Musical Effects of the Digital Pressure Controlled Valve

By
Tamara Smyth
Jonathan Abel
Julius Smith

Center for Computer Research in Music and Acoustics (CCRMA)
Stanford University

148th Meeting of the Acoustical Society of America, San Diego, CA, 15-20 November 2004
Avian Syrinx Model

The Clarinet Reed Model
Outline

• Fletcher’s generalized pressure-controlled valve
• Our generalized model
• Developing the general differential equations for reed displacement and volume flow
• Discretization
• Results using model implemented in Pd
Classification of the Pressure-Controlled Valve

Fletcher uses the couplet \((\sigma_1, \sigma_2)\) to specify the upstream and downstream behaviour of the valve in the presence of additional pressure.

\[\sigma_{1,2} = +1: \text{the valve opens further with a pressure increase}\]

\[\sigma_{1,2} = -1: \text{the valve closes further with a pressure increase}\]
1.

\((-\), +\) The valve is \textbf{blown closed} as in woodwind instrument reeds or reed pipes of the pipe organ.

2.

\((+, -\) The valve is \textbf{blown open} as in simple lip-reed models and the human larynx

3.

\((+, +\) The \textbf{swinging door} or transverse model as in the avian syrinx
Valve displacement:

\[\frac{d^2 x}{dt^2} + 2\gamma \frac{dx}{dt} + \omega_0^2 (x - x_0) = \frac{1}{m} (\sigma_1 p_0 S_1 + \sigma_2 p_1 S_2) + \frac{1}{m} p_1 S_3 \]
Generalized Model
Valve Displacement

\[m \frac{d^2 \theta}{dt^2} + m 2\gamma \frac{d\theta}{dt} + k(\theta - \theta_0) = F \]

Fundamental frequency: \(\omega = \sqrt{\frac{k}{m}} \)
The net force acting on the valve

\[F_m = \omega \lambda_m p_m \quad \quad F_b = -\omega \lambda_b p_b \]

\[F_U = -\omega \mu \left(p_m - \frac{\rho}{2} \left(\frac{U}{A} \right)^2 \right) \]

\[F = F_m + F_b + F_U \]
Discretization

\[m \frac{d^2 \theta}{dt^2} + m2\gamma \frac{d\theta}{dt} + k(\theta - \theta_0) = F \]

Laplace Transform:

\[ms^2 \Theta(s) + mgs \Theta(s) + k \Theta(s) - k\theta_0 = F(s) \]

Bilinear Transform:

Defined by

\[s \rightarrow c \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \]

where \(c = \frac{2}{T} \)
Transfer function:

\[
\frac{\Theta(s)}{F(s) + k\theta_0} = \frac{1 + 2z^{-1} + z^{-2}}{a_0 + a_1 + a_2z^{-2}} = \frac{1}{a_0} \frac{1 + 2z^{-1} + z^{-2}}{1 + \frac{a_1}{a_0}z^{-1} + \frac{a_2}{a_0}z^{-2}}
\]

\[
a_0 = mc^2 + mgc + k
\]
\[
a_1 = -2(mc^2 - k)
\]
\[
a_2 = mc^2 - mgc + k.
\]

Difference equation:

\[
\theta[n] = \frac{1}{a_0} (F_k[n] + 2F_k[n - 1] + F_k[n - 2]) - \frac{a_1}{a_0} \theta[n - 1] - \frac{a_2}{a_0} \theta[n - 2]
\]
Volume Flow

The force on a thin slice dy along the reed is given by

$$F = A(y; x) \Delta p(y)$$

The force is applied to a mass of

$$m = \rho A(y; x) dy$$

Newton’s 2nd law $F = ma$ gives

$$A(y; x) \Delta p(y) = \rho A(y; x) dy \frac{dv}{dt}$$
\[A(y; x) \Delta p(y) = \rho A(y; x) dy \frac{dv}{dt} \]

Since volume flow is equal to particle velocity scaled by area,

\[\Delta p(y) = \rho \frac{dU}{dt} dy / A(y; x) \]

Integrate of the length of the channel to obtain

\[p(0) - p(\mu) = \rho \frac{dU}{dt} \int_{y=0}^{y=\mu} dy / A(y; x) \]

(by Bernoulli’s equation) equal to \(p_b \)
The differential equation governing volume flow is given by

\[
\frac{dU}{dt} = (p_m - p_b) \frac{A(x)}{\nu \rho} - \frac{U^2}{2\nu A(x)}
\]
Feathering the Reed

Recall the differential equation governing airflow:

\[
\frac{dU}{dt} = (\rho_m - \rho_b) \frac{A(x)}{\nu \rho} - \frac{U^2}{2\nu A(x)}
\]
Volume flow approximation when area is small

\[
\frac{dU}{dt} \approx -\frac{U^2}{2\nu A(t)}
\]

is non-linear in \(U(t)\)

Substitute

\[
W(t) = \frac{1}{U(t)}
\]

New differential equation for flow

\[
\frac{dU}{dt} = -\frac{1}{W(t)^2} \frac{dW}{dt}
\]

where

\[
\frac{dW}{dt} = \frac{1}{2\nu A(t)}
\]
Integrate to solve for volume flow

\[U(t) = \left[\frac{1}{U(t_0)} + \frac{1}{2\nu A(t_0)}(t - t_0) \right]^{-1} \]

Backwards difference approximation

\[\frac{dU}{dt} = \frac{U(t_0 + T) - U(t_0)}{T} \]

Small area solution

\[\frac{dU}{dt} = -\frac{U(t_0)^2}{2\nu A(t_0) + U(t_0)T} \]
Small area approximation

\[\frac{dU}{dt} \approx - \frac{U^2}{2\nu A(t)} \]

Small area solution

\[\frac{dU}{dt} = - \frac{U(t_0)^2}{2\nu A(t_0) + U(t_0)T} \]

Leaky Term

The final feathered differential equation for volume flow

\[\frac{dU}{dt} = (p_m - p_b) \frac{A(t_0)}{\nu \rho} - \frac{U(t_0)^2}{2\nu A(t_0) + U(t_0)T} \]
Results

Blown Closed (pm = 55, fr = 619, fb = 220)

Valve Displacement (cm)

Volume Flow (cm³/s)

Time (s)
Implementation in Pd