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Abstract —We develop an interactive analysis and visualization tool for probabilistic segmentation in medical imaging. The originality
of our approach is that the data exploration is guided by shape and appearance knowledge learned from expert-segmented images
of a training population. We introduce a set of multidimensional transfer function widgets to analyze the multivariate probabilistic �eld
data. These widgets furnish the user with contextual information about conformance or deviation from the population statistics. We
demonstrate the user's ability to identify suspicious regions (e.g. tumors) and to correct the misclassi�cation resul ts. We evaluate our
system and demonstrate its usefulness in the context of static anatomical and time-varying functional imaging datasets.

Index Terms —Uncertainty visualization, Medical imaging, Probabilistic segmentation.

1 INTRODUCTION

Medical image segmentation is the procedure of delineating an image
into its constituent structures. Each structure is assigned a semantic
label that characterizes regions with similar anatomical information
(e.g. for 3D magnetic resonance imaging (MRI) or computed tomogra-
phy (CT) images) or similar functional information (e.g. for dynamic
positron emission tomography (dPET) or dynamic single photon emis-
sion computed tomography (dSPECT) images). Image segmentation
is often the precursor to patient diagnosis and treatment evaluation,
which is facilitated through a thorough statistical analysis and quan-
ti�cation aided by a variety of visual tools.

In direct volume rendering (DVR), the transfer function plays the
role of the image segmenter by assigning optical properties (color and
opacity) to different regions in the image. Several methods have been
proposed for transfer function design [13]. The assumption behind
the design of most transfer functions is that the segmentation is done
solely using local features of the dataset currently examined. Those
features might be corrupted due to different image degradation factors,
such as low signal-to-noise ratio (SNR), partial volume effect (PVE),
etc. Thus feature extraction becomes an error-prone process. Further,
the extracted features usually depend on local information and do not
leverage the fact that, in medical imaging, the structures of interest
usually have known but variable global shape and appearance proper-
ties.

In the medical imaging analysis domain, it has been demonstrated
that medical image segmentation techniques can be greatly improved
and made more robust by incorporating prior shape and appearance
knowledge. The prior information can typically be learned from a
training set of images and their corresponding expert segmentations.
The major obstacle of prior-based segmentation is the insuf�cient
availability of expert segmentation samples, which hinders the ability
to accurately capture the large variability in the shape and appearance
of anatomical structures or of functional activity. Further, automated
image analysis methods typically rely on the optimization of a com-
plex energy functional, which encodes multiple competing image or
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prior-driven cost terms, in an attempt to mimic the cognitive capabili-
ties and years of experience of expert users (e.g. radiologists). Conse-
quently, these methods suffer from sensitivity to parameter tuning, en-
trapment into erroneous local minima solutions, and a heavy demand
for computational resources. Furthermore, the prior models employed
are typically built from healthy subjects, which renders the automatic
detection of suspicious pathological regions (with unexpected shape,
appearance, or function) quite challenging. It is, therefore, undeniable
that a fully automatic segmentation algorithm, that is not only fast and
accurate but also robust to the vast variability and pathology, is still be-
yond our reach. We advocate that involving the user in exploring and
re�ning the segmentation is unavoidable. We further argue that the
user should not only be focusing on the case under study, but rather be
granted with supplementary information that places the studied case
in the context of the population, i.e. how it conforms or deviates from
the data and analyses resulting from a corpus of training data.

The primary technical contribution of this work is the design of a set
of multidimensional transfer function widgets, which utilize the infor-
mation obtained from a probabilistic segmentation technique, as well
as the probabilistic prior information learned from previous expert seg-
mentations. Going beyond the use of simple likelihood information
([27], [30] and [46]), we adopt a Bayesian framework to incorporate
more informative priors (than the simple uniform prior) for both shape
and appearance as learned from expert-segmented images of a training
population. We further explore the relationship between the likelihood
and prior terms to allow for the identi�cation of regions of disagree-
ment with the prior. Those regions are potentially the result of mis-
classi�cation, in which case the user can edit the result and provide a
satisfactory, correct result. Alternatively, those regions might be suspi-
cious or pathological (e.g. tumors), which must then be highlighted in
order to draw the user's attention to them and react appropriately. Our
tool, geared toward research clinicians, will allow the user to explore
the uncertainty in the resulting segmentation with respect to the pop-
ulation. In addition, medical image analysis researchers can use this
tool to analyze the behavior of their probabilistic segmentation algo-
rithms, in an effort to improve their performance (e.g. by altering the
underlying energy functional, improving the optimization mechanism,
etc.).

2 RELATED WORK

2.1 Segmentation techniques

Medical image segmentation techniques can be classi�ed into auto-
matic and interactive methods. The so called automatic methods still
require parameter setting and initialization, but their core operation is
automated and the user is not capable of intervening during the seg-
mentation. When the results are unsatisfactory, the user resets the pa-
rameters and/or updates the initialization, then re-runs the automatic
algorithm. We will limit our discussion of related work to the class



of interactive methods. Three main forms of user input have been
adopted for interactive segmentation [37], which entail (1) specifying
a nearby complete boundary that evolves to the desired boundary (e.g.
the classical Snakes algorithm [24] and the plethora of variants [33]);
(2) specifying a small set of voxels belonging to the desired boundary,
followed by the application of minimal path techniques to extract the
complete boundary (e.g. Intelligent Scissors [36, 2] and 3D Live-wire
[39]); or (3) specifying a small set of voxels belonging to the core of
different regions to overcome the limitation of the ill-de�ned bound-
aries (e.g. using Graph Cuts [4] or Random Walker [17]), followed by
some optimal labelling of all unlabelled voxels.

The framework proposed in this paper is independent of the partic-
ular segmentation technique as long as it provides probabilistic seg-
mentation results, similar to those that employ Gaussian mixture mod-
els [51], the Random Walker method [17], the probabilistic support
vector machine approach [38], or a variant of graph cuts [28].

The main building block of segmentation algorithms is the ability
to assess data values at every voxel (e.g. intensity, gradient, texture,
or other features) in an attempt to label the voxel with a particular
class label. Typically, adopting a voxel-wise decision (independent of
other voxels) is sensitive to noise and may result in irregular object
boundaries or holes and islands in the segmentation result. Therefore,
regularization approaches make up the second building block of seg-
mentation algorithms, which are employed to favour smooth segmen-
tation. As medical image modalities are often corrupted by different
types of degradation, e.g. low SNR, PVE, and patient motion artifacts,
incorporating prior knowledge about the segmented objects becomes
necessary to disambiguate the raw data during segmentation. Hence, a
third building block is incorporated into segmentation methods, which
is essentially designed to favour segmentations belonging to a particu-
lar object class.

One of the important algorithms incorporating prior knowledge is
the seminal work of active shape model by Cootes et al. [7]. Here, co-
herently placed landmark points on all the training contours are used
to reduce the number of degrees of freedom of the principal modes of
variation during principal component analysis (PCA). A point (land-
mark) distribution model is thus created that captures the variability
observed in the training set. Although successfully applied to vari-
ous types of shapes (hands, faces, organs), the reliance on a param-
eterized representation and the manual positioning of the landmarks,
particularly tedious in 3D images, seriously limited the applicability
of this method. To circumvent the need for landmarking, Leventon et
al. [29] performed PCA on the signed distance functions of the set of
training shapes. The resulting statistical shape model was then inte-
grated into a geodesic active contour framework. The result was an
energy-minimizing segmentation method, requiring initialization and
parameter setting to balance the contributions of different cost terms.
Cremers et al. [10] introduced a nonlinear shape prior based on kernel
PCA under the assumption that the training data forms a Gaussian dis-
tribution following a nonlinear mapping to a high-dimensional feature
space. In general, segmentation techniques that incorporated a shape
prior required the projection of the current estimate of the segmen-
tation surface into the plausible shape space learned from a training
set. The iterative nature increases the computational demand of these
algorithms and therefore renders them unsuitable for interactive explo-
ration.

In applications where there is no well-de�ned relationship between
low level information associated with a voxel (e.g. intensity or gra-
dient) and the label that should be assigned to the voxel, a comple-
mentary approach for incorporating prior knowledge is adopted. The
weak relationship between voxel data and the label assignment is fairly
obvious when we remember that we often seek to labelanatomical
structuresrather thantissue types. For example, different structures
composed of the same tissue (e.g. different bones) cannot be distin-
guished from one another by merely looking at their intensity values in
an image. What distinguishes these structures instead is their location
and their spatial relationship to other structures. In such cases, spatial
information (e.g. neighborhood relationships) must to be taken into
consideration and included in the segmentation process. A common

embodiment of such relationships is through what is called anatlas.
Similar to how the world atlas captures geographical locations of and
border relationships between countries, an anatomical atlas captures
the locations and shapes of anatomical structures, and the spatial rela-
tionships between them. An anatomical atlas can, for example, be gen-
erated by manually segmenting one image. It can also be obtained by
integrating information from multiple segmented images, for example
from different individuals, yielding a probabilistic description rather
than a crisp one. Given an atlas, an image can be segmented by map-
ping its coordinate space to that of the atlas in an anatomically correct
way, a process commonly referred to as (atlas-to-image) registration.
Labeling an image by mapping it to an atlas is consequently known
as atlas-based segmentation, or registration-based segmentation [44].
Collins et al. [6] introduced an automated procedure called ANIMAL
(Automatic Nonlinear Image Matching and Anatomical Labeling) to
objectively segment gross anatomical structures from 3D MR images
of normal brains. The procedure is based on a nonlinear registration
of the novel image with a previously labeled target brain, followed by
applying a numerical inverse transformation of the labels to the native
MRI space. Baillard et al. [1] employed an automatic registration of
the current image to a reference pre-segmented image to initialize the
evolution of a level-set surface as an alternative solution to manual ini-
tialization. Atlas images rely largely on building intensity and shape
priors from datasets of healthy subjects. In general, the suspicious
regions, which are typically of greater interest than normal-behaving
regions, are dif�cult to identify since they come from the more chal-
lenging pathological cases. These pathological cases usually do not
have well-de�ned models. The core goal of this paper is to identify
and highlight those regions which disagree with the prior in terms of
either their shape or their appearance.

2.2 Transfer functions in volume visualization

In the visualization community, volumetric segmentation is chie�y ob-
tained through the application of transfer functions. Different methods
have been proposed for transfer function design in direct volume ren-
dering [13]. For 3D medical volumes, data-driven features such as
grey-level intensity, gradient values [26], curvature [25], spatial in-
formation [43, 31], and the occlusion spectrum [9] are represented
as multidimensional histograms. Also, transfer functions play an im-
portant role in visualizing time-varying datasets [21, 15]. To perform
the segmentation using transfer functions, the user is required to iden-
tify different regions in the feature space, which might be challenging
when the data under study is noisy or the anatomical structures within
are rather complex. Tzeng et al. [50] used ISODATA hierarchical
clustering to classify the volumetric data and later [49] incorporated
an arti�cial neural network and a support vector machine as a super-
vised learning mechanism for high quality classi�cation. As a super-
vised learning algorithm, only a small number of voxels was used for
training and all the remaining voxels were used as a test set. Thus,
a longer interaction time is needed for complex structures. Blaas et
al. [3] introduced interactive dynamic coordinated views to facilitate
the exploration of multi�eld medical datasets using pattern classi�ca-
tion and clustering approaches. A major assumption behind most of
the transfer function widgets for medical imaging is that the low-level
image information (e.g. intensity, gradient, curvature, etc.) is suf�-
cient to identify different objects of interest. Low level information
is usually not enough to precisely identify complex objects under the
different image degradation factors. Further, editing the classi�cation
result in all previous algorithms is solely based on user knowledge
of the data with no guidance to enhance the classi�cation result more
quickly. Recently, Praßni et al. [40] introduced a shape-based transfer
function that assigns skeleton regions to one of three primitive classes:
tube, blob, or surface. Our method is different from [40] in that we try
to model the whole global shape observed in the training set instead of
primitive smaller shapes.

2.3 Uncertainty visualization

Uncertainty visualization is considered one of the top visualization re-
search challenges [22]. Few research papers tackled the problem of



visualizing the classi�cation uncertainty given a probabilistic segmen-
tation result. Kniss et al. [27] proposed a Bayesian risk minimization
framework, in which the �nal classi�cation can be altered by chang-
ing the risk of each class instead of applying the maximum-a-posteriori
(MAP) estimate directly on the probabilistic result. Lundström et al.
[30] applied different animation schemes to convey the uncertainty at
each voxel obtained from the likelihood information. Recently, Saad
et al. [46] allowed the user to visualize different tissue relationships
by analyzing the probabilistic �eld. Although we consider the meth-
ods of Kniss et al. [27], Lundström et al. [30] and Saad et al. [46]
to be the closest works to our contribution, we differ in several as-
pects: From a Bayesian perspective, instead of only trying to explore
the likelihood information and considering a uniform prior, we incor-
porate more informative prior for both shape and appearance learned
from expert-segmented images of a training population. Further, we
explore the relationship between the likelihood and prior terms to al-
low the identi�cation of regions of disagreement with the prior. Those
regions might be the result of misclassi�cation and in that case we
allow the user to correct it. Alternatively, they might be suspicious
regions (e.g. tumors) that need to be brought to the user's attention.

Few papers tackled the segmentation editing problem [37]. This
is partly due to the fact that scienti�c publications on segmentation
mostly emphasize the automatic part while necessary manual correc-
tions are considered �aws in the automated process. Kang et al. [23]
introduced a set of 3D segmentation editing tools based on morpho-
logical operators for hole �lling and surface editing. The introduced
tools required a good segmentation to start with. Grady et al. [18]
formulated the editing task as an energy minimization problem. The
user-supplied seeds, the pre-segmentation, and the image content all
impacted the resulted edited segmentation. Our proposed approach
is different from those methods in that we operate on the probabilis-
tic �elds instead of the crisp labelling. We leverage the uncertainty
encoded into the segmentation results to highlight those problematic
regions that need more attention from the user. For the �rst time, in
this work, we also incorporate the uncertainty information from the
disagreement with the learned prior to guide the user in the editing
process.

3 METHOD

Our framework consists of two main stages: atlas construction and
segmentation uncertainty interaction. In the of�ine (i.e. no user in-
teraction needed) atlas construction stage, we construct two 2D log
histograms: (i) likelihood versus shape prior and (ii) likelihood versus
appearance prior using the information from expert-segmented images
of a training population. In the second stage, the user can select vox-
els of those histograms satisfying some meaningful pattern (as we will
detail later). In order to localize the effect of the analysis in the spatial
domain, the user speci�es an axis-aligned region of interest (ROI) us-
ing sliders. The interactive brushing and linking technique [5] is used
to connect the information represented into the two 2D histograms.
The selected voxels are automatically and interactively highlighted in
2D and 3D DVR. Furthermore, the user may correct any misclassi-
�cation by editing the probability �eld. This exploration process is
iterative, where the user can highlight or edit different regions once or
multiple times. Fig 1 shows an overview of the proposed work�ow.

Our framework is constructed based on the Bayesian decision the-
ory, a fundamental statistical approach to the problem of pattern clas-
si�cation [12]. This probabilistic approach is based on quantifying the
tradeoffs between various classi�cation decisions and the costs that
accompany such decisions. Bayes' formula relates the likelihood of a
particular decision (or classi�cation) given the current observed fea-
tures with the prior information about the classes involved in the deci-
sion. In the context of image segmentation, Bayes' theorem is formu-
lated as follows

P(Ci jX;F) =
P(X;FjCi)P(Ci)

å K
i= 1P(X;FjCi)P(Ci)

: (1)

whereX is a spatial location inÂ 3 (i.e. X = [ x y z] ) and F is a

feature vector associated withX that can be constructed from inten-
sity, gradient, time activity curve information, or other data-derived
features. P(X;FjCi) represents the likelihood term ofX and F be-
longing to classCi out of K classes. P(Ci) represents the prior
term, which models our knowledge about classCi . P(Ci jX;F) rep-
resents the posterior probability term, which captures the relation-
ship between the likelihood of a particular class assignment toX
given the data-derived features associated withX and the prior terms.
å K

i= 1P(X;FjCi)P(Ci) represents the evidence, which acts as a nor-
malization factor guaranteeing thatå K

i= 1P(Ci jX;F) = 1. The vector
of probabilities [P(C1jX;F);P(C2jX;F); � � � ;P(CK jX;F)] calculated
at each voxelX makes up the probabilistic segmentation �eld. The
typical approach for obtaining a crisp classi�cation from a probabilis-
tic result is by applying the maximum a posteriori (MAP) Bayesian
principle [12], where we assign a voxel atX to the �rst best guess
(FBG) class with the maximum posterior probability. Formally, the
FBG class is

FBG(X) = argmax
i2K

P(Ci jX;F): (2)

and the corresponding FBG probability is given by

PFBG(X) = max
i2K

P(Ci jX;F): (3)

In the visualization community [27, 30, 46], the conditional like-
lihood probabilityP(X;FjCi) term is the decisive factor in obtaining
the �nal classi�cation (i.e. maximum likelihood estimation). Thus,
the prior term is usually assumed to be uniform and identical across
classes, i.e.P(Ci) = 1

K . In this paper, we construct informative pri-
ors guided by shape and appearance knowledge learned from expert-
segmented images of a training population.P(Ci ;X) captures the
shape prior parameterized by the spatial locationX, i.e. even before
the image data is collected, every positionX has a particular likeli-
hood of being assigned to each class. These a priori probabilities are
typically assigned to a template (e.g. a template brain) forming what
we refer to as a probabilistic atlas in Sec. 3.1 [48, 14, 32].P(Ci ;F)
represents the appearance prior parameterized by the feature vector
F. We assume that the likelihood termP(X;FjCi) is obtained from
a probabilistic segmentation technique, such as Zhang et al. [51] or
Grady [17].

In atlas-based segmentation [44], an energy functional is con-
structed from the likelihood and the prior terms by taking the log of
Eq. 1,

E(Ci) = log(P(X;FjCi)) + l (X) log(P(Ci)) (4)

where l (X) is introduced as a weighting factor between different
terms. The denominator termP(X;F) is ignored in the energy func-
tional construction as it does not depend on the unknown class. This
typically results in a dif�cult optimization problem with a complex en-
ergy landscape, i.e. numerous local minima. To minimize the number
of unknowns to be optimized, the weighting factor is taken to be spa-
tially invariant, i.e.l (X) = l , and is usually set empirically based on
trial and error, training data, or contextual information [34, 16, 42].
Also, P(Ci) is further decomposed into multiple terms (i.e.P(Ci ;X)
and P(Ci ;F)) capturing different prior information and, hence, in-
creasing the complexity of the optimization problem.

In this work, we construct the likelihood and prior terms indepen-
dently using standard techniques in the medical image analysis liter-
ature as shown in the subsequent sections. This step is usually per-
formed of�ine, where there is no user interaction required, allowing
the incorporation of computationally expensive techniques. In the on-
line stage, instead of attempting to automatically solve a complex op-
timization problem to balance the weights between the likelihood and
prior terms, a route plagued with dif�culties, we allow the user to vi-
sually explore the information encoded into those terms; the chief con-
stituents of the objective function.

3.1 Shape prior modeling

In order to construct the shape priorP(Ci ;X) from the training images,
a training set of images (e.g. gray-level MRI) containing the object of



Fig. 1. Shape and appearance probabilistic priors are built from expert-segmented images of a training population. The class likelihood information
is obtained from probabilistic segmentation techniques. 2D histogram widgets are used to explore the relationship between the likelihood and prior
terms to allow for the identi�cation of regions of disagreem ent with the prior. Those regions are potentially the result of misclassi�cation, in which
case the user can edit the result and provide a satisfactory, correct result. Alternatively, those regions might be suspicious or pathological (e.g.
tumors), which must then be highlighted in order to draw the user's attention to them and react appropriately.

interest is collected. In addition, the training set would include data
representing the expert segmentation of those images. The segmenta-
tions are typically provided in the form of binary images (also called
characteristic functions) capturing the shape (and size, location, and
rotation) of the object of interest. The binary shape images are then
brought into alignment by applying translation, rotation, and scaling
mapping them into a common coordinate frame of reference (i.e. re-
moving variability due to pose and retaining only shape variability). A
suitable shape model should represent the detailed shape information,
be able to model possible shape variations and re�ect the shape vari-
ability on a local scale (i.e. at each voxel position) which is suitable
for the proposed interaction technique. In this work, we take as an
input any form of shape prior as long as it provides probabilistic re-
sults. The Active Shape Model [7] provides only a global view of the
shape variability through PCA and requires a correspondence between
landmarks in training images. Hence, we adopt the method proposed
recently by Hamarneh and Li [19], who introduced a modi�cation of
the idea of a probabilistic atlas by incorporating additional information
derived from the distance transform. The probability value at each
voxel positionX is proportional to the number of shapes containing
(or enclosing)X after alignment. The distance transform accounts for
possible shape variability unseen in the training images by giving the
voxels outside the training shapes non-zero probability. First, a shape
histogramSH(X) is obtained by adding the values (0 or 1) of corre-
sponding voxels of the set of aligned binary shape images.SH(X) is
then normalized to have a maximum value of 1. We use the shape
histogramSHand the distance transform to build a probabilistic shape
prior P(Ci ;X) as follows,

P(Ci ;X) =
�

s2 + s1 � SH(X) if X 2 W
s2 � (1� DIST(X)) otherwise

�
(5)

whereW is the set of nonzero pixels in the shape histogramSH.
DIST(X) is the normalized Euclidean distance transform for the bi-
nary image havingW as foreground. The two scalars,s1 ands2, sat-
isfy s1 + s2 = 1 and determine the weight of the shape information
when constructing the probability map. Throughout the paper, we used
s1 = 0:9 ands2 = 0:1.

3.2 Appearance prior modeling

In addition to capturing shape variation information from the expert-
segmented binary images, we model the appearance knowledge from
the intensity patch of the object of interest in the training set of images
(e.g. the gray level intensity values in an MR image, the Houns�eld
units in a CT scan, or the time activity curves (TAC) in a dPET or
dSPECT image). In medical images, anatomical structures and func-
tional regions have characteristic intensity features that can be utilized
when locating similar structures in new images.

Given the feature vectorF of lengthn from all the training images,
we need to build a probabilistic appearance model. Unlike the Ac-
tive Appearance Model [8], which provides a global view of the whole
object appearance, we need to model the probability distribution func-
tion of the feature vectors at every position within the training images.
In this work we model this distribution using a multivariate Gaussian.
Despite its simplicity, it is fast to compute and requires a few num-
ber of model parameters to be stored during the user interaction. Our
framework can accommodate more elaborate but computationally ex-
pensive techniques such as non-parametric kernel density estimation
[12] or support vector machine for density estimation [35]. We con-
struct a multivariate Gaussian distribution as follows

P(Ci ;F) =
1

(2p)
n
2 det(Si)

1
2

exp(�
1
2

(F � mi)
TS� 1

i (F � mi)) ; (6)

wheremi andSi are then� 1 sample mean vector and then� n sample
covariance matrix of the observed features of classCi in the training
set, respectively. The superscriptT and det(.) denote matrix transposi-
tion and determinant, respectively.

3.3 Atlas to new image registration

Given a new image to be analyzed, we �rst perform an af�ne registra-
tion to bring this image into the coordinate frame of the atlas (i.e. the
common frame of reference of all the aligned training images). Then,
we average all the aligned training images (e.g. the gray level MRIs)
to obtain a population representative image. The resulting transforma-
tion from registering the population representative image to the new
image is applied to the shape priorP(Ci ;X). This is an important step



Fig. 2. Synthetic example. a) piecewise constant image, b) blurred with
a Gaussian kernel, c) Gaussian noise added.

performed to ensure that the new image coordinates are mapped onto
those of the atlas. Note that this step is applied of�ine (i.e. no user
intervention required) while the image is stored on a data server which
is common in a hospital setting.

3.4 Algorithm demonstration using a synthetic example

We introduce a synthetic example that is simple enough to convey the
main ideas of our approach while still comprehensive enough to simu-
late the common image generation models and degradation in medical
imaging [4]. A grey-level image of size 128� 128 consists of one
disk region representing one material in addition to the background.
We start with a piece-wise constant model in each region with grey
level value 30 while the background receives the grey level of zero
(Fig 2(a)). We blur the image with a rotationally symmetric Gaussian
lowpass �lter of size 30� 30 pixels with standard deviation 3 pixels
(Fig 2(b)). Gaussian noise is then added with a variance of 4 (Fig 2(c)).

We generate a population of 100 images similar to Fig 2(c) but with
different noise realizations. The disk center for each image has been
randomly translated in thex andy directions with a random amount of
up to� 2 pixels using a normal distribution with mean 0 and standard
deviation 2. Fig 3(a) shows the normalized histogram of the popula-
tion. Fig 3(b) shows the normalized distance transform havingW (cf.
Eq. 5) as foreground. Fig 3(c) shows the shape prior after applying
Eq. 5.

(a) (b) (c)

Fig. 3. Synthetic example of shape prior modeling. a) Normalized
shape histogram SH where the intensity represents the number of
shapes constructed by adding the values (0 or 1) of corresponding vox-
els of the set of aligned binary shape images, b) Normalized distance
transform image having W as the foreground. The intensity represents
the Euclidean distance from the boundary, c) Shape prior map where
the intensity represents P(Ci ;X) (Eq. 6).

In order to model the appearance of the training set, we consider
only grey-level intensity, i.e.n = 1 (cf. Eq. 6). Fig 4 shows the Gaus-
sian �tting of the intensity histogram for the image population. Fig 5
shows different segmentation cases that vary from normal shape and
appearance case (Fig 5(a)): An abnormal shape case (Fig 5(b) and
Fig 5(c)), an abnormal appearance case (Fig 5(d)) and both abnor-
mal shape and appearance case (Fig 5(e)). We segment all the images
shown in Fig 5 with a mixture of two Gaussians centered at the known
means of the two main regions with variance of 56 to account for the
PVE. The mixture of Gaussians assumption is supported by the inten-
sity histogram of Fig 6(a), which clearly shows a mixture of Gaus-
sians. Fig 6(b) shows the unnormalized mixture of Gaussians used in
the segmentation process, where the x-axis represents the grey level
value and the y-axis is the probability for each region marked with a
distinct color. Fig 6(c) shows the normalized version of the mixture

when the probabilities sum to 1. The normalized probabilities will be
the actual output of a probabilistic segmentation algorithm which is
the basis of the likelihood term. Note that the intensity range of the
suspicious region representing the appearance abnormality in Fig 5(d)
and Fig 5(e) falls in-between the intensity ranges of the two main ma-
terials.

Fig. 4. Synthetic example appearance prior modeling. It shows the
intensity histogram of the pixel contained inside the object of interest.
The �tted Gaussian is shown in solid red.

Fig. 5. Synthetic example segmentation cases. a) normal case. b) ab-
normal shape case. c) abnormal shape case. d) abnormal appearance
case. e) abnormal shape and appearance.

(a) (b) (c)

Fig. 6. a) Grey level histogram shows a mixture of Gaussians, b)
unnormalized mixture of Gaussians used to segment the images in
Fig 5, c) normalized mixture of Gaussians represents the likelihood term
P(X;FjCi ). The red bar represent the intensity value of the a small sus-
picious, tumor-like region shown in Fig 5(d) and Fig 5(e).

Fig 7 shows the analysis of the proposed histograms with respect to
the segmentation result of the image shown in Fig 5(a). It demon-
strates the expected patterns in the histogram in the normal cases
where the likelihood information mostly agrees with the prior infor-
mation. Fig 7(c) shows the maximum likelihood estimate results for
the normal case. Fig 7(a) shows the likelihood vs the shape prior.
There is a strong correlation between the likelihood and shape prior
where the likelihood result Fig 7(c) agrees with the shape prior map
Fig 3(c). Fig 7(b) shows the likelihood vs the appearance prior. There
is an agreement between the two but not as strong as the shape prior
due to the additive noise nature and partial volume effect along the ob-
ject boundaries that will be demonstrated in the third and forth rows of
Fig 7. The second row of Fig 7 shows the selection of the voxels with
high shape prior while selecting the whole appearance prior range. It
shows that the whole disk is captured. The third row of Fig 7 shows the
selection of a high shape prior in combination with a high appearance
prior capturing the core of the organ as shown in Fig 7(i). The last
row of Fig 7 shows the selection of a high shape prior in combination
with a low appearance prior capturing the boundary voxels which suf-
fer mainly from the partial volume effect as well as some noisy pixels
in the center of the object.



Fig 8 shows the analysis of the proposed histograms with respect
to the segmentation result of the image shown in Fig 5(b). A strong
pattern is observed in the likelihood vs shape prior histogram. It shows
a number of voxels with a high likelihood belonging to the object of
interest while disagreeing with the shape prior information. Selecting
those voxels in Fig 8(b) reveals a shape abnormality not observed in
the training set (Fig 8(d)).

Fig 9 shows the analysis of the proposed histograms with respect
to the segmentation result of the image shown in Fig 5(c). An abnor-
mal pattern is observed in the likelihood vs shape prior histogram. It
shows a number of voxels with low likelihood belonging to the object
of interest while strongly agreeing with the shape prior information.
Selecting those voxels in Fig 9(b) reveals a shape abnormality not ob-
served in the training set (Fig 9(d)).

Fig 10 shows the analysis of the proposed histograms with respect
to the segmentation result of the image shown in Fig 5(d). A strong
abnormal cluster is observed in the likelihood vs appearance prior his-
togram while the shape prior looks normal with strong agreement with
the likelihood. It shows a number of voxels with high likelihood be-
longing to the object of interest while disagreeing with the appearance
prior information. Selecting those voxels in Fig 10(c) reveals an ap-
pearance abnormality not captured by the likelihood information only.

Fig 11 shows the analysis of the proposed histograms with respect
to the segmentation result of the image shown in Fig 5(e). A strong
abnormal cluster is observed in both histograms. It shows a number
of voxels with high likelihood belonging to the object of interest while
strongly disagreeing with the shape and appearance prior information.
Selecting those voxels in Fig 11(b) and Fig 11(c) reveals an abnormal
behavior in both shape and appearance.

4 RESULTS

In this section, we demonstrate the effectiveness of our framework
in analyzing and visualizing different probabilistic segmentations of
static and time-varying medical imaging datasets. We will show how
we can highlight suspicious regions according to the mismatch with
the shape and appearance prior learned from a training set.

4.1 Brain dynamic PET study

In dPET imaging, a series of 3D images are reconstructed from list-
mode data obtained by Gamma coincidence detectors. Kinetic mod-
eling is the process of applying mathematical models to analyze the
temporal tracer activity, in order to extract clinically or experimen-
tally relevant information. We will analyze the probabilistic segmen-
tation result obtained from the application of a kinetic modeling based
probabilistic K-means algorithm [47]. The 4D [11C] Raclopride dPET
dataset size is 128� 128� 63 with 26 time steps and has a voxel size
of 2:11� 2:11� 2:42 mm3. The dataset is segmented into six regions
(K = 6): background, skull, white matter, grey matter, cerebellum and
putamen. It is clear from Fig 12(a) that the dataset is suffering from
low SNR as well as severe PVE in contrast with a typical structural
MRI image (Fig 12(b)). These degradations cause K-means clustering
to overestimate the putamen (Fig 12(c) and Fig 12(d)) where a large
number of voxels from the surrounding structures have been misclas-
si�ed as putamen. Fig 12(e) shows the ground truth segmentation with
anatomical labels of the putamen. Accurate segmentation of the puta-
men is crucial for the diagnosis of Parkinson's disease. Fourteen ex-
pert segmented dPET datasets with the putamen delineated have been
used in the training stage. Fig 13 shows different putamen structures
of 4 different patients from the training set. Fig 14 shows how the in-
teraction with the likelihood vs the shape prior histogram can reveal
the misclassi�cation results witnessed in Fig 12(d). The upper row
shows the voxels corresponding to the selection on the bottom row
histograms. The histograms in the bottom row show a large number of
voxels disagreeing with the shape prior (i.e. having a low shape prior
value). Fig 14(e), (f) and (g) include all the voxels having the putamen
as the FBG whereas Fig 14(h) includes all the voxels. Selecting the
voxels as shown in Fig 14(h) demonstrates that we can recover �ner
details that were not possible in Fig 14(c) (i.e. caudate nucleus) or
using ProbExplorer [46].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7. Analysis of the normal case segmentation of the image shown in
Fig 5(a). It demonstrates the patterns observed in the histogram when
analyzing normal behavior.

(a) (b) (c) (d)

Fig. 8. Analysis of the abnormal shape case segmentation of the image
shown in Fig 5(b). It shows a number of voxels with high likelihood
belonging to the object of interest while disagreeing with the shape prior
information. Selecting those voxels reveals a shape abnormality not
seen in the training set.

(a) (b) (c) (d)

Fig. 9. Analysis of the abnormal shape case segmentation of the image
shown in Fig 5(c). It shows a number of voxels with low likelihood be-
longing to the object of interest while strongly agreeing with the shape
prior information. Selecting those voxels reveals a shape abnormality
not seen in the training set.



(a) (b) (c) (d)

Fig. 10. Analysis of the abnormal appearance case segmentation of
the image shown in Fig 5(d). It shows a number of voxels with high
likelihood belonging to the object of interest while disagreeing with the
appearance prior information. Selecting those voxels reveals an appear-
ance abnormality not captured by the likelihood information only.

(a) (b) (c) (d)

Fig. 11. Analysis of the abnormal shape and appearance case seg-
mentation of the image shown in Fig 5(e). It shows a number of voxels
with high likelihood belonging to the object of interest while strongly dis-
agreeing with the shape and appearance prior information. Selecting
those voxels reveals a shape and appearance abnormality.

In order to quantitatively evaluate the segmentation accuracy given
the availability of the ground truth segmentation, we calculated the
Dice similarity coef�cient [11] to measure the overlap between a seg-
mented region and ground truth, with a value of 1 corresponding to a
perfect overlap. We were able to increase the Dice similarity coef�-
cient from 0.32 in Fig 14(a) to 0.65 in Fig 14(c) and 0.75 in Fig 14(d).

The results shown in Fig 15 are obtained in a fashion similar to
Fig 14. However, here a more accurate but more computationally
expensive probabilistic segmentation algorithm was used [45]. We
note that the original segmentation in Fig 15(a) is better than that in
Fig 14(a). Nevertheless, we can improve it further without rerunning
the segmentation algorithm. The Dice similarity coef�cient increases
from 0.6 in Fig 15(a) to 0.75 in Fig 15(c).

4.2 Brain MRI study

The following study shows a simulated probabilistic �eld from the
BrainWeb database with 20 MR brain images of normal subjects1. The
probabilistic segmentation �elds were used to obtain the shape prior
probability. A novel MR image containing a brain tumor (obtained
according to [41]) is segmented producing the likelihood probability
�eld. Fig 16 shows the analysis result of the white matter structure.
Fig 16(a) shows the isosurface of the maximum likelihood where the
tumor is not immediately visible. Fig 16(b) shows the likelihood vs
the shape prior where a signi�cant number of voxels show high shape
prior while having low likelihood probability. Selecting and highlight-
ing those voxels reveal the pathological and clinically-veri�ed tumor
voxels. Fig 17 shows the results of analyzing the grey matter instead
of the white matter to reveal the tumor which was not possible using
only the maximum likelihood information in Fig 17(a).

4.3 Renal dynamic SPECT study

A renal dynamic SPECT study results in a time series of 3D im-
ages. From these images, the clinician's goal is to extract informa-
tion about the spatio-temporal behavior of a radioactive tracer (e.g.
99mTc� DTPA), which in turn is used to assess the renal system func-
tion. We used a 4D image of size 64� 64� 64 with 48 time steps with
isotropic voxel size of 2 mm. A 2D coronal slice is shown in Fig 18(a).

1http://www.bic.mni.mcgill.ca/brainweb/

(a) (b)

(c) (d)

(e)

Fig. 12. Dynamic PET case study showing misclassi�cation re sults for
the putamen structure. a) 2D axial slice out of the 4D dataset showing
low SNR and PVE, b) Typical structural MRI image, c) DVR, d) overesti-
mated putamen, e) ground truth segmentation with anatomical labeling.

(a) (b)

(c) (d)

Fig. 13. Dynamic PET training shapes with ground truth segmentation
of the putamen structure. a) patient2, b) patient6, c) patient10 and d)
patient15.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 14. User-interaction with the proposed likelihood vs shape 2D histograms for a dPET data. It shows how the emphasis on the shape prior,
by including only the voxels with high shape prior, from left to right allows the recovery of the correct putamen from the misclassi�cation results.
The upper row shows the voxels corresponding to the selection on the bottom row histograms. The histograms in the bottom row show a large
number of voxels disagreeing with the shape prior (i.e. having a low shape prior value). e), f) and g) include all the voxels having the putamen as
the FBG, whereas h) includes all the voxels. It shows that we can recover �ner details that were not possible in c) (i.e. caud ate nucleus) or using
ProbExplorer [46].

(a) (b) (c)

(d) (e) (f)

Fig. 15. The results shown here are obtained in a fashion similar to Fig 14. However, here a more accurate but more computationally expensive
probabilistic segmentation algorithm was used [45]. We note that the original segmentation in Fig 15(a) is better than that in Fig 14(a). Nevertheless,
we can improve it further without rerunning the segmentation algorithm.



(a) (b)

(c)

Fig. 16. BrainWeb white matter analysis. a) The isosurface of the
maximum likelihood, b) likelihood vs shape prior and c) highlighting the
voxels with disagreement between the shape prior and likelihood reveals
the tumor location.

In dSPECT, a segmentation of the the kidney shape is easily obtained
[20]. The key factor of discovering abnormalities is the appearance of
the TACs inside the kidney. Thus, we analyze the likelihood vs. the
appearance prior of the TACs unlike the likelihood vs. the shape prior
(Sec. 4.2 and Sec. 4.1). The appearance prior was calculated based
on kidney TACs obtained from normal subjects using Eq. 6 whereF
is taken to be the TAC at each voxel. In order to construct the likeli-
hood probability, we blur a crisp manual segmentation of the kidney
with a Gaussian kernel to obtain a probabilistic �eld. Fig 18(b) shows
an isosurface rendering of the maximum likelihood. By analyzing the
likelihood vs appearance prior histogram (Fig 18(c)), we can see that
there are some voxels with disagreement between the appearance prior
and the likelihood. Highlighting those voxels reveals an abnormal be-
havior of the lower third part of the left kidney. The small abnormality
in the right kidney was veri�ed to be a result of the PVE which results
in low appearance prior probabilities. These results were clinically
veri�ed [20].

5 CONCLUSION AND DISCUSSION

In this paper, we presented a framework for the analysis and visualiza-
tion of probabilistic segmentation results guided by shape and appear-
ance knowledge learned from expert-segmented images of a training
population. We showed how the disagreement between the likelihood
terms and the shape and appearance priors can reveal regions of mis-
classi�cation and abnormal behavior. We demonstrated the ef�ciency
of the algorithm in the context of segmenting multiple simulated and
real medical image datasets.

Our focus was based on a single structure atlas, we plan to investi-
gate the effect of multiple atlases modeling multiple structures. This
will allow us to take the structures' relationship into account when
analyzing the segmentation results.
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(a) (b)

(c) (d)

Fig. 17. BrainWeb grey matter analysis. It demonstrates the tumor de-
tection process by highlighting the voxels with disagreement between
the likelihood and the shape prior. a) Isosurface of the maximum like-
lihood, b) voxel selection, c) DVR, d) changing the opacity to highlight
the tumor voxels.

(a) (b)

(c) (d)

Fig. 18. dSPECT case study with abnormal renal behavior in the lower
third part of the left kidney. a) 2D coronal slice out of the 4D dataset,
b) the isosurface of the maximum likelihood, c) likelihood vs appearance
prior histogram, d) selection of disagreement between the likelihood and
appearance reveals abnormality in the lower third part of the kidney. The
small abnormality in the right kidney was veri�ed to be a resu lt of the
PVE which results in low appearance prior.
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