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Abstract —We develop an interactive analysis and visualization tool for probabilistic segmentation in medical imaging. The originality
of our approach is that the data exploration is guided by shape and appearance knowledge learned from expert-segmented images
of a training population. We introduce a set of multidimensional transfer function widgets to analyze the multivariate probabilistic eld
data. These widgets furnish the user with contextual information about conformance or deviation from the population statistics. We
demonstrate the user's ability to identify suspicious regions (e.g. tumors) and to correct the misclassi cation resul ts. We evaluate our
system and demonstrate its usefulness in the context of static anatomical and time-varying functional imaging datasets.

Index Terms —Uncertainty visualization, Medical imaging, Probabilistic segmentation.
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1 INTRODUCTION

Medical image segmentation is the procedure of delineating an imagjéor-driven cost terms, in an attempt to mimic the cognitive capabili-
into its constituent structures. Each structure is assigned a semakt€ig and years of experience of expert users (e.g. radiologistaseco
label that characterizes regions with similar anatomical informatigitently, these methods suffer from sensitivity to parameter tuning, en-
(e.g. for 3D magnetic resonance imaging (MRI) or computed tomograpment into erroneous local minima solutions, and a heavy demand
phy (CT) images) or similar functional information (e.g. for dynamidor computational resources. Furthermore, the prior models emgploye
positron emission tomography (dPET) or dynamic single photon emige typically built from healthy subjects, which renders the automatic
sion computed tomography (dSPECT) images). Image segmentatiiiection of suspicious pathological regions (with unexpected shape,
is often the precursor to patient diagnosis and treatment evaluatigfpearance, or function) quite challenging. Itis, therefore, untienia
which is facilitated through a thorough statistical analysis and quafiat a fully automatic segmentation algorithm, that is not only fast and
ti cation aided by a variety of visual tools. accurate but also robust to the vast variability and pathology, is still be-
In direct volume rendering (DVR), the transfer function plays th¥ond our reach. We advocate that involving the user in exploring and
role of the image segmenter by assigning optical properties (color difing the segmentation is unavoidable. We further argue that the
opacity) to different regions in the image. Several methods have bd&! ShOU'_d not only be fOCUS_Ing on th_e case under study, but _raiher b
proposed for transfer function design [13]. The assumption behigé@nted with supplementary information that places the studied case
the design of most transfer functions is that the segmentation is ddfdhe context of the population, i.e. how it conforms or deviates from
solely using local features of the dataset currently examined. Thd§€ data and analyses resulting from a corpus of training data.
features might be corrupted due to different image degradation gactor The primary technical contribution of this work is the design of a set
such as low signal-to-noise ratio (SNR), partial volume effect (PVEJf multidimensional transfer function widgets, which utilize the infor-
etc. Thus feature extraction becomes an error-prone procesheFur Mation obtained from a probabilistic segmentation technique, as well
the extracted features usually depend on local information and do @étthe probabilistic prior information learned from previous expert seg-
leverage the fact that, in medical imaging, the structures of interdggntations. Going beyond the use of simple likelihood information
usually have known but variable global shape and appearancerprof2?], [30] and [46]), we adopt a Bayesian framework to incogter
ties. more informative priors (than the simple uniform prior) for both shape
In the medical imaging analysis domain, it has been demonstra@f @Ppearance as learned from expert-segmented images of atrainin
that medical image segmentation techniques can be greatly improsgpulation. We further explore the relationship between the likelihood
and made more robust by incorporating prior shape and appearaﬁeg prior terms to allow for the_ldentl cation of_ regions of dlsagree_—
knowledge. The prior information can typically be learned from g€t with the prior. Those regions are potentially the result of mis-
training set of images and their corresponding expert segmentatiofl@SSi cation, in which case the user can edit the result and provide a
The major obstacle of prior-based segmentation is the insuf Cieﬁgtlsfactory, correct result. AIternatlver, those regions mlght bplsus.
availability of expert segmentation samples, which hinders the abili§jeus or pathological (€.g. tumors), which must then be highlighted in
to accurately capture the large variability in the shape and appearafAfger to draw the user's attention to them and react appropriately. Our
of anatomical structures or of functional activity. Further, automate@0!, geared toward research clinicians, will allow the user to explore
image analysis methods typically rely on the optimization of a contine uncertainty in the resulting segmentation with respect to the pop-

plex energy functional, which encodes multiple competing image glation. In addition, medin_:al imagg analysis _re_searchers can use this
tool to analyze the behavior of their probabilistic segmentation algo-

rithms, in an effort to improve their performance (e.g. by altering the
underlying energy functional, improving the optimization mechanism,
etc.).

Ahmed Saad and Ghassan Hamarneh are with the Medical Imaajig#s
Laboratory (MIAL), School of Computing Science, Simon €ras
University, Burnaby, BC, Canada, V5A 1S6.

Ahmed Saad and TorstendMer are with the Graphics, Usability, and
Visualization (GrUVi) Laboratory, School of Computing 8te, Simon 2.1 Segmentation techniques
Fraser University, Burnaby, BC, Canada, V5A 1S6.

2 RELATED WORK

Medical image segmentation techniques can be classi ed into auto-

E-mail: f aasaad,hamarneh,torstg@cs.sfu.ca matic and interactive methods. The so called automatic methods still
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For information on obtaining reprints of this article, plea send mentation. When the results are unsatisfactory, the user resets the pa-
email to: tvcg@computer.org. rameters and/or updates the initialization, then re-runs the automatic

algorithm. We will limit our discussion of related work to the class



of interactive methods. Three main forms of user input have beembodiment of such relationships is through what is calledtias
adopted for interactive segmentation [37], which entail (1) specifyingimilar to how the world atlas captures geographical locations of and
a nearby complete boundary that evolves to the desired boundary (earder relationships between countries, an anatomical atlas captures
the classical Snakes algorithm [24] and the plethora of variants [33fhe locations and shapes of anatomical structures, and the spatial rela-
(2) specifying a small set of voxels belonging to the desired boundatignships between them. An anatomical atlas can, for example, be gen-
followed by the application of minimal path techniques to extract therated by manually segmenting one image. It can also be obtained by
complete boundary (e.g. Intelligent Scissors [36, 2] and 3D Live-wiintegrating information from multiple segmented images, for example
[39]); or (3) specifying a small set of voxels belonging to the core dfom different individuals, yielding a probabilistic description rather
different regions to overcome the limitation of the ill-de ned boundthan a crisp one. Given an atlas, an image can be segmented by map-
aries (e.g. using Graph Cuts [4] or Random Walker [17]), followed bping its coordinate space to that of the atlas in an anatomically correct
some optimal labelling of all unlabelled voxels. way, a process commonly referred to as (atlas-to-image) registration.

The framework proposed in this paper is independent of the partleabeling an image by mapping it to an atlas is consequently known
ular segmentation technique as long as it provides probabilistic s@g-atlas-based segmentation, or registration-based segmentation [44].
mentation results, similar to those that employ Gaussian mixture mdepllins et al. [6] introduced an automated procedure called ANIMAL
els [51], the Random Walker method [17], the probabilistic suppotfutomatic Nonlinear Image Matching and Anatomical Labeling) to
vector machine approach [38], or a variant of graph cuts [28]. objectively segment gross anatomical structures fron_1 3D MR _imag_es

The main building block of segmentation algorithms is the abilit?f normal bralns. Th'e procedgre is based on a nonllnear registration
to assess data values at every voxel (e.g. intensity, gradient, text@fdhe novel image with a previously labeled target brain, followed by
or other features) in an attempt to label the voxel with a particulé\pmy'ng a numgrlcal inverse transformation of the Iabels tp the.natlve
class label. Typically, adopting a voxel-wise decision (independent ¥R space. Baillard et al. [1] employed an automatic registration of
other voxels) is sensitive to noise and may result in irregular objete current image to a reference pre-segmented image to initialize the
boundaries or holes and islands in the segmentation result. Theref&¥9lution of a level-set surface as an alternative solution to manual ini-
regularization approaches make up the second building block of séiglization. Atlas images rely largely on building intensity and shape
mentation algorithms, which are employed to favour smooth segmdHiors from datasets of healthy subjects. In general, the suspicious
tation. As medical image modalities are often corrupted by differeA£9'0NS, which are typically of greater interest than normal-behaving
types of degradation, e.g. low SNR, PVE, and patient motion artifacf§9ions, are dif cult to identify since they come from the more chal-
incorporating prior knowledge about the segmented objects beconff9ing pathological cases. These pathological cases usually do not
necessary to disambiguate the raw data during segmentation. Hendé\& Well-de ned models. The core goal of this paper is to identify
third building block is incorporated into segmentation methods, whic{d highlight those regions which disagree with the prior in terms of
is essentially designed to favour segmentations belonging to a partiifher their shape or their appearance.
lar object class. . . . o

. . . . . 2.2 Transfer functions in volume visualization

One of the important algorithms incorporating prior knowledge is
the seminal work of active shape model by Cootes et al. [7]. Here, d@ the visualization community, volumetric segmentation is chie y ob-
herently placed landmark points on all the training contours are ustdned through the application of transfer functions. Different methods
to reduce the number of degrees of freedom of the principal modeshéive been proposed for transfer function design in direct volume ren
variation during principal component analysis (PCA). A point (landdering [13]. For 3D medical volumes, data-driven features such as
mark) distribution model is thus created that captures the variabili@fey-level intensity, gradient values [26], curvature [25], spatial in
observed in the training set. Although successfully applied to vafiermation [43, 31], and the occlusion spectrum [9] are represented
ous types of shapes (hands, faces, organs), the reliance onra-pa@s multidimensional histograms. Also, transfer functions play an im-
eterized representation and the manual positioning of the landmare[tant role in visualizing time-varying datasets [21, 15]. To perform
particularly tedious in 3D images, seriously limited the applicabilitfhe segmentation using transfer functions, the user is required to iden-
of this method. To circumvent the need for landmarking, Leventon &y different regions in the feature space, which might be challenging
al. [29] performed PCA on the signed distance functions of the set\when the data under study is noisy or the anatomical structures within
training shapes. The resulting statistical shape model was then irée rather complex. Tzeng et al. [50] used ISODATA hierarchical
grated into a geodesic active contour framework. The result was @Hrstering to classify the volumetric data and later [49] incorporated
energy-minimizing segmentation method, requiring initialization anan arti cial neural network and a support vector machine as a super-
parameter setting to balance the contributions of different cost ternvised learning mechanism for high quality classi cation. As a super-
Cremers et al. [10] introduced a nonlinear shape prior based oalkervised learning algorithm, only a small number of voxels was used for
PCA under the assumption that the training data forms a Gaussian #igining and all the remaining voxels were used as a test set. Thus,
tribution following a nonlinear mapping to a high-dimensional featura longer interaction time is needed for complex structures. Blaas et
space. In general, segmentation techniques that incorporated a sﬁ;ﬂp&] introduced interactive dynamic coordinated views to facilitate
prior required the projection of the current estimate of the segmeltie exploration of multi eld medical datasets using pattern classi ca-
tation surface into the plausible shape space learned from a trainfi®) and clustering approaches. A major assumption behind most of
set. The iterative nature increases the computational demand of thiégetransfer function widgets for medical imaging is that the low-level
algorithms and therefore renders them unsuitable for interactive expl@age information (e.g. intensity, gradient, curvature, etc.) is suf -
ration. cient to identify different objects of interest. Low level information

In applications where there is no well-de ned relationship betweé# usually not enough to precisely identify complex objects under the
low level information associated with a voxel (e.g. intensity or gradlfferent image degradation factors. Further, editing the classi cation
dient) and the label that should be assigned to the voxel, a compgi@sult in all previous algorithms is solely based on user knowledge
mentary approach for incorporating prior knowledge is adopted. Tﬁ)é_the data with no gwde@nce to enh_ance the classi cation result more
weak relationship between voxel data and the label assignment is fa@ijickly. Recently, Praf3ni et al. [40] introduced a shape-basedrans
obvious when we remember that we often seek to lapaitomical Tunction that assigns skeleton regions to one of three primitive classes:
structuresrather thartissue types For example, different structures tube, blob, or surface. Our method is different from [40] in that we try
composed of the same tissue (e.g. different bones) cannot be d|sm1m0de| the whole global shape observed in the training set instead of
guished from one another by merely looking at their intensity values ffimitive smaller shapes.
an image. What distinguishes these structures instead is their Ioca{%’o . . N
and their spatial relationship to other structures. In such cases, sp igl Uncertainty visualization
information (e.g. neighborhood relationships) must to be taken intdncertainty visualization is considered one of the top visualization re-
consideration and included in the segmentation process. A comns®arch challenges [22]. Few research papers tackled the problem of



visualizing the classi cation uncertainty given a probabilistic segmerieature vector associated wi¥that can be constructed from inten-
tation result. Kniss et al. [27] proposed a Bayesian risk minimizaticsity, gradient, time activity curve information, or other data-derived
framework, in which the nal classi cation can be altered by changfeatures. P(X;FjC;) represents the likelihood term of andF be-

ing the risk of each class instead of applying the maximum-a-posteritwnging to classC; out of K classes. P(C;) represents the prior
(MAP) estimate directly on the probabilistic result. Lundstret al. term, which models our knowledge about cl&s P(CijX;F) rep-

[30] applied different animation schemes to convey the uncertaintyraisents the posterior probability term, which captures the relation-
each voxel obtained from the likelihood information. Recently, Saahip between the likelihood of a particular class assignmerX to
et al. [46] allowed the user to visualize different tissue relationshiggven the data-derived features associated Xitmd the prior terms.

by analyzing the probabilistic eld. Although we consider the methéf‘zlP(X;FjCi)P(Ci) represents the evidence, which acts as a nor-

ods of Kniss et al. [27], Lundsim et al. [30] and Saad et al. [46] malization factor guaranteeing thaf ; P(CijX;F) = 1. The vector
to be the closest works to our contribution, we differ in several agf probabilities [P(C1jX;F); P(C2jX;F); :P(CkjX;F)] calculated
pects: From a Bayesian perspective, instead of only trying to explageeach voxeX makes up the probabilistic segmentation eld. The
the Iikelihood. informqtion apd considering a uniform prior, we incortypical approach for obtaining a crisp classi cation from a probabilis-
porate more informative prior for both shape and appearance tartig result is by applying the maximum a posteriori (MAP) Bayesian
from expert-segmented images of a training population. Further, Weinciple [12], where we assign a voxel ¥tto the rst best guess

explore the relationship between the likelihood and prior terms to gEBG) class with the maximum posterior probability. Formally, the
low the identi cation of regions of disagreement with the prior. ThoSgBG class is

regions might be the result of misclassi cation and in that case we FBG(X) = argmaxP(CijX;F): 2)
allow the user to correct it. Alternatively, they might be suspicious i2K
regions (e.g. tumors) that need to be brought to the user's attention : e

Few papers tackled the segmentation editing problem [37]. Thellgd the corresponding FBG probability is given by
is partly due to the fact that sqienti c puplications on segmentation Peaa(X) = maxP(CijX; F): ©)
mostly emphasize the automatic part while necessary manual correc- i2K
tions are considered aws in the automated process. Kang et al. [23] ) L ) . )
introduced a set of 3D segmentation editing tools based on morphﬂ-In the visualization community [27, 30, 46], the conditional like-
logical operators for hole lling and surface editing. The introducedh00d probabilityP(X;FjCi) term is the decisive factor in obtaining
tools required a good segmentation to start with. Grady et al. [1&e nal classi cation (i.e. maximum likelihood estimation). Thus,
formulated the editing task as an energy minimization problem. THa€ prior term is usulally assumed to be uniform and identical across
user-supplied seeds, the pre-segmentation, and the image conterftlagses, i.eP(CG) = . In this paper, we construct informative pri-
impacted the resulted edited segmentation. Our proposed appro@hguided by shape and appearance knowledge learned front-exper
is different from those methods in that we operate on the probabil&@gmented images of a training populatioR(Ci;X) captures the
tic elds instead of the crisp labelling. We leverage the uncertaintyhape prior parameterized by the spatial loca¥on.e. even before
encoded into the segmentation results to highlight those problemdti€ image data is collected, every positirhas a particular likeli-
regions that need more attention from the user. For the rst time, [#p0d of being assigned to each class. These a priori probabilities are
this work, we also incorporate the uncertainty information from théypically assigned to a template (e.g. a template brain) forming what
disagreement with the learned prior to guide the user in the editit¢ refer to as a probabilistic atlas in Sec. 3.1 [48, 14, 3ZCi;F)

process. represents the appearance prior parameterized by the feature vector
F. We assume that the likelihood terR{X; FjC;) is obtained from
3 METHOD a probabilistic segmentation technique, such as Zhang et al. [51] or

. . ) . Grady [17].
Our framework consists of two main stages: atlas construction and, | “,tjas-based segmentation [44], an energy functional is con-

segmentation uncertainty interaction. In the ofine (i.e. no user i Structed from the likelihood and the prior terms by taking the log of
teraction needed) atlas construction stage, we construct two 2D

histograms: (i) likelihood versus shape prior and (ii) likelihood versus™ N = i :

appearance prior using the information from expert-segmented images E(G) = log(POXFIG)) + 1 (X) log(P(Ci) “)
of a training population. In the second stage, the user can select vakere | (X) is introduced as a weighting factor between different
els of those histograms satisfying some meaningful pattern (as we wéfms. The denominator terR(X;F) is ignored in the energy func-
detail later). In order to localize the effect of the analysis in the spatigbnal construction as it does not depend on the unknown class. This
domain, the user speci es an axis-aligned region of interest (ROI) usspically results in a dif cult optimization problem with a complex en-

ing sliders. The interactive brushing and linking technique [5] is usestgy landscape, i.e. numerous local minima. To minimize the number
to connect the information represented into the two 2D histogranst.unknowns to be optimized, the weighting factor is taken to be spa-
The selected voxels are automatically and interactively highlighted fially invariant, i.e.l (X) = I, and is usually set empirically based on
2D and 3D DVR. Furthermore, the user may correct any misclassiial and error, training data, or contextual information [34, 16, 42].
cation by editing the probability eld. This exploration process isAlso, P(G) is further decomposed into multiple terms (i/(Ci; X)
iterative, where the user can highlight or edit different regions once and P(C;;F)) capturing different prior information and, hence, in-
multiple times. Fig 1 shows an overview of the proposed work ow. creasing the complexity of the optimization problem.

Our framework is constructed based on the Bayesian decision thedn this work, we construct the likelihood and prior terms indepen-
ory, a fundamental statistical approach to the problem of pattern claently using standard techniques in the medical image analysis liter-
si cation [12]. This probabilistic approach is based on quantifying thature as shown in the subsequent sections. This step is usually per-
tradeoffs between various classi cation decisions and the costs tfietmed of ine, where there is no user interaction required, allowing
accompany such decisions. Bayes' formula relates the likelihood oftee incorporation of computationally expensive techniques. In the on-
particular decision (or classi cation) given the current observed feéine stage, instead of attempting to automatically solve a complex op-
tures with the prior information about the classes involved in the dedimization problem to balance the weights between the likelihood and
sion. In the context of image segmentation, Bayes' theorem is formprior terms, a route plagued with dif culties, we allow the user to vi-
lated as follows sually explore the information encoded into those terms; the chief con-

( C)P(C) stituents of the objective function.
U P(X; FiG)P(Ci ) )
P(GijX;F) 3K P(X FIC)P(C) (1) 3.1 Shape prior modeling o
In order to construct the shape pri(C;; X) from the training images,
where X is a spatial location ilA3 (i.e. X=[xy4) andF is a atraining set of images (e.g. gray-level MRI) containing the object of
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Fig. 1. Shape and appearance probabilistic priors are built from expert-segmented images of a training population. The class likelihood information
is obtained from probabilistic segmentation techniques. 2D histogram widgets are used to explore the relationship between the likelihood and prior
terms to allow for the identi cation of regions of disagreem ent with the prior. Those regions are potentially the result of misclassi cation, in which
case the user can edit the result and provide a satisfactory, correct result. Alternatively, those regions might be suspicious or pathological (e.g.
tumors), which must then be highlighted in order to draw the user's attention to them and react appropriately.

interest is collected. In addition, the training set would include dat2 Appearance prior modeling

representing the expert segmentation of those images. The segme{aydition to capturing shape variation information from the expert-
tions are prlcally p_rowded in the form of binary images (also_calle legmented binary images, we model the appearance knowledge from
characteristic functions) capturing the shape (and size, location, 3ad'intensity patch of the object of interest in the training set of images
rotatlon).of the' object of interest. The blnary shapellmages are th@1g the gray level intensity values in an MR image, the Houns eld
brought into alignment by applying translation, rotation, and scalighjts in a CT scan, or the time activity curves (TAC) in a dPET or
mapping them into a common coordinate frame of reference (i.. ¥SPECT image). In medical images, anatomical structures and func-

moving variability due to pose and retaining only shape variability). fona] regions have characteristic intensity features that can be utilized
suitable shape model should represent the detailed shape informatjpfe,, locating similar structures in new images.

be able to model possible shape variations and re ect the shape varigiyen the feature vectdr of lengthn from all the training images,
ability on a local spale (i.g. at each voxel pos.ition) which is suitablge need to build a probabilistic appearance model. Unlike the Ac-
for the proposed interaction technique. In this work, we take as gflo Appearance Model [8], which provides a global view of the whole
input any form of shape prior as long as it provides probabilistic react appearance, we need to model the probability distribution func-
sults. The Active Shape Model [7] provides only a global view of thgon of the feature vectors at every position within the training images.
shape variability through PCA and requires a correspondence be“"’g’&is work we model this distribution using a multivariate Gaussian.
landmarks in training images. Hence, we adopt the method proposggspite its simplicity, it is fast to compute and requires a few num-
recently by Hamarneh and Li [19], who introduced a modi cation ofer of model parameters to be stored during the user interaction. Our
the idea of a probabilistic atlas by incorporating additional informatiofa mework can accommodate more elaborate but computationally ex-

derived from the distance transform. The probability value at eagfangive techniques such as non-parametric kernel density estimation
voxel positionX is proportional to the number of shapes containin 2] or support vector machine for density estimation [35]. We con-

(or enclosing)X after alignment. The distance transform accounts fQfiy ¢t a multivariate Gaussian distribution as follows
possible shape variability unseen in the training images by giving the

voxels outside the training shapes non-zero probability. First, a shape
histogramSH(X) is obtained by adding the values (0 or 1) of corre- 1
sponding voxels of the set of aligned binary shape imagé#X) is (2p)3 de(Si)%
then normalized to have a maximum value of 1. We use the shape

histograrrSH and the distance transform to build a probabilistic Shamherem andsi arethen 1 samp|e mean vector and the n Samp|e
prior P(C;; X) as follows, covariance matrix of the observed features of cl@sim the training
set, respectively. The superscripand det(.) denote matrix transposi-
tion and determinant, respectively.

P(GiF) = e SF m'SF m) ©)

o S+ s SHX) ifX2W
P(C:X) = . 5 . . .
(GiX) s, (1 DIST(X)) otherwise ®) 3.3 Atlas to new image registration

Given a new image to be analyzed, we rst perform an af ne registra-
whereW is the set of nonzero pixels in the shape histogr@hh tion to bring this image into the coordinate frame of the atlas (i.e. the
DIST(X) is the normalized Euclidean distance transform for the beommon frame of reference of all the aligned training images). Then,
nary image havinyV as foreground. The two scalasg,andsp, sat- we average all the aligned training images (e.g. the gray level MRIs)
isfy s1 + s = 1 and determine the weight of the shape informatioto obtain a population representative image. The resulting transforma-
when constructing the probability map. Throughout the paper, we usizh from registering the population representative image to the new
51 = 0:9 ands, = 0:1. image is applied to the shape priefCi; X). This is an important step



when the probabilities sum to 1. The normalized probabilities will be
the actual output of a probabilistic segmentation algorithm which is
the basis of the likelihood term. Note that the intensity range of the
suspicious region representing the appearance abnormality in Fig 5(d)
and Fig 5(e) falls in-between the intensity ranges of the two main ma-

terials.
0.15

Fig. 2. Synthetic example. a) piecewise constant image, b) blurred with
a Gaussian kernel, c) Gaussian noise added. - 01

."ﬁ

g
performed to ensure that the new image coordinates are mapped onto 0.05
those of the atlas. Note that this step is applied of ine (i.e. no user
intervention required) while the image is stored on a data server which

is common in a hospital setting.

3.4 Algorithm demonstration using a synthetic example ) ) . .
Fig. 4. Synthetic example appearance prior modeling. It shows the

We introduce a synthetic example that is simple enough to convey thgnsity histogram of the pixel contained inside the object of interest.
main ideas of our approach while still comprehensive enough to sinTthe tted Gaussian is shown in solid red.

late the common image generation models and degradation in medical

imaging [4]. A grey-level image of size 128128 consists of one

(Fig 2(a)). We blur the image with a rotationally symmetric Gaussiann D n
lowpass lter of size 30 30 pixels with standard deviation 3 pixels

randomly translated in theandy directions with a random amount of

up to 2 pixels using a normal distribution with mean 0 and standard

disk region representing one material in addition to the background
(Fig 2(b)). Gaussian noise is then added with a variance of 4 (Fig Z(C&)g. 5. Synthetic example segmentation cases. a) normal case. b) ab-
deviation 2. Fig 3(a) shows the normalized histogram of the popula-

We start with a piece-wise constant model in each region with grey
level value 30 while the background receives the grey level of zerg

~We generate a p_opu_lation of 1OQ images similar to F_ig 2(c) but withy ma shape case. ¢) abnormal shape case. d) abnormal appearance
different noise realizations. The disk center for each image has beg@e ) abnormal shape and appearance.

tion. Fig 3(b) shows the normalized distance transform hawn@f. . <
Eqg. 5) as foreground. Fig 3(c) shows the shape prior after applying™” 0cd 5os
Eq 5. 6000 o £o.6
4000, 0.02 §o.4
1 2000 %0.2
' ' &3 Corey tlever” O 3070 Greytevel 100 %770 Greylevel 100
@ (b) ©
05 0.5 0.5

Fig. 6. a) Grey level histogram shows a mixture of Gaussians, b)

o o o unnormalized mixture of Gaussians used to segment the images in

(a) (b) (c) Fig 5, ¢) normalized mixture of Gaussians represents the likelihood term

P(X;FjCi). The red bar represent the intensity value of the a small sus-

Fig. 3. Synthetic example of shape prior modeling. a) Normalized picious, tumor-like region shown in Fig 5(d) and Fig 5(e).

shape histogram SH where the intensity represents the number of

shapes constructed by adding the values (0 or 1) of corresponding vox-
els of the set of aligned binary shape images, b) Normalized distance
transform image having W as the foreground. The intensity represents
the Euclidean distance from the boundary, ¢c) Shape prior map where
the intensity represents P(Ci; X) (Eqg. 6).

Fig 7 shows the analysis of the proposed histograms with respect to
the segmentation result of the image shown in Fig 5(a). It demon-
strates the expected patterns in the histogram in the normal cases
where the likelihood information mostly agrees with the prior infor-
mation. Fig 7(c) shows the maximum likelihood estimate results for

the normal case. Fig 7(a) shows the likelihood vs the shape prior.

In order to model the appearance of the training set, we considérere is a strong correlation between the likelihood and shape prior
only grey-level intensity, i.en= 1 (cf. Eq. 6). Fig 4 shows the Gaus- where the likelihood result Fig 7(c) agrees with the shape prior map
sian tting of the intensity histogram for the image population. Fig F-ig 3(c). Fig 7(b) shows the likelihood vs the appearance prior. There
shows different segmentation cases that vary from normal shape &an agreement between the two but not as strong as the shape prior
appearance case (Fig 5(a)): An abnormal shape case (Fig 5{b) doe to the additive noise nature and partial volume effect along the ob-
Fig 5(c)), an abnormal appearance case (Fig 5(d)) and both -abrject boundaries that will be demonstrated in the third and forth rows of
mal shape and appearance case (Fig 5(e)). We segment all thesim&gg 7. The second row of Fig 7 shows the selection of the voxels with
shown in Fig 5 with a mixture of two Gaussians centered at the knoviiigh shape prior while selecting the whole appearance prior range. It
means of the two main regions with variance of 56 to account for tlsows that the whole disk is captured. The third row of Fig 7 shows the
PVE. The mixture of Gaussians assumption is supported by the inteelection of a high shape prior in combination with a high appearance
sity histogram of Fig 6(a), which clearly shows a mixture of Gaugrior capturing the core of the organ as shown in Fig 7(i). The last
sians. Fig 6(b) shows the unnormalized mixture of Gaussians usedadw of Fig 7 shows the selection of a high shape prior in combination
the segmentation process, where the x-axis represents the grey lewti a low appearance prior capturing the boundary voxels which suf-
value and the y-axis is the probability for each region marked withfar mainly from the partial volume effect as well as some noisy pixels
distinct color. Fig 6(c) shows the normalized version of the mixturia the center of the object.



Fig 8 shows the analysis of the proposed histograms with respect
to the segmentation result of the image shown in Fig 5(b). A strong
pattern is observed in the likelihood vs shape prior histogram. It shows
a number of voxels with a high likelihood belonging to the object of
interest while disagreeing with the shape prior information. Selecting
those voxels in Fig 8(b) reveals a shape abnormality not observed in
the training set (Fig 8(d)).

Fig 9 shows the analysis of the proposed histograms with respect
to the segmentation result of the image shown in Fig 5(c). An abnor-
mal pattern is observed in the likelihood vs shape prior histogram. It
shows a number of voxels with low likelihood belonging to the object
of interest while strongly agreeing with the shape prior information.
Selecting those voxels in Fig 9(b) reveals a shape abnormality not ob-
served in the training set (Fig 9(d)).

Fig 10 shows the analysis of the proposed histograms with respect
to the segmentation result of the image shown in Fig 5(d). A strong
abnormal cluster is observed in the likelihood vs appearance prior his- (d (e) ®
togram while the shape prior looks normal with strong agreement with
the likelihood. It shows a number of voxels with high likelihood be-
longing to the object of interest while disagreeing with the appearance
prior information. Selecting those voxels in Fig 10(c) reveals an ap-
pearance abnormality not captured by the likelihood information only.

Fig 11 shows the analysis of the proposed histograms with respect
to the segmentation result of the image shown in Fig 5(e). A strong
abnormal cluster is observed in both histograms. It shows a nhumber
of voxels with high likelihood belonging to the object of interest while () (h) (i)
strongly disagreeing with the shape and appearance prior information.

Selecting those voxels in Fig 11(b) and Fig 11(c) reveals an abnormal
behavior in both shape and appearance.

@ (b) (©

4 RESULTS

In this section, we demonstrate the effectiveness of our framework
in analyzing and visualizing different probabilistic segmentations of
static and time-varying medical imaging datasets. We will show how
we can highlight suspicious regions according to the mismatch with
the shape and appearance prior learned from a training set. 0 (k) 0

4.1 Brain dynamic PET study Fig. 7. Analysis of the normal case segmentation of the image shown in

In dPET imaging, a series of 3D images are reconstructed from [i§t9 5(®)- It demonsirates the patterns observed in the histogram when
mode data obtained by Gamma coincidence detectors. Kinetic mgg2y2ing normal behavior.

eling is the process of applying mathematical models to analyze the

temporal tracer activity, in order to extract clinically or experimen-

tally relevant information. We will analyze the probabilistic segmen-

tation result obtained from the application of a kinetic modeling based

probabilistic K-means algorithm [47]. Thé411C] Raclopride dPET

dataset size is 128128 63 with 26 time steps and has a voxel size

of 211 211 2:42 mn?. The dataset is segmented into six regions  (a) (b) () (d)

(K = 6): background, skull, white matter, grey matter, cerebellum and

putamen. It is clear from Fig 12(a) that the dataset is suffering froa

. . - g. 8. Analysis of the abnormal shape case segmentation of the image
low SNR as well as severe PVE in contrast with a typical structurgy ;. n in Fig 5(b). It shows a number of voxels with high likelihood

MRIimage (Fig 12(b)). These degradations cause K-means CIUSteeronging to the object of interest while disagreeing with the shape prior

to overestimate the putamen (Fig 12(c) and Fig 12(d)) where a langgrmation. Selecting those voxels reveals a shape abnormality not
number of voxels from the surrounding structures have been misclagen in the training set.

si ed as putamen. Fig 12(e) shows the ground truth segmentation with
anatomical labels of the putamen. Accurate segmentation of the puta-
men is crucial for the diagnosis of Parkinson's disease. Fourteen ex-
pert segmented dPET datasets with the putamen delineated have been
used in the training stage. Fig 13 shows different putamen structures
of 4 different patients from the training set. Fig 14 shows how the in-
teraction with the likelihood vs the shape prior histogram can reveal
the misclassi cation results witnessed in Fig 12(d). The upper row
shows the voxels corresponding to the selection on the bottom row
histograms. The histograms in the bottom row show a large number of
voxels disagreeing with the shape prior (i.e. having a low shape prior ) ) )
value). Fig 14(e), (f) and (g) include all the voxels having the putamdg- 9. Analysis of the abnormal shape case segmentation of the image
as the FBG whereas Fig 14(h) includes all the voxels. Selecting tpfePwn in Fig 5(c). It shows a number of voxels with low likelihood be-
voxels as shown in Fig 14(h) demonstrates that we can recover r|@pging to the object of interest while strongly agreeing with the shape
details that were not possible in Fig 14(c) (i.e. caudate nucleus) Rj°r information. Selecting those voxels reveals a shape abnormality
. not seen in the training set.
using ProbExplorer [46].

() (b) (c) (d)



@) (b) (©) (d)

Fig. 10. Analysis of the abnormal appearance case segmentation of

the image shown in Fig 5(d). It shows a number of voxels with high

likelihood belonging to the object of interest while disagreeing with the

appearance prior information. Selecting those voxels reveals an appear- @) (b)
ance abnormality not captured by the likelihood information only.

@ (b) (©) (d) (© (d)

Fig. 11. Analysis of the abnormal shape and appearance case seg-
mentation of the image shown in Fig 5(e). It shows a number of voxels
with high likelihood belonging to the object of interest while strongly dis-
agreeing with the shape and appearance prior information. Selecting
those voxels reveals a shape and appearance abnormality.

In order to quantitatively evaluate the segmentation accuracy given
the availability of the ground truth segmentation, we calculated the
Dice similarity coef cient [11] to measure the overlap between a seg-
mented region and ground truth, with a value of 1 corresponding to a
perfect overlap. We were able to increase the Dice similarity coef - ©
cient from 0.32 in Fig 14(a) to 0.65 in Fig 14(c) and 0.75 in Fig 14(d).

The results shown in Fig 15 are obtained in a fashion similar to
Fig 14. However, here a more accurate but more computationaﬁ&ﬂ- 12. Dynamic PET case study sh_owing misclassi cation re sults‘for
expensive probabilistic segmentation algorithm was used [45]. \Afie putamen structure. a)' 2D axial slice out_of the 4D dataset showmg
note that the original segmentation in Fig 15(a) is better than that!f{V SNR and PVE, b) Typical structural MRI image, c) DVR, d) overesti-
Fig 14(a). Nevertheless, we can improve it further without rerunnir@ated putamen, e) ground truth segmentation with anatomical labeling.
the segmentation algorithm. The Dice similarity coef cient increases
from 0.6 in Fig 15(a) to 0.75 in Fig 15(c).

4.2 Brain MRI study

The following study shows a simulated probabilistic eld from the
BrainWeb database with 20 MR brain images of normal subje@ise
probabilistic segmentation elds were used to obtain the shape prior
probability. A novel MR image containing a brain tumor (obtained
according to [41]) is segmented producing the likelihood probability
eld. Fig 16 shows the analysis result of the white matter structure.
Fig 16(a) shows the isosurface of the maximum likelihood where the
tumor is not immediately visible. Fig 16(b) shows the likelihood vs (a) (b)
the shape prior where a signi cant number of voxels show high shape
prior while having low likelihood probability. Selecting and highlight-
ing those voxels reveal the pathological and clinically-veri ed tumor
voxels. Fig 17 shows the results of analyzing the grey matter instead
of the white matter to reveal the tumor which was not possible using
only the maximum likelihood information in Fig 17(a).

4.3 Renal dynamic SPECT study

A renal dynamic SPECT study results in a time series of 3D im-

ages. From these images, the clinician's goal is to extract informa- © %)

tion about the spatio-temporal behavior of a radioactive tracer (e.g.

99MT ¢ DTPA), which in turn is used to assess the renal system func- ) o ) )
tion. We used a 4D image of size 664 64 with 48 time steps with Fig. 13. Dynamic PET training shapes with ground truth segmentation

isotropic voxel size of 2 mm. A 2D coronal slice is shown in Fig 18(a£;ttgit'i‘;tame” structure. a) patient2, b) patient6, c) patient10 and d)

http://www.bic.mni.mcgill.ca/brainweb/



@) (b) © (d)

(e) ® (9) (h)

Fig. 14. User-interaction with the proposed likelihood vs shape 2D histograms for a dPET data. It shows how the emphasis on the shape prior,
by including only the voxels with high shape prior, from left to right allows the recovery of the correct putamen from the misclassi cation results.
The upper row shows the voxels corresponding to the selection on the bottom row histograms. The histograms in the bottom row show a large
number of voxels disagreeing with the shape prior (i.e. having a low shape prior value). e), f) and g) include all the voxels having the putamen as

the FBG, whereas h) includes all the voxels. It shows that we can recover ner details that were not possible in c) (i.e. caud ate nucleus) or using
ProbExplorer [46].

@ (b) (©

(d) (e) ®

Fig. 15. The results shown here are obtained in a fashion similar to Fig 14. However, here a more accurate but more computationally expensive

probabilistic segmentation algorithm was used [45]. We note that the original segmentation in Fig 15(a) is better than that in Fig 14(a). Nevertheless,
we can improve it further without rerunning the segmentation algorithm.



(@) (b) (@) (b)

(© (c) (d)

Fig. 16. BrainWeb white matter analysis. a) The isosurface of the Fig. 17. BrainWeb grey matter analysis. It demonstrates the tumor de-

maximum likelihood, b) likelihood vs shape prior and c) highlighting the  tection process by highlighting the voxels with disagreement between

voxels with disagreement between the shape prior and likelihood reveals  the likelihood and the shape prior. a) Isosurface of the maximum like-

the tumor location. lihood, b) voxel selection, ¢) DVR, d) changing the opacity to highlight
the tumor voxels.

In dSPECT, a segmentation of the the kidney shape is easily obtained
[20]. The key factor of discovering abnormalities is the appearance of
the TACs inside the kidney. Thus, we analyze the likelihood vs. the
appearance prior of the TACs unlike the likelihood vs. the shape prior
(Sec. 4.2 and Sec. 4.1). The appearance prior was calculated base
on kidney TACs obtained from normal subjects using Eq. 6 wikere

is taken to be the TAC at each voxel. In order to construct the likeli-
hood probability, we blur a crisp manual segmentation of the kidney
with a Gaussian kernel to obtain a probabilistic eld. Fig 18(b) shows
an isosurface rendering of the maximum likelihood. By analyzing the @ (b)
likelihood vs appearance prior histogram (Fig 18(c)), we can see that
there are some voxels with disagreement between the appearance prior
and the likelihood. Highlighting those voxels reveals an abnormal be-
havior of the lower third part of the left kidney. The small abnormality

in the right kidney was veri ed to be a result of the PVE which results

in low appearance prior probabilities. These results were clinically
veri ed [20].

5 CONCLUSION AND DISCUSSION

In this paper, we presented a framework for the analysis and visualiza-

tion of probabilistic segmentation results guided by shape and appear- (© (d)

ance knowledge learned from expert-segmented images of a training

population. We showed how the disagreement between the likelihogg. 18. dSPECT case study with abnormal renal behavior in the lower

terms and the shape and appearance priors can reveal regions of tRigl part of the left kidney. a) 2D coronal slice out of the 4D dataset,

classi cation and abnormal behavior. We demonstrated the ef cieney the isosurface of the maximum likelihood, c) likelihood vs appearance

of the algorithm in the context of segmenting multiple simulated angtior histogram, d) selection of disagreement between the likelihood and

real medical image datasets. appearance reveals abnormality in the lower third part of the kidney. The
Our focus was based on a single structure atlas, we plan to investiall abnormality in the right kidney was veri ed to be a resu It of the

gate the effect of multiple atlases modeling multiple structures. THRYE which results in low appearance prior.

will allow us to take the structures' relationship into account when

analyzing the segmentation results.
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