CMPT 373
Software Development Methods

Introduction

Nick Sumner
wsumner@sfu.ca
Introduction

- **Who am I?**
 - Nick Sumner (wsumner@sfu.ca)
 - Research Faculty
Introduction

• Who am I?
 – Nick Sumner (wsumner@sfu.ca)
 – Research Faculty

• Who is your TA?
 – Surprise! No TA.
Introduction

- **Who am I?**
 - Nick Sumner (wsumner@sfu.ca)
 - Research Faculty

- **Who is your TA?**
 - Surprise! No TA.

- **What is the course website?**
 - OR: just search for “CMPT 373 sumner”
Introduction

• Who am I?
 – Nick Sumner (wsumner@sfu.ca)
 – Research Faculty

• Who is your TA?
 – Surprise! No TA.

• What is the course website?
 – http://www.cs.sfu.ca/~wsumner/teaching/373/
 – OR: just search for “CMPT 373 sumner”

• **Where can you discuss course issues?**
 – CourSys
 (https://coursys.sfu.ca/2018sp-cmpt-373-d1/discussion/)
What is this course?

- What have you heard?
What is this course? _______________________

- What have you heard?

- **My perspective... hands on experience**
 - workflows
 - tools
 - project management
 - writing better code
 - dealing with a (possibly troublesome) customer
 - dealing with (and avoiding) problems
What is this course?

- What have you heard?
- My perspective... hands on experience
 - workflows
 - tools
 - project management
 - writing better code
 - dealing with a (possibly troublesome) customer
 - dealing with (and avoiding) problems

- Slightly different than many courses
 - Less emphasis on “getting the right answer”
 - More emphasis on being aware & using the right skills
Why take this course?

- Most software projects fail(!)
 - Up to 85% depending on definition of “failure”
Why take this course?

- Most software projects fail(!)
 - Up to 85% depending on definition of “failure”
Why take this course?

- Most software projects fail(!)
 - Up to 85% depending on definition of “failure”
Why take this course?

- Most software projects fail(!)
 - Up to 85% depending on definition of “failure”
Why take this course?

- Most software projects fail(!)
 - Up to 85% depending on definition of “failure”
Why take this course?

- Most software projects fail(!)
 - Up to 85% depending on definition of “failure”
Why take this course?

- Most software projects fail(!)
 - Up to 85% depending on definition of “failure”
Why take this course?

- Most software projects fail(!)
 - Up to 85% depending on definition of “failure”
Why take this course?

• Most software projects fail(!)
 – Up to 85% depending on definition of “failure”
Why take this course?

- Most software projects fail(!)
 - Up to 85% depending on definition of “failure”

Corrective Measures and Process

Goal
Why take this course?

- Most software projects fail(!)
 - Up to 85% depending on definition of “failure”

- Most graduates with a CS degree are not ready
 - Software engineering is about *process* and *awareness*
 - Software development is a *craft* that requires practice
Why take this course?

- Most software projects fail(!)
 - Up to 85% depending on definition of “failure”

- Most graduates with a CS degree are not ready
 - Software engineering is about process and awareness
 - Software development is a craft that requires practice

- Hands on experience yields an advantage
 - You can better understand how to create a product that has value both now and in the future.
What will we be doing?

- On your own
 - Reading (From 2 books)
 - Exercises with tools
What will we be doing?

- On your own
 - Reading (From 2 books)
 - Exercises with tools

- In groups / tutorials
 - One development project with unclear requirements
What will we be doing?

- On your own
 - Reading (From 2 books)
 - Exercises with tools

- In groups / tutorials
 - One development project with unclear requirements

- In class
 - Introduction to tools and techniques
 - Discussions about the reading
 - Discussions about the tools
 - Discussions about code
Grading

- Subject to change as necessary

- **Breakdown:**
 - (10%) Responses to reading
 - (15%) Quizzes
 - (15%) Class discussions & code reviews
 - (40%) Useful contribution to semester project
 - (20%) Exercises
Reading

- Assigned chunks of reading
 - Often ~200 pages per 1-2 weeks
 - Both books are available as e-books in library
Reading

- Assigned chunks of reading
 - Often ~200 pages per 1-2 weeks
 - Both books are available as e-books in library

- Responses
 - A 2 page critical reaction to the reading
 - Single spaced
 - Must include 3 units of:
 - A quote, with citation
 - 1-2 paragraphs discussing the quote
 - Relate the material to your own experiences
 - Form an opinion about it, and justify it
Reading

- Assigned chunks of reading
 - Often ~200 pages per 1-2 weeks
 - Both books are available as e-books in library

- Responses
 - A 2 page critical reaction to the reading
 - Single spaced
 - Must include 3 units of:
 - A quote, with citation
 - 1-2 paragraphs discussing the quote
 - Relate the material to your own experiences
 - Form an opinion about it, and justify it

- First assignment posted after class
Quizzes

- Pop quizzes will be given *throughout* the class
- **Cover material from:**
 - Reading
 - Videos
 - Exercises
 - Lectures
 - Discussion
Discussions

- Code Review Wednesdays:
Discussions

- Code Review Wednesdays:
 - Each group will submit ~100 lines of code each week by Friday, 10pm
Discussions

- **Code Review Wednesdays:**
 - Each group will submit ~100 lines of code each week by Friday, 10pm
 - I’ll review & select 1 or 2 to send to the class (I may choose some other code entirely)
Discussions

- **Code Review Wednesdays:**
 - Each group will submit ~100 lines of code each week by Friday, 10pm
 - I’ll review & select 1 or 2 to send to the class (I may choose some other code entirely)
 - Individual reviews due by 10pm Tuesdays
Discussions

- **Code Review Wednesdays:**
 - Each group will submit ~100 lines of code each week by Friday, 10pm
 - I’ll review & select 1 or 2 to send to the class (I may choose some other code entirely)
 - Individual reviews due by 10pm Tuesdays
 - We will review the code together in class on Wednesday.
Discussions

- Code Review Wednesdays:
 - Each group will submit ~100 lines of code each week by Friday, 10pm
 - I’ll review & select 1 or 2 to send to the class (I may choose some other code entirely)
 - Individual reviews due by 10pm Tuesdays
 - We will review the code together in class on Wednesday.

- **In class discussions of both code & readings focus thematically on one core issue:** Complexity
You will interact with me as a customer in tutorials
Semester project

- You will interact with me as a customer in tutorials
- The requirements of the project will change
Semester project

- You will interact with me as a customer in tutorials
- The requirements of the project *will change*
- You will use (and be evaluated in part on) skills from the exercises in the project
Semester project

- You will interact with me as a customer in tutorials
- The requirements of the project will change
- You will use (and be evaluated in part on) skills from the exercises in the project
- Different teams may receive different requirements
Semester project

- You will interact with me as a customer in tutorials.
- The requirements of the project will change.
- You will use (and be evaluated in part on) skills from the exercises in the project.
- Different teams may receive different requirements.
- You should expect to personally contribute $\geq 1K$ quality SLOC in order to receive a good grade.
Project code policy

All code pushed to a project repository may be viewed, analyzed, and critiqued by all students *in class* (even in future semesters).
Project teams

- Assigned teams of up to 8
Project teams

- Assigned teams of up to 8

- **Following an informal scrum-like process**
 - Each tutorial meeting will involve:
 - Discussion of what you did since the last meeting
 - What the present obstacles are to meeting goals
 - A plan for the next meeting
Project teams

- Assigned teams of up to 8
- Following an informal scrum-like process
 - Each tutorial meeting will involve:
 - Discussion of what you did since the last meeting
 - What the present obstacles are to meeting goals
 - A plan for the next meeting
- I will act as both customer & coach
Goals

- **Writing good code as a team**
 - Some teammates will write well from the beginning.
 - Some will need help from teammates.
Goals

- **Writing good code as a team**
 - Some teammates will write well from the beginning.
 - Some will need help from teammates.
 - Working together is the only real way.
Goals

- **Writing good code as a team**
 - Some teammates will write well from the beginning.
 - Some will need help from teammates.
 - Working together is the only real way.
 - This is just as true in industry.
Goals

- Writing good code as a team
 - Some teammates will write well from the beginning.
 - Some will need help from teammates.
 - Working together is the only real way.
 - This is just as true in industry.

- Manage complexity & change
 - Requirements will change in practice.
 - I will try to change requirements that force design changes.
Goals

• Writing good code as a team
 – Some teammates will write well from the beginning.
 – Some will need help from teammates.
 – Working together is the only real way.
 – This is just as true in industry.

• Manage complexity & change
 – Requirements will change in practice.
 – I will try to change requirements that force design changes.
 – Better designs & process will make the transitions easier.
And we’re off...