Monte Carlo Techniques
Basic Concepts

CMPT 461/761
Image Synthesis
Torsten Möller
Reading

• Chapter 12, 13, 14 of “Physically Based Rendering” by Pharr & Humphreys
• Chapter 7 in “Principles of Digital Image Synthesis,” by A. Glassner
Las Vegas Vs Monte Carlo

- Two kinds:
 - Las Vegas - always give same answer (but use elements of randomness on the way)
 - Monte Carlo - give the right answer on average
- Very difficult to evaluate
- No closed forms
Monte Carlo Integration

• Pick a set of evaluation points
• Simplifies evaluation of difficult integrals
• Accuracy grows with $O(N^{-0.5})$, i.e. in order to do twice as good we need 4 times as many samples
• Artifacts manifest themselves as noise
• Research - minimize error while minimizing the number of necessary rays

© Machiraju/Möller
Basic Concepts

• X, Y - random variables
 – A value chosen by a random process
 – Continuous or discrete
 – Apply function f to get Y from X: Y=f(X)

• Example - dice
 – Set of events $X_i = \{1, 2, 3, 4, 5, 6\}$
 – Probability $p_i = 1/6$
 – ξ as a continuous, uniformly distributed random variable:

$$\sum_{j=1}^{i-1} p_j < \xi < \sum_{j=1}^{i} p_j$$
Basic Concepts

• Example - lighting
 – Probability of sampling illumination based on power
 – Φ_i -- power of (light) source i:

\[
p_i = \frac{\Phi_i}{\sum_j \Phi_j}
\]
Continuous Variable

• Canonical **uniform** random variable ξ
 – Takes on all values in [0,1) with equal probability
 – Easy to create in software (pseudo-random number generator)
 – Can create general (complex) random distributions by starting with ξ
Basic Concepts

• Cumulative distribution function (CDF) $P(x)$ of a random variable X:

\[P(x) = \Pr\{X \leq x\} = \int_{-\infty}^{x} p(s)ds \]

• Dice example
 – $P(2) = 1/3$
 – $P(4) = 2/3$
 – $P(6) = 1$
Probability Distribution Function

- Relative probability of a random variable taking on a particular value
- Derivative of CDF: \(p(x) = \frac{dP(x)}{dx} \)
- Non-negative
- Always integrate to one \(P(x \in [a,b]) = \int_a^b p(x)dx \)
- Uniform random variable:

\[
p(x) = \begin{cases}
1 & x \in [0,1] \\
0 & \text{otherwise}
\end{cases}
\]

\[
P(x) = x
\]
Cond. Probability, Independence

• We know that the outcome is in A
• What is the probability that it is in B?

\[\Pr(B|A) = \frac{\Pr(AB)}{\Pr(A)} \]

• Independence: knowing A does not help:
 \[\Pr(B|A) = \Pr(B) \implies \Pr(AB)=\Pr(A)\Pr(B) \]
Expected Value μ

- Average value of the function f over some distribution of values $p(x)$ over its domain D
 \[E_p[f(x)] = \mu = \int_D f(x)p(x)\,dx \]
- Example - cos over $[0, \pi]$ where p is uniform
 \[p(x) = 1/\pi \]
 \[E_p[\cos(x)] = \int_0^\pi \frac{\cos x}{\pi} \, dx \]
 \[= \frac{1}{\pi}(-\sin \pi + \sin 0) = 0 \]
Variance σ

- Expected deviation of f from its expected value μ
- Fundamental concept of quantifying the error in Monte Carlo (MC) methods

\[
V[f(x)] = \sigma^2 = E[(f(x) - \mu)^2]
\]
Properties

\[E[af(x)] = aE[f(x)] \]

\[E\left[\sum_i f(X_i) \right] = \sum_i E[f(X_i)] \]

\[V[af(x)] = a^2 V[f(x)] \]

• Hence we can write:

\[V[f(x)] = E\left[(f(x))^2 \right] - \mu^2 \]

• For independent random variables:

\[V\left[\sum_i f(X_i) \right] = \sum_i V[f(X_i)] \]
Uniform MC Estimator

• Assume we want to compute the integral of \(f(x) \) over \([a,b]\)
• Assuming uniformly distributed random variables \(X_i \) in \([a,b]\) (i.e. \(p(x) = 1/(b-a) \))
• Our MC estimator \(F_N \):

\[
F_N = \frac{b-a}{N} \sum_{i=1}^{N} f(X_i)
\]
Simple Integration

\[\int_{0}^{1} f(x) \, dx \approx \sum_{i=1}^{N} f(x_i) \Delta x \]

\[= \frac{1}{N} \sum_{i=1}^{N} f(x_i) \]

Error = \(O\left(\frac{1}{N}\right) \)

© Machiraju/Möller
Trapezoidal Rule

\[\int_{0}^{1} f(x) \, dx \approx \sum_{i=0}^{N-1} \left(f(x_i) + f(x_{i+1}) \right) \frac{\Delta x}{2} \]

\[= \frac{1}{N} \sum_{i=1}^{N} w_i f(x_i) \]

\[w_i = \begin{cases}
0.5 & \text{if } i = 0, N \\
1 & \text{if } 0 < i < N
\end{cases} \]

Error = \(O\left(\frac{1}{N}\right) \)
Uniform MC Estimator

- $E[F_N]$s equal to the correct integral: (random variable $Y=f(X)$)

\[
E[F_N] = E\left[\frac{b-a}{N} \sum_{i=1}^{N} f(X_i)\right]
\]

\[
= \frac{b-a}{N} \sum_{i=1}^{N} E[f(X_i)]
\]

\[
= \frac{b-a}{N} \sum_{i=1}^{N} \int_{a}^{b} f(x) p(x) dx
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} \int_{a}^{b} f(x) dx
\]

\[
= \int_{a}^{b} f(x) dx
\]
General MC Estimator

• Can relax condition for general PDF
• Important for efficient evaluation of integral (random variable $Y = f(X)/p(X)$)

And hence:
$$E[F_N] = E\left[\frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)}\right] = \frac{1}{N} \sum_{i=1}^{N} \int_{a}^{b} \frac{f(x)}{p(x)} p(x) dx = \int_{a}^{b} f(x) dx$$
Confidence Interval

• We know we should expect the correct result, but how likely are we going to see it?
• Strong law of large numbers (assuming that Y_i are independent and identically distributed):

$$\Pr\left\{ \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} Y_i = E[Y] \right\} = 1$$
Confidence Interval

• Rate of convergence: Chebychev Inequality

\[
\Pr\{|F - E[F]| \geq k\} \leq \frac{V[F]}{k^2}
\]

• Setting

\[
\delta = \frac{V[F]}{k^2}
\]

• We have

\[
\Pr\left\{|F - E[F]| \geq \sqrt{\frac{V[F]}{\delta}}\right\} \leq \delta
\]
MC Estimator

• How good is it? What’s our error?
• Our error (root-mean square) is in the variance, hence

\[
V[F_N] = V \left[\frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)} \right]
\]

\[
= \frac{1}{N^2} \sum_{i=1}^{N} V \left[\frac{f(x_i)}{p(x_i)} \right]
\]

\[
= \frac{1}{N} V[Y]
\]
MC Estimator

- Hence our overall error:

$$\Pr\left\{ \left| F_N - E[F_N] \right| \geq \frac{1}{\sqrt{N}} \sqrt{\frac{V[Y]}{\delta}} \right\} = \delta$$

- $V[F]$ measures square of RMS error!
- This result is independent of our dimension
Distribution of the Average

• Central limit theorem assuming normal distribution

\[
\lim_{N \to \infty} \Pr \left\{ \left| F_N - E[Y] \right| \leq t \frac{\sigma_Y}{\sqrt{N}} \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-x^2/2} \, dx
\]

• This can be re-arranged as

\[
\Pr \left\{ \left| F_N - I \right| \geq t\sigma_{F_N} \right\} = \sqrt{\frac{2}{\pi}} \int_{t}^{\infty} e^{-x^2/2} \, dx
\]

• well known Bell curve
Distribution of the Average

- This can be re-arranged as
 \[\Pr\left\{ |F_N - I| \geq t\sigma_{F_N} \right\} = \sqrt{\frac{2}{\pi}} \int_{t}^{\infty} e^{-\frac{x^2}{2}} \, dx \]

- Hence for \(t=3 \) we can conclude
 \[\Pr\left\{ |F_N - I| \geq 3\sigma_{F_N} \right\} = 0.003 \]

- I.e. pretty much all results are within three standard deviations
 (probabilistic error bound - 0.997 confidence)
Choosing Samples

• How to sample random variables?
• Assume we can do uniform distribution
• How to do general distributions?
 – Inversion
 – Rejection
 – Transformation
Inversion Method

- Idea - we want all the events to be distributed according to y-axis, not x-axis

- Normal distribution is easy!
Inversion Method

- Compute CDF (make sure it is normalized!)
 \[P(x) = \int_{-\infty}^{x} p(s) ds \]
- Compute the inverse \(P^{-1}(y) \)
- Obtain a uniformly distributed random number \(\xi \)
- Compute \(X_i = P^{-1}(\xi) \)
Example - Power Distribution

- Used in BSDF’s
 \[p(x) = cx^n \quad 0 \leq x \leq 1 \]
- Make sure it is normalized
 \[\int_0^1 cx^n \, dx = 1 \quad c = n + 1 \]
- Compute the CDF
 \[P(x) = \int_0^x (n + 1)s^n \, ds = x^{n+1} \]
- Invert the CDF
 \[P^{-1}(x) = n^{\frac{1}{n+1}} x \]
- Now we can choose a uniform \(\xi \) distribution to get a power distribution!

\[X = n^{\frac{1}{n+1}} \xi \]

© Machiraju/Möller
Example - Exponential Distrib.

- E.g. Blinn’s Fresnel Term \(p(x) = ce^{-ax} \quad 0 \leq x \leq \infty \)
- Make sure it is normalized \(\int_{0}^{\infty} ce^{-ax} \, dx = 1 \quad c = a \)
- Compute the CDF \(P(x) = \int_{0}^{x} ae^{-as} \, ds = 1 - e^{-ax} \)
- Invert the CDF \(P^{-1}(x) = -\frac{1}{a} \ln(1 - x) \)
- Now we can choose a uniform \(x \) distribution to get an exponential distribution!
- extend to any funcs by piecewise approx.

\[
X = -\frac{1}{a} \ln(1 - \xi) = -\frac{1}{a} \ln \xi
\]

© Machiraju/Möller
Rejection Method

• Sometimes
 – We cannot integrate \(p(x) \)
 – We cannot invert a function \(P(x) \) (we don’t have the function description)

• Need to find \(q(x) \), such that \(p(x) < cq(x) \)

• Dart throwing
 – Choose a pair of random variables \((X, \xi) \)
 – test whether \(\xi < p(X)/cq(X) \)
Rejection Method

- Essentially we pick a point \((X, \xi_{cq}(X))\)
- If point lies beneath \(p(X)\) then we are ok
- Not all points do -> expensive method
- Example - sampling a
 - Circle: \(\pi/4=78.5\%\) good samples
 - Sphere: \(\pi/6=52.3\%\) good samples
 - Gets worst in higher dimensions

© Machiraju/Möller
Transforming between Distrib.

- Inversion Method --> transform uniform random distribution to general distribution
- transform general X (given by PDF $p_x(x)$) to general Y (with unknown PDF $p_y(y)$)
- Y is typically given by $Y=y(X)$
- $y(x)$ must be one-to-one, i.e. monotonic
- hence
 \[P_y(y) = \Pr\{Y \leq y(x)\} = \Pr\{X \leq x\} = P_x(x) \]
Transforming between Distrib.

• Hence we have for the PDF’s:
 \[p_y(y)dy = P_y(y) = P_x(x) = p_x(x)dx \]
 \[p_y(y) = \left(\frac{dy}{dx} \right)^{-1} p_x(x) \]

• Example: \(p_x(x) = 2x; \ Y = \sin X \)
 \[p_y(y) = (\cos x)^{-1} p_x(x) = \frac{2x}{\cos x} = \frac{2\sin^{-1} y}{\sqrt{1 - y^2}} \]
Transforming between Distrib.

• $y(x)$ usually not given
• However, if CDF’s are the same, we use generalization of inversion method:

$$y(x) = P_y^{-1}(P_x(x))$$
Multiple Dimensions

• Easily generalized - using the Jacobian of $Y=T(X)$

$$p_y(T(x)) = |J_T(x)|^{-1} p_x(x)$$

• Example - polar coordinates

$$x = r \cos \theta$$
$$y = r \sin \theta$$

$$J_T(x) = \begin{pmatrix}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{pmatrix} = \begin{pmatrix}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{pmatrix}$$

$$p(r,\theta) = |J_T| p(x,y) = rp(x,y)$$
Multiple Dimensions

- Spherical coordinates:
 \[p(r, \theta, \phi) = r^2 \sin \theta p(x, y, z) \]
- Now looking at spherical directions:
- We want the solid angle to be uniformly distributed
 \[d\omega = \sin \theta \, d\theta \, d\phi \]
- Hence the density in terms of \(\phi \) and \(\theta \):
 \[p(\theta, \phi) \, d\theta \, d\phi = p(\omega) \, d\omega \]
 \[p(\theta, \phi) = \sin \theta p(\omega) \]
Multidimensional Sampling

• Separable case - independently sample X from p_x and Y from p_y: $p(x,y) = p_x(x)p_y(y)$

• Often times this is not possible - compute the marginal density function $p(x)$ first:
 $$p(x) = \int p(x,y)dy$$

• Then compute conditional density function (p of y given x)
 $$p(y \mid x) = \frac{p(x,y)}{p(x)}$$

• Use 1D sampling with $p(x)$ and $p(y \mid x)$
Sampling of Hemisphere

- Uniformly, i.e. $p(\omega) = c$

 $$1 = \int_{H^2} p(\omega) \quad c = \frac{1}{2\pi}$$

- Sampling θ first:

 $$p(\theta) = \int_0^{2\pi} p(\theta,\phi) d\phi = \int_0^{2\pi} \frac{\sin\theta}{2\pi} d\phi = \sin\theta$$

- Now sampling in ϕ:

 $$p(\phi | \theta) = \frac{p(\theta,\phi)}{p(\theta)} = \frac{1}{2\pi}$$
Sampling of Hemisphere

- Now we use inversion technique in order to sample the PDF’s:

\[
P(\theta) = \int_0^\theta \sin \alpha d\alpha = 1 - \cos \theta
\]

\[
P(\phi | \theta) = \int_0^\phi \frac{1}{2\pi} d\alpha = \frac{\phi}{2\pi}
\]

- Inverting these:

\[
\theta = \cos^{-1} \xi_1
\]

\[
\phi = 2\pi \xi_2
\]
Sampling of Hemisphere

• Converting these to Cartesian coords:

\[\theta = \cos^{-1} \xi_1 \]
\[\phi = 2\pi \xi_2 \]
\[x = \sin \theta \cos \phi = \cos(2\pi \xi_2) \sqrt{1 - \xi_1^2} \]
\[y = \sin \theta \sin \phi = \sin(2\pi \xi_2) \sqrt{1 - \xi_1^2} \]
\[z = \cos \theta = \xi_1 \]

• Similar derivation for a full sphere
Sampling a Disk

• Uniformly: \(p(x,y) = \frac{1}{\pi} \quad p(r,\theta) = rp(x,y) = \frac{r}{\pi} \)

• Sampling \(r \) first:
 \[
 p(r) = \int_0^{2\pi} p(r,\theta) d\theta = 2r
 \]

• Then sampling in \(\theta \):
 \[
 p(\theta | r) = \frac{p(r,\theta)}{p(r)} = \frac{1}{2\pi}
 \]

• Inverting the CDF:
 \[
 P(r) = r^2 \quad P(\theta | r) = \frac{\theta}{2\pi}
 \]

 \[
 r = \sqrt{\xi_1} \quad \theta = 2\pi \xi_2
 \]

© Machiraju/Möller
Sampling a Disk

• Given method distorts size of compartments

• Better method

\[r = x \quad \theta = \frac{x}{y} \]
Cosine Weighted Hemisphere

• Our scattering equations are cos-weighted!!
• Hence we would like a sampling distribution, that reflects that!
• Cos-distributed \(p(\omega) = c \cdot \cos \theta \)

\[
1 = \int_{H^2} p(\omega) d\omega \quad c = \frac{1}{\pi} \\
= \int_0^{\pi/2} \int_0^{2\pi} c \cos \theta \sin \theta d\theta d\phi \quad p(\theta,\phi) = \frac{1}{\pi} \cos \theta \sin \theta \\
= 2c\pi \int_0^{\pi/2} \cos \theta \sin \theta d\theta
\]

© Machiraju/Möller
Cosine Weighted Hemisphere

- Could use marginal and conditional densities, but use Malley’s method instead:
- Uniformly generate points on the unit disk
- Generate directions by projecting the points on the disk up to the hemisphere above it

\[\text{rejected samples} \]

\[\text{dw} \cos \theta \]

\[\text{d}A/\cos \theta \]

\[\text{d}A \]
Cosine Weighted Hemisphere

• Why does this work?
• Unit disk: \(p(r, \phi) = \frac{r}{\pi} \)
• Map to hemisphere: \(r = \sin \theta \)
• Jacobian of this mapping \((r, \phi) \rightarrow (\sin \theta, \phi)\)
• Hence:

\[
|J_T(x)| = \begin{vmatrix}
\cos \theta & 0 \\
0 & 1
\end{vmatrix} = \cos \theta
\]

\[
p(\theta, \phi) = |J_T| p(r, \phi) = \frac{\cos \theta \sin \theta}{\pi}
\]
Performance Measure

• Key issue of graphics algorithm: time-accuracy tradeoff!

• Efficiency measure of Monte-Carlo:
 \[\varepsilon(F) = \frac{1}{V[F]T[F]} \]
 – V: variance
 – T: rendering time

• Better algorithm if
 – Better variance in same time or
 – Faster for same variance

• Variance reduction techniques wanted!
Russian Roulette

• Don’t evaluate integral if the value is small (doesn’t add much!)

• Example - lighting integral

\[L_o(p, \omega_o) = \int_{S^2} f_r(p, \omega_o, \omega_i) L_i(p, \omega_i) |\cos \theta_i| d\omega_i \]

• Using \(N \) sample directions and distribution of \(p(\omega_i) \)

\[\frac{1}{N} \sum_{i=1}^{N} \frac{f_r(p, \omega_o, \omega_i) L_i(p, \omega_i) |\cos \theta_i|}{p(\omega_i)} \]

• Avoid evaluations where \(f_r \) is small or \(\theta \) close to 90 degrees

© Machiraju/Möller
Russian Roulette

• cannot just leave these samples out
 – With some probability \(q \) we will replace with a constant \(c \)
 – With some probability \((1-q) \) we actually do the normal evaluation, but weigh the result accordingly
 \[
 F' = \begin{cases}
 \frac{F - qc}{1-q} & \xi > q \\
 c & \text{otherwise}
 \end{cases}
 \]

• The expected value works out fine
 \[
 E[F'] = (1-q)\left(\frac{E[F] - qc}{1-q}\right) + qc = E[F]
 \]
Russian Roulette

- Increases variance
- Improves speed dramatically
- Don’t pick q to be high though!!
Stratified Sampling - Revisited

- domain Λ consists of a bunch of strata Λ_i
- Take n_i samples in each strata and a uniform distribution $p_i = 1/v_i$
- General MC estimator for strata i:
- Overall integral:

$$ F = \sum_{i=1}^{N} v_i F_i $$

- v_i - volume of strata i
- n_i - number of samples in strata i
- F_i - integral of strata i
- P_i - distribution in strata i
Stratified Sampling - Revisited

• General MC estimator:
 \[F_i = \frac{1}{n_i} \sum_{j=1}^{n_i} f(X_{i,j}) \]

• Expected value and variance (assuming \(v_i \) is the volume of one strata):
 \[\mu_i = E[f(X_{i,j})] = \frac{1}{v_i} \int_{\Lambda_i} f(x) \, dx \]
 \[\sigma_i^2 = \frac{1}{v_i} \int_{\Lambda_i} (f(x) - \mu_i)^2 \, dx \]

• Variance for one strata with \(n_i \) samples:
 \[\frac{\sigma_i^2}{n_i} \]
Stratified Sampling - Revisited

- Overall estimator / variance:

\[V[F] = V \left[\sum v_i F_i \right] = \sum V[v_i F_i] = \sum v_i^2 V[F_i] = \sum \frac{v_i^2 \sigma_i^2}{n_i} \]

- Assuming number of samples proportional to volume of strata - \(n_i = v_i N \):

\[V[F] = \frac{1}{N} \sum v_i \sigma_i^2 \]
Stratified Sampling - Revisited

- Variance of stratified sampling:
 \[V[F] = \frac{1}{N} \sum \nu_i \sigma_i^2 \]

- Compared to no-strata (Q is the mean of f over the whole domain \(\Lambda \)):
 - Pick strata i first, then distribute sample X within strata
 \[
 V[F] = E_x[V_i[F]] + V_x[E_i[F]]
 \]
 \[
 V[F] = \frac{1}{N} \left(\sum \nu_i \sigma_i^2 + \sum \nu_i (\mu_i - Q)^2 \right)
 \]
Stratified Sampling - Revisited

$$V[F] = \frac{1}{N} \sum v_i \sigma_i^2$$

$$V[F] = \frac{1}{N} \left(\sum v_i \sigma_i^2 + \sum v_i (\mu_i - Q)^2 \right)$$

- Stratified sampling never increases variance
- Right hand side minimized, when strata are close to the mean of the whole function
- I.e. pick strata so they reflect local behaviour, not global (I.e. compact)
- Which is better?
Stratified Sampling - Revisited

- Improved glossy highlights

Random sampling stratified sampling
Stratified Sampling - Problems

- Curse of dimensionality
- Alternative - Latin Hypercubes
 - Better variance than uniform random
 - Worse variance than stratified
- Sample clustering

![Diagram](image_url)
Quasi Monte Carlo

- Doesn’t use ‘real’ random numbers
- Replaced by low-discrepancy sequences
- Works well for many techniques including importance sampling
- Doesn’t work as well for Russian Roulette and rejection sampling
- Better convergence rate than regular MC
Bias

\[\beta = E[F] - F \]

- If \(\beta \) is zero - unbiased, otherwise biased
- Example - pixel filtering

\[I(x,y) = \iint f(x-s, y-t) L(s,t) dsdt \]

- Unbiased MC estimator, with distribution \(p \)

\[I(x,y) \approx \frac{1}{NP} \sum_{i=1}^{N} f(x-s_i, y-t_i) L(s_i, t_i) \]

- Biased (regular) filtering:

\[I(x,y) \approx \frac{\sum_i f(x-s_i, y-t_i) L(s_i, t_i)}{\sum_i f(x-s_i, y-t_i)} \]
Bias

- typically $Np \neq \sum_i f(x - s_i, y - t_i)$
- I.e. the biased estimator is preferred
- Essentially trading bias for variance
Importance Sampling MC

• Can improve our “chances” by sampling areas, that we expect have a great influence
• called “importance sampling”
• find a (known) function p, that comes close to the function we want to compute the integral of,
• then evaluate: $I = \int_{0}^{1} p(x) \frac{f(x)}{p(x)} dx$

© Machiraju/Möller
Importance Sampling MC

- Crude MC: \[F = \sum_{i=1}^{n} \lambda_i f(x_i) \]

- For importance sampling, actually “probe” a new function \(f/p \). I.e. we compute our new estimates to be:

\[
F = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)}
\]
Importance Sampling MC

• For which p does this make any sense? Well p should be close to f.
• If $p = f$, then we would get

 $$F = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)} = 1$$

• Hence, if we choose $p = f/\mu$, (I.e. p is the normalized distribution function of f) then we’d get:

 $$F = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{f(x_i)/\mu} = \mu = \int_{0}^{1} f(x) dx$$
Optimal Probability Density

• Variance $V[f(x)/p(x)]$ should be small
• Optimal: $f(x)/p(x)$ is constant, variance is 0
 $p(x) \propto f(x)$ and $\int p(x) \, dx = 1$
• $p(x) = f(x) / \int f(x) \, dx$
• Optimal selection is impossible since it needs the integral
• Practice: where f is large p is large
Importance Sampling MC

- Since we are finding random samples distributed by a probability given by p and we are actually evaluating in our experiments f/p, we find the variance of this experiment to be:

$$\sigma_{imp}^2 = \int_0^1 \left(\frac{f(x)}{p(x)} \right)^2 p(x) \, dx - I^2$$

$$= \int_0^1 \frac{f^2(x)}{p(x)} \, dx - I^2$$

- improves error behaviour (just plug in $p = f/I$)
Multiple Importance Sampling

• Importance strategy for f and g, but how to sample f*g?, e.g.
 \[L_o(p,w_o) = \int f(p,w_i,w_o)L_i(p,w_i)|\cos q_i|dw_i \]

• Should we sample according to f or according to L_i?

• Either one isn’ t good

• Use Multiple Importance Sampling (MIS)
Multiple Importance Sampling

Importance sampling f

Importance sampling L

Multiple Importance sampling

© Machiraju/Möller
Multiple Importance Sampling

• In order to evaluate \(\int f(x)g(x)dx \)
• Pick \(n_f \) samples according to \(p_f \) and \(n_g \) samples according to \(p_g \)
• Use new MC estimator:

\[
\frac{1}{n_f} \sum_{i=1}^{n_f} \frac{f(X_i)g(X_i)w_f(X_i)}{p_f(X_i)} + \frac{1}{n_g} \sum_{j=1}^{n_g} \frac{f(Y_j)g(Y_j)w_g(Y_j)}{p_g(Y_j)}
\]

• Balance heuristic vs. power heuristic:

\[
w_s(x) = \frac{n_s p_s(x)}{\sum_i n_i p_i(x)} \quad w_s(x) = \frac{(n_s p_s(x))^\beta}{\sum_i (n_i p_i(x))^\beta}
\]
MC for global illumination

- We know the basics of MC
- How to apply MC in global illumination?
 - How to apply to BxDF’s
 - How to apply to light source
MC for GI - general case

• General problem - evaluate:
 \[L_o(p, \omega_o) = \int_{\Omega} f(p, \omega_i, \omega_o) L_i(p, \omega_i) |\cos \theta_i| d\omega_i \]

• We don’t know much about \(f \) and \(L \), hence use cos-weighted sampling of hemisphere in order to find a \(\omega_i \)

• Use Malley’s method

• Make sure that \(\omega_o \) and \(\omega_i \) lie in same hemisphere
MC for GI - microfacet BRDFs

• Typically based on microfacet distribution (Fresnel and Geometry terms not statistical measures)

• Example - Blinn: \(D(\omega_h) = (n + 2)(\omega_h \cdot N)^n \)

• We know how to sample a spherical / power distribution:
 \[
 \cos \theta_h = n + \sqrt{\xi_1} \\
 \phi = 2\pi \xi_2
 \]

• This sampling is over \(\omega_h \), we need a distribution over \(\omega_i \)
MC for GI - microfacet BRDFs

• This sampling is over ω_h, we need a distribution over ω_i:

 $$d\omega_i = \sin \theta_i d\theta_i d\phi_i$$

 $$d\omega_h = \sin \theta_h d\theta_h d\phi_h$$

• Which yields
 (using that $\theta_i=2\theta_h$ and $\phi_i=\phi_h$):

 $$\frac{d\omega_h}{d\omega_i} = \frac{\sin \theta_h d\theta_h d\phi_h}{\sin \theta_i d\theta_i d\phi_i} = \frac{\sin \theta_h d\theta_h d\phi_h}{\sin 2\theta_h 2d\theta_h d\phi_h} = \frac{\sin \theta_h}{4 \cos \theta_h \sin \theta_h}$$

 $$= \frac{1}{4 \cos \theta_h}$$

© Machiraju/Möller
MC for GI - microfacet BRDFs

• Isotropic microfacet model:

\[
p(\theta) = \frac{p_h(\theta)}{4(\omega_o \cdot \omega_h)}
\]
MC for GI - microfacet BRDFs

• Anisotropic model (after Ashikhmin and Shirley) for a quarter disk:

\[\phi = \arctan \left(\frac{e_x + 1}{\sqrt{e_y + 1}} \tan \left(\frac{\pi \xi_1}{2} \right) \right) \]

\[\cos \theta_h = \xi_2 \left(e_x \cos^2 \phi + e_y \sin^2 \phi + 1 \right)^{-1} \]

• If \(e_x = e_y \), then we get Blinn’s model
MC for GI - Specular

• Delta-function - special treatment

$$\frac{1}{N} \sum_{i=1}^{N} \frac{f(p,\omega_i,\omega_o)L_i(p,\omega_i)|\cos\theta_i|}{p(\omega_i)} = \frac{1}{N} \sum_{i=1}^{N} \rho_{hd}(\omega_o) \frac{\delta(\omega - \omega_i)}{|\cos\theta_i|} L_i(p,\omega_i)|\cos\theta_i| \frac{p(\omega_i)}{p(\omega_i)}$$

• Since p is also a delta function

$$p(\omega_i) = \delta(\omega - \omega_i)$$

• this simplifies to

$$\rho_{hd}(\omega_o)L_i(p,\omega)$$
MC for GI - Multiple BxDF’s

• Sum up distribution densities

 \[p(\omega) = \frac{1}{N} \sum_{i=1}^{N} p_i(\omega) \]

• Have three unified samples - the first one determines according to which BxDF to distribute the spherical direction; the other two specify the actual direction
Light Sources

- We need to evaluate
 - **Sp**: Cone of directions from point \(p \) to light (for evaluating the rendering equation for direct illuminations), I.e. \(\omega_i \)

\[
L_o(p, \omega_o) = \int_{\Omega} f(p, \omega_i, \omega_o) L_i(p, \omega_i) |\cos \theta_i| d\omega_i
\]

- **Sr**: Generate random rays from the light source (Bi-directional Path Tracing or Photon Mapping)
Point Lights

• Source is a point
• uniform power in all directions
• hard shadows
• \(\text{Sp}:\)
 – Delta-light source
 – Treat similar to specular BxDF
• \(\text{Sr}:\) sampling of a uniform sphere
Spot Lights

- Like point light, but only emits light in a cone-like direction
- **Sp**: like point light, i.e. delta function
- **Sr**: sampling of a cone

\[
p(\theta,\phi) = p(\theta)p(\phi) \quad 1 = c \int_{0}^{\theta_{\text{max}}} \sin \theta d\theta = c\left(1 - \cos \theta_{\text{max}}\right)
\]

\[
p(\phi) = \frac{1}{2\pi} \quad p(\theta) = \frac{1}{1 - \cos \theta_{\text{max}}}
\]

\[
p(\theta) = c
\]
Projection Lights

- Like spot light, but with a texture in front of it
- **Sp**: like spot light, i.e. delta function
- **Sr**: like spot light, i.e. sampling of a cone

\[
p(\theta, \phi) = p(\theta)p(\phi) \quad 1 = c \int_0^{\theta_{\text{max}}} \sin \theta d\theta = c(1 - \cos \theta_{\text{max}})
\]

\[
p(\phi) = \frac{1}{2\pi}
\]

\[
p(\theta) = \frac{1}{1 - \cos \theta_{\text{max}}}
\]

\[
p(\theta) = c
\]
Goniophotometric Lights

- Like point light (hard shadows)
- Non-uniform power in all directions - given by distribution map

- **Sp**: like point-light
 - Delta-light source
 - Treat similar to specular BxDF

- **Sr**: like point light, i.e. sampling of a uniform sphere
Directional Lights

- Infinite light source, i.e. only one distinct light direction
- Hard shadows
- Sp: like point-light
 - Delta function
- Sr:
 - Create virtual disk of the size of the scene
 - Sample disk uniformly (e.g. Shirley)
Area Lights

- Defined by shape
- Soft shadows
- Sp: distribution over solid angle
 - θ_o is the angle between ω_i and (light) shape normal
 - A is the area of the shape
- Sr:
 - Sampling over area of the shape
- Sampling distribution depends on the area of the shape
 $$p(x) = \frac{1}{A}$$
Area Lights

- If \(v(p,p') \) determines visibility:

\[
L_o(p,\omega_o) = \int_{\Omega} f(p,\omega_i,\omega_o) L_i(p,\omega_i) |\cos \theta_i| d\omega_i
\]

\[
= \int_{A} v(p,p') f(p,\omega_i,\omega_o) L_i(p,\omega_i) |\cos \theta_i| \frac{\cos \theta_o}{r^2} dA
\]

\[
d\omega_i = \frac{\cos \theta_o}{r^2} dA
\]

- Hence: \(p(x) = \frac{1}{A} \)

\[
L_o(p,\omega_o) \approx \frac{1}{p(x)} v(p,p') f(p,\omega_i,\omega_o) L_i(p,\omega_i) |\cos \theta_i| \frac{\cos \theta_o}{r^2}
\]

\[
\approx \frac{A}{r^2} v(p,p') f(p,\omega_i,\omega_o) L_i(p,\omega_i) |\cos \theta_i| |\cos \theta_o|
\]

© Machiraju/Möller
Spherical Lights

- Special area shape
- Not all of the sphere is visible from outside of the sphere
- Only sample the area, that is visible from p
- Sp: distribution over solid angle
 - Use cone sampling \(\sin \theta_{\text{max}} = \frac{r}{|p - c|} \)
- Sr: Simply sample a uniform sphere
Infinite Area Lights

- Typically environment light (spherical)
- Encloses the whole scene
- **Sp:**
 - Normal given - cos-weighted sampling
 - Otherwise - uniform spherical distribution
- **Sr:**
 -uniformly sample sphere at two points p_1 and p_2
 - The direction p_1-p_2 is the uniformly distributed ray
Infinite Area Lights

Area light + directional light

Morning skylight Midday skylight Sunset environment map

© Machiraju/Möller