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Dynamic Analysis

e Sometimes we want to study or adapt the behavior
of executions of a program

— Did my program ever ...?
— Why/how did ... happen?
— Where am | spending time?

— Where might | parallelize?

— Tolerate errors.
— Manage memory / resources.



e.g. Reverse Engineering

Static CFG (from e.g. Apple Fairplay):
F

J/j/ F‘.
This is the result of a control flow flattening obfuscation.
[http://tigress.cs.arizona.edu/transformPage/docs/flatten/]



http://tigress.cs.arizona.edu/transformPage/docs/flatten/

e.g. Reverse Engineering

Static CFG (from e.g. Apple Fairplay):

T\

Dynamically Simplified CFG:
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How?

e Can record the execution

I Input | ={Programj »
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How?

e Can record the execution

Ilnput

Program

»I Trace

Analysis

»IResuIts
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How?

e Can record the execution

— Record to a trace
— Analyze post mortem / offline
— Scalability issues: need enough space to store it
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How?

e Can record the execution

e Can perform analysis online

— Instrument the program
— Modified program invokes code to 'analyze’ itself
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How?

e Can record the execution

e Can perform analysis online

e Can do both

— Lightweight recording
— Instrument a replayed instance of the execution
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How?

e Can record the execution

e Can perform analysis online

e Can do both

— Light

— |nstru

Some analyses only make sense online.
Why?

DN
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Simple Idea: Basic Block Profiling

Knowing where we are spending time is useful:
o Goal: Which basic blocks execute most frequently?
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Knowing where we are spending time is useful:
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« How can we modify our program to find this?

BB:

BB:1
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Simple Idea: Basic Block Profiling

Knowing where we are spending time is useful:

o Goal: Which basic blocks execute most frequently?

« How can we modify our program to find this?

BB:

BB:1

Start:

for 1 1n BBs:
count[i] = 0

End:

count[2] += 1

foo()
bar ()

X
y

for 1 1n BBs:
print(count[1])
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Simple Idea: Basic Block Profiling

e Big concern: How efficient is it?

— The more overhead added, the less practical the tool
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Simple Idea: Basic Block Profiling

e Big concern: How efficient is it?

— The more overhead added, the less practical the tool

4/\
\/
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Simple Idea: Basic Block Profiling

e Big concern: How efficient is it?

— The more overhead added, the less practical the tool

count[0] += 1

count[1l] += 1 count[2] += 1

\\\\\\\*u‘:;/////

count[3] += 1
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Simple Idea: Basic Block Profiling

e Big concern: How efficient is it?

— The more overhead added, the less practical the tool

count[0] += 1

count[1l] += 1 count[2] += 1

\\\\\\\*u‘:;/////

count[3] += 1

— Canwe do betE“er?
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Simple Idea: Basic Block Profiling

e Big concern: How efficient is it?

— The more overhead added, the less practical the tool

count[0] += 1

count[1l] += 1 eyt 22—

— Canwe do betE“er?

count[0O] = count[B%

count[2] - count[1]



Simple Idea: Basic Block Profiling

e Big concern: How efficient is it?

— The more overhead added, the less practical the tool

count[0] += 1

count[1l] += 1 eyt 22—

courtf3— =1 |

Is it possible to do even better?

— Canwe do betE“er?

count[0Q]
count[2]

count[B%

count[0] - count[1]



Efficiency Tactics

e Abstraction
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Efficiency Tactics

o Abstraction

e |dentify & avoid redundant information
e Sampling

« Compression / encoding

e Profile guided instrumentation
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Efficiency Tactics

o Abstraction

e |dentify & avoid redundant information
e Sampling

« Compression / encoding

o Profile guided instrumentation

e Thread local analysis & inference
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Path Profiling

o Goal: How often does an acyclic path execute?

A
B = C
D
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Path Profiling

o Goal: How often does an acyclic path execute?

— Could log the trace...

log(A)  TA

log(B) B'A»% log(C)
log(D) \{D

log(E) [E »F | log(D)

recordPath()
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Path Profiling

o Goal: How often does an acyclic path execute?

— Could log the trace... A
— Could encode the paths id=4
id=2

Path Encoding B - C
ABDEF 0]
ABDF 1 D
ABCDEF 2 id+=1
ABCDF 3
ACDEF 4 E > F
ACDF > count[id]+=1




Path Profiling

e Step 1: Count the # of paths from each node to the
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Path Profiling

e Step 1: Count the # of paths from each node to the
exit

42



Path Profiling

e Step 1: Count the # of paths from each node to the
exit
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Path Profiling

e Step 2: Partition the encoding space locally at each
node

count[id]+=1
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Path Profiling
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Path Profiling
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Path Profiling

e Step 2: Partition the encoding space IocaIIy at each
node R
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Path Profiling

e Step 2: Partition the encoding space locally at each

node {d=0 e
id+=4

count[id]+=1
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Path Profiling

e Step 2: Partition the encoding space locally at each
node

count[id]+=1
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Path Profiling

e Step 2: Partition the encoding space locally at each
node

count[id]+=1
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Path Profiling

e Step 2: Partition the encoding space locally at each

node id=0m
id=4
B 4. Cl2
d=2
Optimize ¥
id+=1
E 1 Fl 1

count[id]+=1 N



Path Profiling: Decoding

How do we know which IDs map
to which paths?

count[id]+=1
54
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Path Profiling: Decoding

How do we know which IDs map
to which paths?

e Naive:
— Keep a dictionary (large)

Why could it be large?

count[id]+=1 B}



Path Profiling: Decoding

How do we know which IDs map
to which paths?

e Better:

— Decode using same graph

— Follow the CFG and only one
path will 'fit’

countlid]+=1 _
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Path Profiling: Decoding

How do we know which IDs map id=3
to which paths?

e Better:

— Decode using same graph

— Follow the CFG and only one
path will 'fit’
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Path Profiling: Decoding

How do we know which IDs map id=3
to which paths?

e Better:

— Decode using same graph

— Follow the CFG and only one
path will 'fit’

count[id]+=1
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Path Profiling: Results

Benchmark Base PP QPT2 PP/ Path Edge Hashed | Inst/

Time Overhead Overhead QPT Inc Inc Inc Inc

(sec) % % (million) (x Path) %
099.go 885.0 534 24.1 2.2 1002.4 1.5 27.7 33.2
124. m88ksim 571.0 35.6 18.7 1.9 4824.9 1.2 3.9 16.2
126.gcc 322.0 96.9 52.8 1.8 9.4 1.7 16.8 15.1
129.compress 351.0 19.4 21.9 0.9 3015.7 1.5 0.0 16.6
130.11 480.0 25.4 26.7 1.0 3282.4 1.4 1.2 16.8
132.1jpeg 749.0 17.4 16.3 1.1 1164.9 1.1 1.2 31.0
134.perl 332.0 72.9 51.5 1.4 1133.0 1.9 234 22.2
147 .vortex 684.0 37.7 34.1 1.1 3576.3 1.5 23.7 20.3
CINT9S Avg: 44 8 30.8 1.4 22251.1 1.5 12.2 214
101.tomcatv 503.0 19.9 2.8 7.1 574.6 1.1 05.8 93.0
102.swim 691.0 8.4 0.6 14.5 163.4 1.0 0.2 | 1629
103.su2cor 465.0 10.1 5.8 1.7 558.1 1.2 21.5 92.8
104.hydro2d 811.0 37.7 5.8 6.5 1690.7 1.7 77.8 43.1
107.mgrid 872.0 6.3 3.2 2.0 1035.2 1.0 7.7 | 1335
110.applu 715.0 71.0 12.0 5.9 2111.4 1.1 99.1 44.8
125.turb3d 1066.0 5.5 7.4 0.7 2952.8 1.1 0.0 56.5
141.apsi 492.0 7.7 1.8 4.2 599.3 1.1 3.5 84.0
145.fpppp 1927.0 14.6 -2.6 -5.6 395.0 1.8 425 | 636.0
146.wave5 620.0 16.9 6.1 2.8 737.3 1.3 65.0 74.1
CFP95 Avg: 19.8 4.3 4.0 1081.8 1.2 41.3 | 142.1
Average: 30.9 16.1 2.8 1601.5 1.3 28.4 88.4
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Benchmark Base PP QPT2 PP/ Path Edge Hashed | Inst/

Time Overhead Overhead QPT Inc Inc Inc Inc

(sec) % % (million) (x Path) %
099.go 885.0 534 24.1 2.2 1002.4 1.5 27.7 33.2
124 m88ksim 571.0 35.6 18.7 1.9 4824.9 1.2 39 16.2
126.gcc 322.0 96.9 52.8 1.8 9.4 1.7 16.8 15.1
129.compress 351.0 19.4 21.9 0.9 3015.7 1.5 0.0 16.6
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134 perl 332.0 72.9 51.5 1.4 1133.0 1.9 234 22.2
147 .vortex 684.0 37.7 34.1 1.1 3576.3 1.5 23.7 20.3
CINT95 Avg: 44.8 30.8 1.4 22251.1 1.5 12.2 21.4
101.tomcatv 503.0 19.9 2.8 7.1 574.6 1.1 95.8 93.0
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107.mgrid 872.0 6.3 3.2 2.0 1035.2 1.0 7.7 | 1335
110.applu 715.0 71.0 12.0 59 21114 1.1 99.1 44.8
125.turb3d 1066.0 5.5 7.4 0.7 2952.8 1.1 0.0 56.5
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Path Profiling: Results

Benchmark Base PP QPT2 PP/ Path Edge Hashed | Inst/

Time Overhead Overhead QPT Inc Inc Inc Inc

(sec) % % (million) (x Path) %
099.go 885.0 534 24.1 2.2 1002.4 1.5 27.7 33.2
124 m88ksim 571.0 35.6 18.7 1.9 48249 1.2 3.9 16.2
126.gcc 322.0 96.9 52.8 1.8 9.4 1.7 16.8 15.1
129.compress 351.0 19.4 21.9 0.9 3015.7 1.5 0.0 16.6
130.51 480.0 254 26.7 1.0 3282.4 1.4 1.2 16.8
132.1jpeg 749.0 17.4 16.3 1.1 1164.9 1.1 1.2 31.0
134 .perl 332.0 729 51.5 1.4 1133.0 1.9 234 22.2
1477 .vortex 684.0 37.7 34.1 1.1 3576.3 1.5 23.7 20.3
CINT9S Avg: 44 .8 30.8 1.4 22251.1 1.5 12.2 21.4
101.tomcatv 503.0 19.9 2.8 7.1 574.6 1.1 95.8 93.0
102.sw ' . 162.9
3. What can/can't you infer from these results? | s
104 .hy 43.1
10)7 oA | I N A2 17 20 | 1035 9 10N T 133.5
2What would you add or change to the evaluation?
141.apsi 492.0 7.7 1.8 4.2 599.3 1.1 3.5 84.0
145.fpppp 1927.0 14.6 -2.6 -3.6 395.0 1.8 42.5 | 636.0
146.waves 620.0 16.9 6.1 2.8 737.3 1.3 65.0 74.1
CFP95 Avg: 19.8 4.3 4.0 1081.8 1.2 41.3 142.1
Average: 30.9 16.1 2.8 1601.5 1.3 284 388.4




Path Profiling

Are there cases where this approach fails?
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Path Profiling

o« What about loops / cycles?
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o« What about loops / cycles?

— Does the existing approach work?
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— Does the existing approach work?
— How could we resolve it?
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Path Profiling

o« What about loops / cycles?

— Does the existing approach work?
— How could we resolve it?

EXIT
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Path Profiling
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— Does the existing approach work?
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EXIT
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Path Profiling

o« What about loops / cycles?

— Does the existing approach work?
— How could we resolve it?
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Path Profiling

o« What about loops / cycles?

— Does the existing approach work?
— How could we resolve it?
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Path Profiling

o« What about loops / cycles?

— Does the existing approach work?
— How could we resolve it?

ENTRD

What do these edges encode?
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Path Profiling

e Path profiling is a dynamic analysis

— It analyzes an actual execution
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- “What were frequent paths for this input”
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e Path profiling is a dynamic analysis

— It analyzes an actual execution

- “What were frequent paths for this input”
- “What were frequent paths for this set of inputs”
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Path Profiling

o Path profiling is a dynamic analysis

— It analyzes an actual execution

- “What were frequent paths for this input”
- "What were frequent paths for this set of inputs”

o« What if you don’t have an input for the behavior
you want to analyze?

82



Approximation

Modeled program behaviors
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Approximation

Modeled program behaviors

Consider some behaviors possible when they are not.
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Approximation

Modeled program behaviors

Underapproximate

lgnore some behaviors that are possible.
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Approximation

Modeled program behaviors

Overapproximate

Underapproximate
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Approximation

e Dynamic Analysis
— Analyzed € Feasible
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Approximation

e Dynamic Analysis
— Analyzed € Feasible

Analyzed
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Approximation

e Dynamic Analysis

— Analyzed € Feasible
— As # tests 1, Analyzed — Feasible

Analyzed
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How / When to Instrument

e Source / IR Instrumentation

— LLVM, CIL, Soot, Wala, ...
— During (re)compilation
— Requires an analysis dedicated build
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https://llvm.org/
https://github.com/cil-project/cil
https://sable.github.io/soot/
https://github.com/wala/WALA

How / When to Instrument

e Source / IR Instrumentation

e Static Binary Rewriting

— Uroboros, DynamoRIO, SecondWrite,
— Applies to arbitrary binaries
— Imprecise IR info, but more complete binary behavior

91


https://github.com/s3team/uroboros

How / When to Instrument

e Source / IR Instrumentation

e Static Binary Rewriting

 Dynamic Binary Instrumentation

— Valgrind, Pin, Qemu (& other Vms)
— Can adapt at runtime, but less info than IR
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Phases of Dynamic Analysis

In general, 2-3 phases occur:
1) Instrumentation

— Add code to the program for data collection/analysis
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Phases of Dynamic Analysis

In general, 2-3 phases occur:
1) Instrumentation

2) Execution

— Run the program an analyze its actual behavior
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Phases of Dynamic Analysis

In general, 2-3 phases occur:
1) Instrumentation

2) Execution

3) (Optional) Postmortem Analysis

— Perform any analysis that can be deferred after
termination
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Phases of Dynamic Analysis

In general, 2-3 phases occur:

1) Instrumentation

2) Execution

3) (Optional) Postmortem Analysis

Very, very common mistake to mix 1 & 2.
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Static Instrumentation

1) Compile whole program to IR
2) Instrument / add code directly to the IR

3) Generate new program that performs
tracing/analysis

4) Execute
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Dynamic Binary Instrumentation

1) Compile program as usual

2) Run program under analysis framework
(Valgrind, PIN, Qemu, etc)
— Instrument & execute in same command:

— Fetch & instrument each basic block individually
— Execute each basic block

valgrind --tool=memcheck ./myBuggyProgram
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Example: Address Sanitizer

o Address Sanitizer is a built-in dynamic analysis
component in the clang compiler

e Static instrumentation
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Example: Address Sanitizer

o Address Sanitizer is a built-in dynamic analysis
component in the clang compiler

e Finds:

— Use-after-free
— {heap,stack,global}-buffer overflows
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Example: Address Sanitizer

o Address Sanitizer is a built-in dynamic analysis
component in the clang compiler

e Used extensively in Google programs like Chrome
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Example: Address Sanitizer

How?

* Replacesmalloc & free
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Example: Address Sanitizer

How?

* Replacesmalloc & free
e Memory around malloced chunks is poisoned

ptr = malloc(sizeof (MyStruct));

ptr:
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Example: Address Sanitizer

How?

* Replacesmalloc & free

e Memory around malloced chunks is poisoned
e Freed memory is poisoned

ptr:

free(ptr);
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Example: Address Sanitizer

How?

* Replacesmalloc & free

e Memory around malloced chunks is poisoned
e Freed memory is poisoned
e Space around buffers is poisoned

_ buffer[6]
void foo() {

int buffer|[5];
}

buffer[0]
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Example: Address Sanitizer

How?

* Replacesmalloc & free

e Any access of a poisoned value reports an error.
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Example: Address Sanitizer

How? *address = ...

1 Instrumentation
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Example: Address Sanitizer

How? *address = ...

1 Instrumentation

if (IsPoisoned(address)) {
ReportError(address, kAccessSize, kIsWrite);
}

*address = ...;
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Example: Address Sanitizer

How? *address = ...

1 Instrumentation

if (IsPoisoned(address)) {
ReportError(address, kAccessSize, kIsWrite);
}

*address = ...;
Difficult! Why?

e Instrumenting every memory access is costly
e Tracking the status of all memory is tricky
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Example: Address Sanitizer

Need to know whether any byte of
application memory is poisoned.

Application Memory
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Example: Address Sanitizer

e Maintain 2 views on memory:

Application Memory Shadow Memory
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Example: Address Sanitizer

« Shadow memory is a pervasive dynamic analysis
tool

— For every bit/byte/word/chunk/allocation/page,
maintain information in a compact table
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Example: Address Sanitizer

« Shadow memory is a pervasive dynamic analysis
tool

— For every bit/byte/word/chunk/allocation/page,
maintain information in a compact table

Where have you encountered this before?
(Think OS)
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Example: Address Sanitizer

« Shadow memory is a pervasive dynamic analysis
tool

— Common in runtime support: e.g. page tables
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Example: Address Sanitizer

« Shadow memory is a pervasive dynamic analysis
tool

e |[n Asan:
— In an 8 byte chunk, only first k may be addressable

k

Memory:E Shadow: ? 115



Example: Address Sanitizer

« Shadow memory is a pervasive dynamic analysis
tool

e |n Asan:

— In an 8 byte chunk, only first k may be addressable
— All 8 bytes unpoisoned: shadow value is O.

Memory: I Shadow: O 116



Example: Address Sanitizer

« Shadow memory is a pervasive dynamic analysis
tool

e |[n Asan:
— In an 8 byte chunk, only first k may be addressable

— All 8 bytes poisoned: shadow value is negative.

Memory: IR Shadow: -1 117



Example: Address Sanitizer

« Shadow memory is a pervasive dynamic analysis
tool

— For every bit/byte/word/chunk/allocation/page,
maintain information in a compact table

— Common in runtime support: e.g. page tables

e |[n Asan:
— In an 8 byte chunk, only first k may be addressable
— All 8 bytes unpoisoned: shadow value is O.
— All 8 bytes poisoned: shadow value is negative.
— First k bytes are unpoisoned: shadow value is k.

Memory: I Shadow: 5 118




Example: Address Sanitizer

e (64bit) Shadow Mapping:

— Preallocate large block of memory
— Shadow = (Mem >> 3) + Ox7fff8000:;
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Example: Address Sanitizer

e (64bit) Shadow Mapping:

e The shadow memory itself must also be considered
poisoned.

Why?!
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Dynamic Analysis

e Analyze the actual/observed behaviors of a program.
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Dynamic Analysis

e Modify the program's behavior in order to collect
iInformation.
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Dynamic Analysis

o Analyze the actual/observed behaviors of a program.

 Modify the program's behavior in order to collect
information.

e Analyze this information either online or offline.
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Moving Forward

e Yet often you will want to deeply analyze a program
without running it at all...
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