
\]

where \(K \) is the camera intrinsic matrix, \(R_t, O_t \) and \(R'_t, O'_t \) are the original and smoothed camera orientation and position respectively. In this way, we obtain a motion field \(M_t^1 \) that covers all pixels with depth measure, as shown in Figure 5 (c).

Motion field from image warping. To fill in missing regions, we take all pixels in the buffer band as control points for the ‘content-preserving’ warping. Basically, we partition the original image into a regular grid. Here we adopt the same energy equation \(E = E_d + \alpha E_s \) described in [9], where \(\alpha \) is the relative weight of data term \(E_d \) and smoothness term \(E_s \). We set \(\alpha = 1 \) in our implementation. The data term \(E_d \) comes from the projected 3D points, we only choose the points located on the boundary of the missing region (green lines of Figure 5 (d) and Figure 6 on the left). Smoothness term \(E_s \) controls the rigidity of the grid. The energy equation can be minimized by solving a sparse linear system. After we get the motion of the grid vertices, the motion of a pixel is then computed by bilinear interpolation of the motion vectors at its four grid vertices. This generates another motion field \(M_t^2 \), which covers all pixels without depth measure and the buffer band as show in Figure 5 (f).

Motion fields blending. We then linearly blend \(M_t^1 \) and \(M_t^2 \) in the buffer band. Specifically, the motion of a pixel in the band is computed by linearly interpolating the motion of its two nearest neighbors at the two sides of the band. As shown on the right of Figure 6, \(A, B \) are two pixels on the two sides of the band with minimum distance \((d_A, d_B \) respectively) to the black pixel in consideration. \(v_A, v_B \) are the motion vectors of \(A \) and \(B \), which are computed from projecting 3D points and image warping respectively. We linearly interpolate these two vectors in the band to blend \(M_t^1 \) and \(M_t^2 \). For example, the motion of the black pixel is computed as

\[
v_B \cdot d_A/(d_B + d_A) + v_A \cdot d_B/(d_A + d_B).
\]

Figure 5 (g) shows the interpolated motion from (c) and (f). Once the motion field is obtained for the whole frame, we use it to warp the original video frame to create the stabilized frame as shown in Figure 5 (h).

5. Experiments

We evaluated our method with some challenging videos captured by a Kinect camera. To avoid the calibration between the color and depth cameras, we used the embedded color camera in Kinect whose calibration is known. All our videos have resolution of \(640 \times 480 \). All comparisons and results are provided in the website.

3 We use OpenNI SDK for our implementation.

4 http://www.ece.nus.edu.sg/stfpage/eletp/Projects/KinectStabilization/
our method respectively. For easy reference, we name these examples in Figure 1 and Figure 9 as ‘Cube’, ‘Boy’. The ‘Cube’ and ‘Boy’ examples showed a nearby scene with sudden depth change, which made the homography based frame registration in [6] fail. Hence, severe geometric distortions were observed in these results (please notice the shear distortion on the first-aid box in the ‘Cube’ example, and on the bookshelf in the ‘Boy’ example). The ‘content-preserving’ warping in [10] is more robust to depth changes. However, the large textureless wall in the ‘Cube’ example had few tracked feature points, which caused wobble effect in the result. (Note that tracked feature points were used as control points for warping in [10].) Similar artifacts were reported in [9] when the image feature points distributed unequally over the image.) Though more feature points can be tracked in the ‘Boy’ example, it was not stabilized well by [10], perhaps because the dynamic scene confused the subspace analysis. In comparison, our method took advantage of the depth and generated better results on these examples.

Figure 7 provides more comparison with 3D stabilization method [10]. The first example of Figure 7 contains severe occlusion, where people walked through and blocked the whole frame. It is challenging for [10] because of tracking failures caused by severe occlusion. The region circled in blue had inconsistent motion in the stabilized video (Please refer to our project website). The second and third example of Figure 7 contain quick camera rotation. This causes shear artifacts on the whole scene. Furthermore, the warping distortion produces a large empty area. Figure 8 shows three examples with severe geometric distortion produced by method [6]. The depth change makes the homography based registration fail. The simple linear model can not describe variations of depth in these scenario. Please notice the shear distortion on the background in Figure 8 (b).

Limitations We observe several limitations of our approach, which point out the direction for future study. First, our method does not consider the rolling shutter effects of both the color camera and the depth camera, which sometimes make the camera motion estimation imprecise and lead to some high frequency jitters in the results. Second, our current implementation is limited to the Kinect camera, which only works in indoor scenes. But we believe the same algorithm can be also applied to time-of-flight cameras in outdoor environments.

6. Conclusion

We study two challenges in video stabilization, namely sudden depth change making 2D motion model imprecise and tracking failure making 3D stabilization fail. We solve these problems with an additional depth sensor, which provides a depth measure for each video frame. We exploit this rough depth information to improve both camera motion estimation and frame warping. Our results show this method is much robust to some challenging cases.
Figure 9. Results on the ‘Boy’ examples. From top to bottom, the four rows are sample frames from (a) original video, (b) stabilized video according to [6], (c) stabilized video according to[10] and (d) our method.

7. Acknowledgement

This work was supported by the Singapore MOE grant R-263-000-555-112 and R-263-000-620-112.

References