Dynamic Analysis



Dynamic Analysis

e Sometimes we want to study or adapt the behavior
of executions of a program



Dynamic Analysis

e Sometimes we want to study or adapt the behavior
of executions of a program

— Did my program ever ...?



Dynamic Analysis

e Sometimes we want to study or adapt the behavior
of executions of a program

— Did my program ever ...?
— Why/how did ... happen?



Dynamic Analysis

e Sometimes we want to study or adapt the behavior
of executions of a program

— Did my program ever ...?
— Why/how did ... happen?
— Where am | spending time?



Dynamic Analysis

e Sometimes we want to study or adapt the behavior
of executions of a program

— Did my program ever ...?
— Why/how did ... happen?
— Where am | spending time?

— Where might | parallelize?



Dynamic Analysis

e Sometimes we want to study or adapt the behavior
of executions of a program

— Did my program ever ...?
— Why/how did ... happen?
— Where am | spending time?

— Where might | parallelize?

— Tolerate errors.



Dynamic Analysis

e Sometimes we want to study or adapt the behavior
of executions of a program

— Did my program ever ...?
— Why/how did ... happen?
— Where am | spending time?

— Where might | parallelize?

— Tolerate errors.
— Manage memory / resources.



e.g. Reverse Engineering

Static CFG (from e.g. Apple Fairplay):
F

J/j/ F‘.
This is the result of a control flow flattening obfuscation.
[http://tigress.cs.arizona.edu/transformPage/docs/flatten/]



http://tigress.cs.arizona.edu/transformPage/docs/flatten/

e.g. Reverse Engineering

Static CFG (from e.g. Apple Fairplay):

T\

Dynamically Simplified CFG:

10



How?

e Can record the execution

I Input | ={Programj »

11



How?

e Can record the execution

Ilnput

Program

»I Trace

12



How?

e Can record the execution

Ilnput

Program

»I Trace

Analysis

13



How?

e Can record the execution

Ilnput

Program

»I Trace

Analysis

»IResuIts

14



How?

e Can record the execution

— Record to a trace
— Analyze post mortem / offline
— Scalability issues: need enough space to store it

15



How?

e Can record the execution

e Can perform analysis online

16



How?

e Can record the execution

e Can perform analysis online

— Instrument the program
— Modified program invokes code to 'analyze’ itself

17



How?

e Can record the execution

e Can perform analysis online

e Can do both

— Lightweight recording
— Instrument a replayed instance of the execution

18



How?

e Can record the execution

e Can perform analysis online

e Can do both

— Light

— |nstru

Some analyses only make sense online.
Why?

DN

19



Simple Idea: Basic Block Profiling

Knowing where we are spending time is useful:
o Goal: Which basic blocks execute most frequently?

20



Simple Idea: Basic Block Profiling

Knowing where we are spending time is useful:
o Goal: Which basic blocks execute most frequently?

« How can we modify our program to find this?

BB:

BB:1

21



Simple Idea: Basic Block Profiling

Knowing where we are spending time is useful:

o Goal: Which basic blocks execute most frequently?

« How can we modify our program to find this?

BB:

BB:1

Start:

for 1 1n BBs:
count[i] = 0

End:

count[2] += 1

foo()
bar ()

X
y

for 1 1n BBs:
print(count[1])

22



Simple Idea: Basic Block Profiling

e Big concern: How efficient is it?

— The more overhead added, the less practical the tool

23



Simple Idea: Basic Block Profiling

e Big concern: How efficient is it?

— The more overhead added, the less practical the tool

4/\
\/

24



Simple Idea: Basic Block Profiling

e Big concern: How efficient is it?

— The more overhead added, the less practical the tool

count[0] += 1

count[1l] += 1 count[2] += 1

\\\\\\\*u‘:;/////

count[3] += 1

25



Simple Idea: Basic Block Profiling

e Big concern: How efficient is it?

— The more overhead added, the less practical the tool

count[0] += 1

count[1l] += 1 count[2] += 1

\\\\\\\*u‘:;/////

count[3] += 1

— Canwe do betE“er?

26



Simple Idea: Basic Block Profiling

e Big concern: How efficient is it?

— The more overhead added, the less practical the tool

count[0] += 1

count[1l] += 1 eyt 22—

— Canwe do betE“er?

count[0O] = count[B%

count[2] - count[1]



Simple Idea: Basic Block Profiling

e Big concern: How efficient is it?

— The more overhead added, the less practical the tool

count[0] += 1

count[1l] += 1 eyt 22—

courtf3— =1 |

Is it possible to do even better?

— Canwe do betE“er?

count[0Q]
count[2]

count[B%

count[0] - count[1]



Efficiency Tactics

e Abstraction

29



Efficiency Tactics

o |dentify & avoid redundant information

30



Efficiency Tactics

e Abstraction
e |dentify & avoid redundant information
e Sampling

31



Efficiency Tactics

e« Compression / encoding

32



Efficiency Tactics

o Abstraction

e |dentify & avoid redundant information
e Sampling

« Compression / encoding

e Profile guided instrumentation

33



Efficiency Tactics

o Abstraction

e |dentify & avoid redundant information
e Sampling

« Compression / encoding

o Profile guided instrumentation

e Thread local analysis & inference

34



Path Profiling

o Goal: How often does an acyclic path execute?

A
B = C
D

35



Path Profiling

o Goal: How often does an acyclic path execute?

— Could log the trace...

log(A)  TA

log(B) B'A»% log(C)
log(D) \{D

log(E) [E »F | log(D)

recordPath()

36



Path Profiling

o Goal: How often does an acyclic path execute?

— Could log the trace... A
— Could encode the paths id=4
id=2

Path Encoding B - C
ABDEF 0]
ABDF 1 D
ABCDEF 2 id+=1
ABCDF 3
ACDEF 4 E > F
ACDF > count[id]+=1




Path Profiling

e Step 1: Count the # of paths from each node to the
exit

A




Path Profiling

e Step 1: Count the # of paths from each node to the
exit

A




Path Profiling

e Step 1: Count the # of paths from each node to the

exit

A

40



Path Profiling

e Step 1: Count the # of paths from each node to the

exit

A

41



Path Profiling

e Step 1: Count the # of paths from each node to the
exit

42



Path Profiling

e Step 1: Count the # of paths from each node to the
exit

43



Path Profiling

e Step 2: Partition the encoding space locally at each
node

count[id]+=1
44



Path Profiling

e Step 2: Partition the encoding space IocaIIy at each

node I

45



Path Profiling

e Step 2: Partition the encoding space locally at each
node R

46



Path Profiling

e Step 2: Partition the encoding space locally at each
node R

47



Path Profiling

e Step 2: Partition the encoding space locally at each
node R

48



Path Profiling

e Step 2: Partition the encoding space IocaIIy at each
node R

49



Path Profiling

e Step 2: Partition the encoding space locally at each

node {d=0 e
id+=4

count[id]+=1

50



Path Profiling

e Step 2: Partition the encoding space locally at each
node

count[id]+=1

51



Path Profiling

e Step 2: Partition the encoding space locally at each
node

count[id]+=1

52



Path Profiling

e Step 2: Partition the encoding space locally at each

node id=0m
id=4
B 4. Cl2
d=2
Optimize ¥
id+=1
E 1 Fl 1

count[id]+=1 N



Path Profiling: Decoding

How do we know which IDs map
to which paths?

count[id]+=1
54



Path Profiling: Decoding

How do we know which IDs map
to which paths?

e Naive:
— Keep a dictionary (large)

count[id]+=1 _



Path Profiling: Decoding

How do we know which IDs map
to which paths?

e Naive:
— Keep a dictionary (large)

Why could it be large?

count[id]+=1 B}



Path Profiling: Decoding

How do we know which IDs map
to which paths?

e Better:

— Decode using same graph

— Follow the CFG and only one
path will 'fit’

countlid]+=1 _



Path Profiling: Decoding

How do we know which IDs map id=3
to which paths?

e Better:

— Decode using same graph

— Follow the CFG and only one
path will 'fit’

count[id]+=1 N



Path Profiling: Decoding

How do we know which IDs map id=3
to which paths?

e Better:

— Decode using same graph

— Follow the CFG and only one
path will 'fit’

count[id]+=1 N



Path Profiling: Decoding

How do we know which IDs map id=3
to which paths?

e Better:

— Decode using same graph

— Follow the CFG and only one
path will 'fit’

count[id]+=1

60



Path Profiling: Decoding

How do we know which IDs map id=3
to which paths?

e Better:

— Decode using same graph

— Follow the CFG and only one
path will 'fit’

count[id]+=1

61



Path Profiling: Decoding

How do we know which IDs map id=3
to which paths?

e Better:

— Decode using same graph

— Follow the CFG and only one
path will 'fit’

count[id]+=1

62



Path Profiling: Results

Benchmark Base PP QPT2 PP/ Path Edge Hashed | Inst/

Time Overhead Overhead QPT Inc Inc Inc Inc

(sec) % % (million) (x Path) %
099.go 885.0 534 24.1 2.2 1002.4 1.5 27.7 33.2
124. m88ksim 571.0 35.6 18.7 1.9 4824.9 1.2 3.9 16.2
126.gcc 322.0 96.9 52.8 1.8 9.4 1.7 16.8 15.1
129.compress 351.0 19.4 21.9 0.9 3015.7 1.5 0.0 16.6
130.11 480.0 25.4 26.7 1.0 3282.4 1.4 1.2 16.8
132.1jpeg 749.0 17.4 16.3 1.1 1164.9 1.1 1.2 31.0
134.perl 332.0 72.9 51.5 1.4 1133.0 1.9 234 22.2
147 .vortex 684.0 37.7 34.1 1.1 3576.3 1.5 23.7 20.3
CINT9S Avg: 44 8 30.8 1.4 22251.1 1.5 12.2 214
101.tomcatv 503.0 19.9 2.8 7.1 574.6 1.1 05.8 93.0
102.swim 691.0 8.4 0.6 14.5 163.4 1.0 0.2 | 1629
103.su2cor 465.0 10.1 5.8 1.7 558.1 1.2 21.5 92.8
104.hydro2d 811.0 37.7 5.8 6.5 1690.7 1.7 77.8 43.1
107.mgrid 872.0 6.3 3.2 2.0 1035.2 1.0 7.7 | 1335
110.applu 715.0 71.0 12.0 5.9 2111.4 1.1 99.1 44.8
125.turb3d 1066.0 5.5 7.4 0.7 2952.8 1.1 0.0 56.5
141.apsi 492.0 7.7 1.8 4.2 599.3 1.1 3.5 84.0
145.fpppp 1927.0 14.6 -2.6 -5.6 395.0 1.8 425 | 636.0
146.wave5 620.0 16.9 6.1 2.8 737.3 1.3 65.0 74.1
CFP95 Avg: 19.8 4.3 4.0 1081.8 1.2 41.3 | 142.1
Average: 30.9 16.1 2.8 1601.5 1.3 28.4 88.4




Path Profiling: Results

Benchmark Base PP QPT2 PP/ Path Edge Hashed | Inst/

Time J Overhead J Overhead QPT Inc Inc Inc Inc

(sec) % % (million) (x Path) %
099.go 885.0 534 24.1 2.2 1002.4 1.5 27.7 33.2
124. m88ksim 571.0 35.6 18.7 1.9 4824.9 1.2 3.9 16.2
126.gcc 322.0 96.9 52.8 1.8 9.4 1.7 16.8 15.1
129.compress 351.0 19.4 21.9 0.9 3015.7 1.5 0.0 16.6
130.11 480.0 25.4 26.7 1.0 3282.4 1.4 1.2 16.8
132.1jpeg 749.0 17.4 16.3 1.1 1164.9 1.1 1.2 31.0
134.perl 332.0 72.9 51.5 1.4 1133.0 1.9 234 22.2
147 .vortex 684.0 37.7 34.1 1.1 3576.3 1.5 23.7 20.3
CINT9S Avg: 44.8 30.8 1.4 22251.1 1.5 12.2 214
101.tomcatv 503.0 19.9 2.8 7.1 574.6 1.1 05.8 93.0
102.swim 691.0 8.4 0.6 14.5 163.4 1.0 0.2 | 1629
103.su2cor 465.0 10.1 5.8 1.7 558.1 1.2 21.5 92.8
104.hydro2d 811.0 37.7 5.8 6.5 1690.7 1.7 77.8 43.1
107.mgrid 872.0 6.3 3.2 2.0 1035.2 1.0 7.7 | 1335
110.applu 715.0 71.0 12.0 5.9 2111.4 1.1 99.1 44.8
125.turb3d 1066.0 5.5 7.4 0.7 2952.8 1.1 0.0 56.5
141.apsi 492.0 7.7 1.8 4.2 599.3 1.1 3.5 84.0
145.fpppp 1927.0 14.6 -2.6 -5.6 395.0 1.8 425 | 636.0
146.wave5 620.0 16.9 6.1 2.8 737.3 1.3 65.0 74.1
CFP95 Avg: 19.8 4.3 4.0 1081.8 1.2 41.3 | 142.1
Average: 30.9 16.1 2.8 1601.5 1.3 28.4 88.4




Path Profiling: Results

Benchmark Base QPT2 PP/ Path Edge Hashed | Inst/

Time Overhead Overhead | QPT Inc Inc Inc Inc

(sec) % % (million) (x Path) %
099.go 885.0 534 24.1 2.2 1002.4 1.5 27.7 33.2
124. m88ksim 571.0 35.6 18.7 1.9 4824.9 1.2 3.9 16.2
126.gcc 322.0 96.9 52.8 1.8 9.4 1.7 16.8 15.1
129.compress 351.0 19.4 21.9 0.9 3015.7 1.5 0.0 16.6
130.11 480.0 25.4 26.7 1.0 3282.4 1.4 1.2 16.8
132.1jpeg 749.0 17.4 16.3 1.1 1164.9 1.1 1.2 31.0
134.perl 332.0 72.9 51.5 1.4 1133.0 1.9 234 22.2
147 .vortex 684.0 37.7 34.1 1.1 3576.3 1.5 23.7 20.3
CINT9S Avg: 44 8 30.8 1.4 22251.1 1.5 12.2 214
101.tomcatv 503.0 19.9 2.8 7.1 574.6 1.1 05.8 93.0
102.swim 691.0 8.4 0.6 14.5 163.4 1.0 0.2 | 1629
103.su2cor 465.0 10.1 5.8 1.7 558.1 1.2 21.5 92.8
104.hydro2d 811.0 37.7 5.8 6.5 1690.7 1.7 77.8 43.1
107.mgrid 872.0 6.3 3.2 2.0 1035.2 1.0 7.7 | 1335
110.applu 715.0 71.0 12.0 5.9 2111.4 1.1 99.1 44.8
125.turb3d 1066.0 5.5 7.4 0.7 2952.8 1.1 0.0 56.5
141.apsi 492.0 7.7 1.8 4.2 599.3 1.1 3.5 84.0
145.fpppp 1927.0 14.6 -2.6 -5.6 395.0 1.8 425 | 636.0
146.wave5 620.0 16.9 6.1 2.8 737.3 1.3 65.0 74.1
CFP95 Avg: 19.8 4.0 1081.8 1.2 41.3 | 142.1
Average: 30.9 2.8 1601.5 1.3 28.4 88.4




Path Profiling: Results

Benchmark Base PP QPT2 PP/ Path Edge Hashed | Inst/

Time Overhead Overhead QPT Inc Inc Inc Inc

(sec) % % (million) (x Path) %
099.go 885.0 534 24.1 2.2 1002.4 1.5 27.7 33.2
124. m88ksim 571.0 35.6 18.7 1.9 4824.9 1.2 3.9 16.2
126.gcc 322.0 96.9 52.8 1.8 9.4 1.7 16.8 15.1
129.compress 351.0 19.4 21.9 0.9 3015.7 1.5 0.0 16.6
130.11 480.0 25.4 26.7 1.0 3282.4 1.4 1.2 16.8
132.1jpeg 749.0 17.4 16.3 1.1 1164.9 1.1 1.2 31.0
134.perl 332.0 72.9 51.5 1.4 1133.0 1.9 234 22.2
147 .vortex 684.0 37.7 34.1 1.1 3576.3 1.5 23.7 20.3

30.8 1.4 22251.1

101.tomcatv 503.0 19.9 2.8 7.1 574.6 1.1 05.8 93.0
102.swim 691.0 8.4 0.6 14.5 163.4 1.0 0.2 | 1629
103.su2cor 465.0 10.1 5.8 1.7 558.1 1.2 21.5 92.8
104.hydro2d 811.0 37.7 5.8 6.5 1690.7 1.7 77.8 43.1
107.mgrid 872.0 6.3 3.2 2.0 1035.2 1.0 7.7 | 1335
110.applu 715.0 71.0 12.0 5.9 2111.4 1.1 99.1 44.8
125.turb3d 1066.0 5.5 7.4 0.7 2952.8 1.1 0.0 56.5
141.apsi 492.0 7.7 1.8 4.2 599.3 1.1 3.5 84.0
145.fpppp 1927.0 14.6 -2.6 -5.6 395.0 1.8 425 | 636.0
146.wave5 620.0 16.9 6.1 2.8 737.3 1.3 65.0 74.1
CFP95 Avg: 19.8 4.3 4.0 1081.8 1.2 41.3 | 142.1
Average: 30.9 16.1 2.8 1601.5 1.3 28.4 88.4




Path Profiling: Results

Benchmark Base PP QPT2 PP/ Path Edge Hashed | Inst/

Time Overhead Overhead QPT Inc Inc Inc Inc

(sec) % % (million) (x Path) %
099.go 885.0 534 24.1 2.2 1002.4 1.5 27.7 33.2
124 m88ksim 571.0 35.6 18.7 1.9 4824.9 1.2 39 16.2
126.gcc 322.0 96.9 52.8 1.8 9.4 1.7 16.8 15.1
129.compress 351.0 19.4 21.9 0.9 3015.7 1.5 0.0 16.6
130.11 480.0 254 26.7 1.0 3282.4 1.4 1.2 16.8
132.ijpeg 749.0 17.4 16.3 1.1 1164.9 1.1 1.2 31.0
134 perl 332.0 72.9 51.5 1.4 1133.0 1.9 234 22.2
147 .vortex 684.0 37.7 34.1 1.1 3576.3 1.5 23.7 20.3
CINT95 Avg: 44.8 30.8 1.4 22251.1 1.5 12.2 21.4
101.tomcatv 503.0 19.9 2.8 7.1 574.6 1.1 95.8 93.0
102.sw ' . 162.9
3s: What can/can't you infer from these results? | o3
104.hy 43.1
107.mgrid 872.0 6.3 3.2 2.0 1035.2 1.0 7.7 | 1335
110.applu 715.0 71.0 12.0 59 21114 1.1 99.1 44.8
125.turb3d 1066.0 5.5 7.4 0.7 2952.8 1.1 0.0 56.5
141.apsi 492.0 7.7 1.8 4.2 599.3 1.1 3.5 84.0
145 fpppp 1927.0 14.6 -2.6 -5.6 395.0 1.8 425 | 636.0
146.wave5 620.0 16.9 6.1 2.8 737.3 1.3 65.0 74.1
CFP9YS Avg: 19.8 4.3 4.0 1081.8 1.2 41.3 | 142.1
Average: 30.9 16.1 2.8 1601.5 1.3 28.4 88.4




Path Profiling: Results

Benchmark Base PP QPT2 PP/ Path Edge Hashed | Inst/

Time Overhead Overhead QPT Inc Inc Inc Inc

(sec) % % (million) (x Path) %
099.go 885.0 534 24.1 2.2 1002.4 1.5 27.7 33.2
124 m88ksim 571.0 35.6 18.7 1.9 48249 1.2 3.9 16.2
126.gcc 322.0 96.9 52.8 1.8 9.4 1.7 16.8 15.1
129.compress 351.0 19.4 21.9 0.9 3015.7 1.5 0.0 16.6
130.51 480.0 254 26.7 1.0 3282.4 1.4 1.2 16.8
132.1jpeg 749.0 17.4 16.3 1.1 1164.9 1.1 1.2 31.0
134 .perl 332.0 729 51.5 1.4 1133.0 1.9 234 22.2
1477 .vortex 684.0 37.7 34.1 1.1 3576.3 1.5 23.7 20.3
CINT9S Avg: 44 .8 30.8 1.4 22251.1 1.5 12.2 21.4
101.tomcatv 503.0 19.9 2.8 7.1 574.6 1.1 95.8 93.0
102.sw ' . 162.9
3. What can/can't you infer from these results? | s
104 .hy 43.1
10)7 oA | I N A2 17 20 | 1035 9 10N T 133.5
2What would you add or change to the evaluation?
141.apsi 492.0 7.7 1.8 4.2 599.3 1.1 3.5 84.0
145.fpppp 1927.0 14.6 -2.6 -3.6 395.0 1.8 42.5 | 636.0
146.waves 620.0 16.9 6.1 2.8 737.3 1.3 65.0 74.1
CFP95 Avg: 19.8 4.3 4.0 1081.8 1.2 41.3 142.1
Average: 30.9 16.1 2.8 1601.5 1.3 284 388.4




Path Profiling

Are there cases where this approach fails?

69



Path Profiling

o« What about loops / cycles?

70



Path Profiling

o« What about loops / cycles?

— Does the existing approach work?

71



Path Profiling

o« What about loops / cycles?

— Does the existing approach work?
— How could we resolve it?

72



Path Profiling

o« What about loops / cycles?

— Does the existing approach work?

— How could we resolve it?




Path Profiling

o« What about loops / cycles?

— Does the existing approach work?
— How could we resolve it?

EXIT

74



Path Profiling

o« What about loops / cycles?

— Does the existing approach work?
— How could we resolve it?

EXIT

75



Path Profiling

o« What about loops / cycles?

— Does the existing approach work?
— How could we resolve it?

76



Path Profiling

o« What about loops / cycles?

— Does the existing approach work?
— How could we resolve it?

77



Path Profiling

o« What about loops / cycles?

— Does the existing approach work?
— How could we resolve it?

ENTRD

What do these edges encode?

78



Path Profiling

e Path profiling is a dynamic analysis

— It analyzes an actual execution

79



Path Profiling

e Path profiling is a dynamic analysis

— It analyzes an actual execution

- “What were frequent paths for this input”

80



Path Profiling

e Path profiling is a dynamic analysis

— It analyzes an actual execution

- “What were frequent paths for this input”
- “What were frequent paths for this set of inputs”

81



Path Profiling

o Path profiling is a dynamic analysis

— It analyzes an actual execution

- “What were frequent paths for this input”
- "What were frequent paths for this set of inputs”

o« What if you don’t have an input for the behavior
you want to analyze?

82



Approximation

Modeled program behaviors

83



Approximation

Modeled program behaviors

Consider some behaviors possible when they are not.

84



Approximation

Modeled program behaviors

Underapproximate

lgnore some behaviors that are possible.

85



Approximation

Modeled program behaviors

Overapproximate

Underapproximate

86



Approximation

e Dynamic Analysis
— Analyzed € Feasible

87



Approximation

e Dynamic Analysis
— Analyzed € Feasible

Analyzed

88



Approximation

e Dynamic Analysis

— Analyzed € Feasible
— As # tests 1, Analyzed — Feasible

Analyzed

89



How / When to Instrument

e Source / IR Instrumentation

— LLVM, CIL, Soot, Wala, ...
— During (re)compilation
— Requires an analysis dedicated build

90


https://llvm.org/
https://github.com/cil-project/cil
https://sable.github.io/soot/
https://github.com/wala/WALA

How / When to Instrument

e Source / IR Instrumentation

e Static Binary Rewriting

— Uroboros, DynamoRIO, SecondWrite,
— Applies to arbitrary binaries
— Imprecise IR info, but more complete binary behavior

91


https://github.com/s3team/uroboros

How / When to Instrument

e Source / IR Instrumentation

e Static Binary Rewriting

 Dynamic Binary Instrumentation

— Valgrind, Pin, Qemu (& other Vms)
— Can adapt at runtime, but less info than IR

92



Phases of Dynamic Analysis

In general, 2-3 phases occur:
1) Instrumentation

— Add code to the program for data collection/analysis

93



Phases of Dynamic Analysis

In general, 2-3 phases occur:
1) Instrumentation

2) Execution

— Run the program an analyze its actual behavior

94



Phases of Dynamic Analysis

In general, 2-3 phases occur:
1) Instrumentation

2) Execution

3) (Optional) Postmortem Analysis

— Perform any analysis that can be deferred after
termination

95



Phases of Dynamic Analysis

In general, 2-3 phases occur:

1) Instrumentation

2) Execution

3) (Optional) Postmortem Analysis

Very, very common mistake to mix 1 & 2.

96



Static Instrumentation

1) Compile whole program to IR
2) Instrument / add code directly to the IR

3) Generate new program that performs
tracing/analysis

4) Execute

97



Dynamic Binary Instrumentation

1) Compile program as usual

2) Run program under analysis framework
(Valgrind, PIN, Qemu, etc)
— Instrument & execute in same command:

— Fetch & instrument each basic block individually
— Execute each basic block

valgrind --tool=memcheck ./myBuggyProgram

98



Example: Address Sanitizer

o Address Sanitizer is a built-in dynamic analysis
component in the clang compiler

e Static instrumentation

99



Example: Address Sanitizer

o Address Sanitizer is a built-in dynamic analysis
component in the clang compiler

e Finds:

— Use-after-free
— {heap,stack,global}-buffer overflows

100



Example: Address Sanitizer

o Address Sanitizer is a built-in dynamic analysis
component in the clang compiler

e Used extensively in Google programs like Chrome

101



Example: Address Sanitizer

How?

* Replacesmalloc & free

102



Example: Address Sanitizer

How?

* Replacesmalloc & free
e Memory around malloced chunks is poisoned

ptr = malloc(sizeof (MyStruct));

ptr:

103




Example: Address Sanitizer

How?

* Replacesmalloc & free

e Memory around malloced chunks is poisoned
e Freed memory is poisoned

ptr:

free(ptr);

104



Example: Address Sanitizer

How?

* Replacesmalloc & free

e Memory around malloced chunks is poisoned
e Freed memory is poisoned
e Space around buffers is poisoned

_ buffer[6]
void foo() {

int buffer|[5];
}

buffer[0]

105




Example: Address Sanitizer

How?

* Replacesmalloc & free

e Any access of a poisoned value reports an error.

106



Example: Address Sanitizer

How? *address = ...

1 Instrumentation

107



Example: Address Sanitizer

How? *address = ...

1 Instrumentation

if (IsPoisoned(address)) {
ReportError(address, kAccessSize, kIsWrite);
}

*address = ...;

108



Example: Address Sanitizer

How? *address = ...

1 Instrumentation

if (IsPoisoned(address)) {
ReportError(address, kAccessSize, kIsWrite);
}

*address = ...;
Difficult! Why?

e Instrumenting every memory access is costly
e Tracking the status of all memory is tricky

109



Example: Address Sanitizer

Need to know whether any byte of
application memory is poisoned.

Application Memory

110



Example: Address Sanitizer

e Maintain 2 views on memory:

Application Memory Shadow Memory

111



Example: Address Sanitizer

« Shadow memory is a pervasive dynamic analysis
tool

— For every bit/byte/word/chunk/allocation/page,
maintain information in a compact table

112



Example: Address Sanitizer

« Shadow memory is a pervasive dynamic analysis
tool

— For every bit/byte/word/chunk/allocation/page,
maintain information in a compact table

Where have you encountered this before?
(Think OS)

113



Example: Address Sanitizer

« Shadow memory is a pervasive dynamic analysis
tool

— Common in runtime support: e.g. page tables

114



Example: Address Sanitizer

« Shadow memory is a pervasive dynamic analysis
tool

e |[n Asan:
— In an 8 byte chunk, only first k may be addressable

k

Memory:E Shadow: ? 115



Example: Address Sanitizer

« Shadow memory is a pervasive dynamic analysis
tool

e |n Asan:

— In an 8 byte chunk, only first k may be addressable
— All 8 bytes unpoisoned: shadow value is O.

Memory: I Shadow: O 116



Example: Address Sanitizer

« Shadow memory is a pervasive dynamic analysis
tool

e |[n Asan:
— In an 8 byte chunk, only first k may be addressable

— All 8 bytes poisoned: shadow value is negative.

Memory: IR Shadow: -1 117



Example: Address Sanitizer

« Shadow memory is a pervasive dynamic analysis
tool

— For every bit/byte/word/chunk/allocation/page,
maintain information in a compact table

— Common in runtime support: e.g. page tables

e |[n Asan:
— In an 8 byte chunk, only first k may be addressable
— All 8 bytes unpoisoned: shadow value is O.
— All 8 bytes poisoned: shadow value is negative.
— First k bytes are unpoisoned: shadow value is k.

Memory: I Shadow: 5 118




Example: Address Sanitizer

e (64bit) Shadow Mapping:

— Preallocate large block of memory
— Shadow = (Mem >> 3) + Ox7fff8000:;

119



Example: Address Sanitizer

e (64bit) Shadow Mapping:

e The shadow memory itself must also be considered
poisoned.

Why?!

120



Dynamic Analysis

e Analyze the actual/observed behaviors of a program.

121



Dynamic Analysis

e Modify the program's behavior in order to collect
iInformation.

122



Dynamic Analysis

o Analyze the actual/observed behaviors of a program.

 Modify the program's behavior in order to collect
information.

e Analyze this information either online or offline.

123



Moving Forward

e Yet often you will want to deeply analyze a program
without running it at all...

124



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124

