
Dynamic Analysis

2

Dynamic Analysis

● Sometmes we want to study or adapt the behavior
of executons of a program

3

Dynamic Analysis

● Sometmes we want to study or adapt the behavior
of executons of a program

– Did my program ever …?

4

Dynamic Analysis

● Sometmes we want to study or adapt the behavior
of executons of a program

– Did my program ever …?

– Why/how did … happen?

5

Dynamic Analysis

● Sometmes we want to study or adapt the behavior
of executons of a program

– Did my program ever …?

– Why/how did … happen?

– Where am I spending tme?

6

Dynamic Analysis

● Sometmes we want to study or adapt the behavior
of executons of a program

– Did my program ever …?

– Why/how did … happen?

– Where am I spending tme?

– Where might I parallelize?

7

Dynamic Analysis

● Sometmes we want to study or adapt the behavior
of executons of a program

– Did my program ever …?

– Why/how did … happen?

– Where am I spending tme?

– Where might I parallelize?

– Tolerate errors.

8

Dynamic Analysis

● Sometmes we want to study or adapt the behavior
of executons of a program

– Did my program ever …?

– Why/how did … happen?

– Where am I spending tme?

– Where might I parallelize?

– Tolerate errors.

– Manage memory / resources.

9

e.g. Reverse Engineering

Statc CFG (from e.g. Apple Fairplay):

This is the result of a control fow falening obfuscaton.
[hlp://tgress.cs.arizona.edu/transformPaage/docs/falen/]

http://tigress.cs.arizona.edu/transformPage/docs/flatten/

10

e.g. Reverse Engineering

Statc CFG (from e.g. Apple Fairplay):

Dynamically Simplifed CFG:

11

How?

● Can record the executon

Parogram

12

How?

● Can record the executon

Parogram

13

How?

● Can record the executon

Parogram Analysis

14

How?

● Can record the executon

Parogram Analysis

15

How?

● Can record the executon

– Record to a trace
– Analyze post mortem / ofine
– Scalability issues: need enough space to store it

16

How?

● Can record the executon

– Record to a trace
– Analyze post mortem / ofine
– Scalability issues: need enough space to store it

● Can perform analysis online

17

How?

● Can record the executon

– Record to a trace
– Analyze post mortem / ofine
– Scalability issues: need enough space to store it

● Can perform analysis online

– Instrument the program
– Modifed program invokes code to 'analyze' itself

18

How?

● Can record the executon

– Record to a trace
– Analyze post mortem / ofine
– Scalability issues: need enough space to store it

● Can perform analysis online

– Instrument the program
– Modifed program invokes code to 'analyze' itself

● Can do both

– Lightweight recording
– Instrument a replayed instance of the executon

19

How?

● Can record the executon

– Record to a trace
– Analyze post mortem / ofine
– Scalability issues: need enough space to store it

● Can perform analysis online

– Instrument the program
– Modifed program invokes code to 'analyze' itself

● Can do both

– Lightweight recording
– Instrument a replayed instance of the executon

Some analyses only make sense online.
Why?

20

Simple Idea: Basic Block Parofling

Knowing where we are spending tme is useful:

● Goal: Which basic blocks execute most frequently?

21

Simple Idea: Basic Block Parofling

Knowing where we are spending tme is useful:

● Goal: Which basic blocks execute most frequently?

● How can we modify our program to fnd this?

BB:0

BB:1 BB:2

BB:3

?

22

Simple Idea: Basic Block Parofling

Knowing where we are spending tme is useful:

● Goal: Which basic blocks execute most frequently?

● How can we modify our program to fnd this?

BB:0

BB:1 BB:2

BB:3

count[2] += 1

x = foo()
y = bar()
...

for i in BBs:
 count[i] = 0

for i in BBs:
 print(count[i])

Start: End:

23

Simple Idea: Basic Block Parofling

● Big concern: How efcient is it?

– The more overhead added, the less practcal the tool

24

Simple Idea: Basic Block Parofling

● Big concern: How efcient is it?

– The more overhead added, the less practcal the tool

25

Simple Idea: Basic Block Parofling

● Big concern: How efcient is it?

– The more overhead added, the less practcal the tool

count[0] += 1
…

count[1] += 1
…

count[2] += 1
…

count[3] += 1
…

26

Simple Idea: Basic Block Parofling

● Big concern: How efcient is it?

– The more overhead added, the less practcal the tool

– Can we do beler?

count[0] += 1
…

count[1] += 1
…

count[2] += 1
…

count[3] += 1
…

27

Simple Idea: Basic Block Parofling

● Big concern: How efcient is it?

– The more overhead added, the less practcal the tool

– Can we do beler?

count[0] += 1
…

count[1] += 1
…

count[2] += 1
…

count[3] += 1
…

count[0] = count[3]
count[2] = count[0] - count[1]
count[0] = count[3]count[0] = count[3]

28

Simple Idea: Basic Block Parofling

● Big concern: How efcient is it?

– The more overhead added, the less practcal the tool

– Can we do beler?

count[0] += 1
…

count[1] += 1
…

count[2] += 1
…

count[3] += 1
…

count[0] = count[3]
count[2] = count[0] - count[1]
count[0] = count[3]count[0] = count[3]

Is it possible to do even beler?

29

Efciency Tactcs

● Abstracton

30

Efciency Tactcs

● Abstracton

● Identfy & avoid redundant informaton

31

Efciency Tactcs

● Abstracton

● Identfy & avoid redundant informaton

● Sampling

32

Efciency Tactcs

● Abstracton

● Identfy & avoid redundant informaton

● Sampling

● Compression / encoding

33

Efciency Tactcs

● Abstracton

● Identfy & avoid redundant informaton

● Sampling

● Compression / encoding

● Parofle guided instrumentaton

34

Efciency Tactcs

● Abstracton

● Identfy & avoid redundant informaton

● Sampling

● Compression / encoding

● Parofle guided instrumentaton

● Thread local analysis & inference

35

Paath Parofling

● Goal: How ofen does an acyclic path execute?

A

B C

D

E F

36

Paath Parofling

● Goal: How ofen does an acyclic path execute?

– Could log the trace... A

B C

D

E F

log(A)

log(B)

log(D)

log(C)

log(E) log(D)

recordPaath()

37

Paath Parofling

● Goal: How ofen does an acyclic path execute?

– Could log the trace...

– Could encode the paths
A

B C

D

E F

id=2

id=4

id+=1

count[id]+=1

Paath Encoding

ABDEF 0

ABDF 1

ABCDEF 2

ABCDF 3

ACDEF 4

ACDF 5

38

Paath Parofling

● Step 1: Count the # of paths from each node to the
exit

A

B C

D

E F 1

39

Paath Parofling

● Step 1: Count the # of paths from each node to the
exit

A

B C

D

E F 11

40

Paath Parofling

● Step 1: Count the # of paths from each node to the
exit

A

B C

D

E F

2

11

41

Paath Parofling

● Step 1: Count the # of paths from each node to the
exit

A

B C

D

E F

2

2

11

42

Paath Parofling

● Step 1: Count the # of paths from each node to the
exit

A

B C

D

E F

4 2

2

11

43

Paath Parofling

● Step 1: Count the # of paths from each node to the
exit

A

B C

D

E F

6

4 2

2

11

44

Paath Parofling

● Step 2: Paartton the encoding space locally at each
node

A

B C

D

E F

6

4 2

2

11

id=0

count[id]+=1

45

Paath Parofling

● Step 2: Paartton the encoding space locally at each
node

A

B C

D

E F

6

4 2

2

11

n1

n2 n3 n4

exit

k2 k3 k4

id=0

count[id]+=1

K1 = ?

46

Paath Parofling

● Step 2: Paartton the encoding space locally at each
node

A

B C

D

E F

6

4 2

2

11

n1

n2 n3 n4

exit

k2 k3 k4

id=0

count[id]+=1

k1=k2+k3+k4

47

Paath Parofling

● Step 2: Paartton the encoding space locally at each
node

A

B C

D

E F

6

4 2

2

11

n1

n2 n3 n4

exit

+0

k2 k3 k4

id=0

count[id]+=1

k1=k2+k3+k4

48

Paath Parofling

● Step 2: Paartton the encoding space locally at each
node

A

B C

D

E F

6

4 2

2

11

n1

n2 n3 n4

exit

+0

k2 k3 k4

+k2

id=0

count[id]+=1

k1=k2+k3+k4

49

Paath Parofling

● Step 2: Paartton the encoding space locally at each
node

A

B C

D

E F

6

4 2

2

11

n1

n2 n3 n4

exit

+0

k2 k3 k4

+k2
+(k2+k3)

id=0

count[id]+=1

k1=k2+k3+k4

50

Paath Parofling

● Step 2: Paartton the encoding space locally at each
node

A

B C

D

E F

6

4 2

2

11

n1

n2 n3 n4

exit

+0

k2 k3 k4

+k2
+(k2+k3)

id+=4

id=0

count[id]+=1

51

Paath Parofling

● Step 2: Paartton the encoding space locally at each
node

A

B C

D

E F

6

4 2

2

11

n1

n2 n3 n4

exit

+0

k2 k3 k4

+k2
+(k2+k3)

id+=2

id+=4

id=0

count[id]+=1

52

Paath Parofling

● Step 2: Paartton the encoding space locally at each
node

A

B C

D

E F

6

4 2

2

11

n1

n2 n3 n4

exit

+0

k2 k3 k4

+k2
+(k2+k3)

id+=1

id+=2

id+=4

id=0

count[id]+=1

53

Paath Parofling

● Step 2: Paartton the encoding space locally at each
node

A

B C

D

E F

6

4 2

2

11

n1

n2 n3 n4

exit

+0

k2 k3 k4

+k2
+(k2+k3)

id+=1

id=2

id=4

id=0

count[id]+=1

Optmize

54

Paath Parofling: Decoding

How do we know which IDs map
to which paths?

A

B C

D

E F

6

4 2

2

11

id+=1

id=2

id=4

id=0

count[id]+=1

55

Paath Parofling: Decoding

How do we know which IDs map
to which paths?

● Naive:

– Keep a dictonary (large)

A

B C

D

E F

6

4 2

2

11

id+=1

id=2

id=4

id=0

count[id]+=1

56

Paath Parofling: Decoding

How do we know which IDs map
to which paths?

● Naive:

– Keep a dictonary (large)

A

B C

D

E F

6

4 2

2

11

id+=1

id=2

id=4

id=0

count[id]+=1

Why could it be large?

57

Paath Parofling: Decoding

How do we know which IDs map
to which paths?

● Naive:

– Keep a dictonary (large)

● Beler:

– Decode using same graph

– Follow the CFG and only one
path will 'ft'

A

B C

D

E F

6

4 2

2

11

id+=1

id=2

id=4

id=0

count[id]+=1

58

Paath Parofling: Decoding

How do we know which IDs map
to which paths?

● Naive:

– Keep a dictonary (large)

● Beler:

– Decode using same graph

– Follow the CFG and only one
path will 'ft'

A

B C

D

E F

6

4 2

2

11

id+=1

id=2

id=4

id=0

count[id]+=1

id = 3

59

Paath Parofling: Decoding

How do we know which IDs map
to which paths?

● Naive:

– Keep a dictonary (large)

● Beler:

– Decode using same graph

– Follow the CFG and only one
path will 'ft'

A

B C

D

E F

6

4 2

2

11

id+=1

id=2

id=4

id=0

count[id]+=1

id = 3

id = 3

60

Paath Parofling: Decoding

How do we know which IDs map
to which paths?

● Naive:

– Keep a dictonary (large)

● Beler:

– Decode using same graph

– Follow the CFG and only one
path will 'ft'

A

B C

D

E F

6

4 2

2

11

id+=1

id=2

id=4

id=0

count[id]+=1

id = 3

id = 3 id = 1-2

61

Paath Parofling: Decoding

How do we know which IDs map
to which paths?

● Naive:

– Keep a dictonary (large)

● Beler:

– Decode using same graph

– Follow the CFG and only one
path will 'ft'

A

B C

D

E F

6

4 2

2

11

id+=1

id=2

id=4

id=0

count[id]+=1

id = 3

id = 3 id = 1-2

id = 1

62

Paath Parofling: Decoding

How do we know which IDs map
to which paths?

● Naive:

– Keep a dictonary (large)

● Beler:

– Decode using same graph

– Follow the CFG and only one
path will 'ft'

A

B C

D

E F

6

4 2

2

11

id+=1

id=2

id=4

id=0

count[id]+=1

id = 3

id = 3 id = 1-2

id = 1

id = 0

-1

63

Paath Parofling: Results

64

Paath Parofling: Results

65

Paath Parofling: Results

66

Paath Parofling: Results

67

Paath Parofling: Results

What can/can't you infer from these results?

68

Paath Parofling: Results

What can/can't you infer from these results?

What would you add or change to the evaluaton?

69

Paath Parofling

Are there cases where this approach fails?

70

Paath Parofling

● What about loops / cycles?

A

B C

D

E F

71

Paath Parofling

● What about loops / cycles?

– Does the existng approach work? A

B C

D

E F

72

Paath Parofling

● What about loops / cycles?

– Does the existng approach work?

– How could we resolve it?
A

B C

D

E F

73

Paath Parofling

● What about loops / cycles?

– Does the existng approach work?

– How could we resolve it?
A

B C

D

E F

ENTRY

EXIT

74

Paath Parofling

● What about loops / cycles?

– Does the existng approach work?

– How could we resolve it?
A

B C

D

E F

ENTRY

EXIT

75

Paath Parofling

● What about loops / cycles?

– Does the existng approach work?

– How could we resolve it?
A

B C

D

E F

ENTRY

EXIT

76

Paath Parofling

● What about loops / cycles?

– Does the existng approach work?

– How could we resolve it?
A

B C

D

E F

ENTRY

EXIT

77

Paath Parofling

● What about loops / cycles?

– Does the existng approach work?

– How could we resolve it?
A

B C

D

E F

ENTRY

EXIT

78

Paath Parofling

● What about loops / cycles?

– Does the existng approach work?

– How could we resolve it?
A

B C

D

E F

ENTRY

EXIT

What do these edges encode?

79

Paath Parofling

● Paath profling is a dynamic analysis

– It analyzes an actual executon

80

Paath Parofling

● Paath profling is a dynamic analysis

– It analyzes an actual executon

– “What were frequent paths for this input”

81

Paath Parofling

● Paath profling is a dynamic analysis

– It analyzes an actual executon

– “What were frequent paths for this input”

– “What were frequent paths for this set of inputs”

82

Paath Parofling

● Paath profling is a dynamic analysis

– It analyzes an actual executon

– “What were frequent paths for this input”

– “What were frequent paths for this set of inputs”

● What if you don’t have an input for the behavior
you want to analyze?

83

Approximaton

Modeled program behaviors

Paossible Parogram Behavior

84

Approximaton

Modeled program behaviors

Overapproximate

Paossible Parogram Behavior

Consider some behaviors possible when they are not.

85

Approximaton

Modeled program behaviors

Overapproximate

Paossible Parogram Behavior

Underapproximate

Ignore some behaviors that are possible.

86

Approximaton

Modeled program behaviors

Overapproximate

Paossible Parogram Behavior

Underapproximate

One Executon

87

Approximaton

● Dynamic Analysis

– Analyzed ⊆ Feasible

88

Approximaton

● Dynamic Analysis

– Analyzed ⊆ Feasible

Analyzed

Feasible

89

Approximaton

● Dynamic Analysis

– Analyzed ⊆ Feasible
– As # tests ↑, Analyzed → Feasible

Analyzed

Feasible

90

How / When to Instrument

● Source / IR Instrumentaton
– LLVM, CIL, Soot, Wala, …
– During (re)compilaton
– Requires an analysis dedicated build

https://llvm.org/
https://github.com/cil-project/cil
https://sable.github.io/soot/
https://github.com/wala/WALA

91

How / When to Instrument

● Source / IR Instrumentaton
– LLVM, CIL, Soot, Wala, ...
– During (re)compilaton
– Requires an analysis dedicated build

● Statc Binary Rewritng
– Uroboros, DynamoRIO, SecondWrite,
– Applies to arbitrary binaries
– Imprecise IR info, but more complete binary behavior

https://github.com/s3team/uroboros

92

How / When to Instrument

● Source / IR Instrumentaton
– LLVM, CIL, Soot, Wala, ...
– During (re)compilaton
– Requires an analysis dedicated build

● Statc Binary Rewritng
– Uroboros, DynamoRIO, SecondWrite,
– Applies to arbitrary binaries
– Imprecise IR info, but more complete binary behavior

● Dynamic Binary Instrumentaton
– Valgrind, Pain, Qemu (& other Vms)
– Can adapt at runtme, but less info than IR

93

Pahases of Dynamic Analysis

In general, 2-3 phases occur:

1) Instrumentaton

– Add code to the program for data collecton/analysis

94

Pahases of Dynamic Analysis

In general, 2-3 phases occur:

1) Instrumentaton

– Add code to the program for data collecton/analysis

2) Executon

– Run the program an analyze its actual behavior

95

Pahases of Dynamic Analysis

In general, 2-3 phases occur:

1) Instrumentaton

– Add code to the program for data collecton/analysis

2) Executon

– Run the program an analyze its actual behavior

3) (Optonal) Paostmortem Analysis

– Paerform any analysis that can be deferred afer
terminaton

96

Pahases of Dynamic Analysis

In general, 2-3 phases occur:

1) Instrumentaton

– Add code to the program for data collecton/analysis

2) Executon

– Run the program an analyze its actual behavior

3) (Optonal) Paostmortem Analysis

– Paerform any analysis that can be deferred afer
terminaton

Very, very common mistake to mix 1 & 2.

97

Statc Instrumentaton

1) Compile whole program to IR

2) Instrument / add code directly to the IR

3) Generate new program that performs
tracing/analysis

4) Execute

98

Dynamic Binary Instrumentaton

1) Compile program as usual

2) Run program under analysis framework

(Valgrind, PaIN, Qemu, etc)

– Instrument & execute in same command:

– Fetch & instrument each basic block individually

– Execute each basic block

valgrind --tool=memcheck ./myBuggyProgram

99

Example: Address Sanitzer

● Address Sanitzer is a built-in dynamic analysis
component in the clang compiler

● Statc instrumentaton

100

Example: Address Sanitzer

● Address Sanitzer is a built-in dynamic analysis
component in the clang compiler

● Statc instrumentaton

● Finds:

– Use-afer-free

– {heap,stack,global}-bufer overfows

101

Example: Address Sanitzer

● Address Sanitzer is a built-in dynamic analysis
component in the clang compiler

● Statc instrumentaton

● Finds:

– Use-afer-free

– {heap,stack,global}-bufer overfows

● Used extensively in Google programs like Chrome

102

Example: Address Sanitzer

How?

● Replaces malloc & free

103

Example: Address Sanitzer

How?

● Replaces malloc & free
● Memory around malloced chunks is poisoned

ptr = malloc(sizeof(MyStruct));

ptr:

104

Example: Address Sanitzer

How?

● Replaces malloc & free
● Memory around malloced chunks is poisoned
● Freed memory is poisoned

free(ptr);

ptr:

105

Example: Address Sanitzer

How?

● Replaces malloc & free
● Memory around malloced chunks is poisoned
● Freed memory is poisoned
● Space around bufers is poisoned

void foo() {
 int buffer[5];
}

buffer[0]

buffer[6]

106

Example: Address Sanitzer

How?

● Replaces malloc & free
● Memory around malloced chunks is poisoned
● Freed memory is poisoned
● Space around bufers is poisoned

● Any access of a poisoned value reports an error.

…

107

Example: Address Sanitzer

How? *address = ...

Instrumentaton

108

Example: Address Sanitzer

How? *address = ...

if (IsPoisoned(address)) {
 ReportError(address, kAccessSize, kIsWrite);
}
*address = ...;

Instrumentaton

109

Example: Address Sanitzer

How?

Difcult! Why?

● Instrumentng every memory access is costly
● Tracking the status of all memory is tricky

*address = ...

if (IsPoisoned(address)) {
 ReportError(address, kAccessSize, kIsWrite);
}
*address = ...;

Instrumentaton

110

Example: Address Sanitzer

Applicaton Memory

Need to know whether any byte of
applicaton memory is poisoned.

111

Example: Address Sanitzer

● Maintain 2 views on memory:

Applicaton Memory Shadow Memory

112

Example: Address Sanitzer

● Shadow memory is a pervasive dynamic analysis
tool

– For every bit/byte/word/chunk/allocaton/page,
maintain informaton in a compact table

113

Example: Address Sanitzer

● Shadow memory is a pervasive dynamic analysis
tool

– For every bit/byte/word/chunk/allocaton/page,
maintain informaton in a compact table

Where have you encountered this before?
(Think OS)

114

Example: Address Sanitzer

● Shadow memory is a pervasive dynamic analysis
tool

– For every bit/byte/word/chunk/allocaton/page,
maintain informaton in a compact table

– Common in runtme support: e.g. page tables

115

Example: Address Sanitzer

● Shadow memory is a pervasive dynamic analysis
tool

– For every bit/byte/word/chunk/allocaton/page,
maintain informaton in a compact table

– Common in runtme support: e.g. page tables

● In Asan:

– In an 8 byte chunk, only frst k may be addressable

Memory: Shadow: ?

k

116

Example: Address Sanitzer

● Shadow memory is a pervasive dynamic analysis
tool

– For every bit/byte/word/chunk/allocaton/page,
maintain informaton in a compact table

– Common in runtme support: e.g. page tables

● In Asan:

– In an 8 byte chunk, only frst k may be addressable

– All 8 bytes unpoisoned: shadow value is 0.

Memory: Shadow: 0

117

Example: Address Sanitzer

● Shadow memory is a pervasive dynamic analysis
tool

– For every bit/byte/word/chunk/allocaton/page,
maintain informaton in a compact table

– Common in runtme support: e.g. page tables

● In Asan:

– In an 8 byte chunk, only frst k may be addressable

– All 8 bytes unpoisoned: shadow value is 0.

– All 8 bytes poisoned: shadow value is negatve.

Memory: Shadow: -1

118

Example: Address Sanitzer

● Shadow memory is a pervasive dynamic analysis
tool

– For every bit/byte/word/chunk/allocaton/page,
maintain informaton in a compact table

– Common in runtme support: e.g. page tables

● In Asan:

– In an 8 byte chunk, only frst k may be addressable

– All 8 bytes unpoisoned: shadow value is 0.

– All 8 bytes poisoned: shadow value is negatve.

– First k bytes are unpoisoned: shadow value is k.

Memory: Shadow: 5

119

Example: Address Sanitzer

● (64bit) Shadow Mapping:

– Pareallocate large block of memory

– Shadow = (Mem >> 3) + 0x7ff8000;

120

Example: Address Sanitzer

● (64bit) Shadow Mapping:

– Pareallocate large block of memory

– Shadow = (Mem >> 3) + 0x7ff8000;

● The shadow memory itself must also be considered
poisoned.

Why?!

121

Dynamic Analysis

● Analyze the actual/observed behaviors of a program.

122

Dynamic Analysis

● Analyze the actual/observed behaviors of a program.

● Modify the program's behavior in order to collect
informaton.

123

Dynamic Analysis

● Analyze the actual/observed behaviors of a program.

● Modify the program's behavior in order to collect
informaton.

● Analyze this informaton either online or ofine.

124

Moving Forward

● Yet ofen you will want to deeply analyze a program
without running it at all...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124

