
CMPT125, Fall 2018

Homework Assignment 3
Due date: November 2, 2018

Submit homework, printed or written in readable handwriting,

to the assignment boxes in CSIL ASB9838.

1) [15 points] ​Stacks​:
In this question you may assume that the functions below are implemented.
You ​cannot make assumptions​ about how the stack is implemented.
If you want to use any other function, you need to implement it.

typedef​ ​struct​ {
 ... ​// not known
} stack_t;

// creates a new stack

stack_t* stack_create();

// pushes a given item to the stack

void​ stack_push(stack_t* s, ​int​ item);

// pops the top element from the stack

// Pre condition: stack is not empty

int​ stack_pop(stack_t* s);

// checks if the stack is empty

bool​ stack_is_empty(stack_t* s);

// frees the stack

void​ stack_free(stack_t* s);

[12 points] ​​Write a function that gets two stack and checks if they are equal (i.e., have
the same elements in the same order). When the function returns the stacks must be in
their initial state.

// checks if the two stacks are equal

bool​ stack_equal(stack_t* s1, stack_t* s2);

[3 points]​​ What is the running time of your function?

2) [15 points] ​Queues​:
In this question you may assume that the functions below are implemented.
You ​cannot make assumptions​ about how the queue is implemented.
If you want to use any other function, you need to implement it.

// creates a new queue

queue_t* queue_create();

// enqueue a given item to the queue

void​ enqueue(queue_t* q, ​int​ item);

// remove from the queue, and return the removed value

// Pre condition: queue is not empty

int​ dequeue(queue_t* q);

// checks if the queue is empty

bool​ queue_is_empty(queue_t* q);

// frees the queue

void​ queue_free(queue_t* q);

[12 points] ​​Write a function that creates a copy of a queue, i.e., it gets a queue and
creates another queue with the same elements in the same order.
In the end on the function, the original queue must be returned to its initial state.

// returns a copy of orig

queue_t*​ ​queue_copy(queue_t* orig);

[3 points] ​​What is the running time of your function?

3) [38 points] ​Linked List​:
You may only use the struct and the functions below.
If you want to use any other function, you need to implement it.

// A node in linked list

struct​ node {
 ​int​ data;
 ​struct​ node* next;
};

typedef​ ​struct​ node node_t;

// Linked list

typedef​ ​struct​ {
 node_t* head; ​// pointer to the head of the list
} LL_t;

// Adds a new element to the head of a list

void​ LL_add_to_head(LL_t* list, ​int​ value);

// Removes the first element from a list

int​ LL_remove_from_head(LL_t* list);

// Returns true if the list is empty, and returns false otherwise

bool​ LL_is empty(LL_t* list);

// frees the linked list

void​ LL_free(LL_t* list);

(a) [15 points] ​​Write a function that gets a linked list, and reverses it.
For example, if the input is 1→ 2→ 3→ 4, then after applying the function, the
list will be 4→ 3→ 2→ 1.

void​ LL_reverse(LL_t* list);

[4 points] ​​What is the running time of your function?

(b) [15 points] ​​Write a function that gets a linked list and a parameter k, and
removes the k’th element from the end of the list. (For k=0, we need to remove
the last element).
For example, if the input list is 1→ 2→ 3→ 4→ 5, and k=2, then after applying
the function, the list will be 1→ 2→ 4→ 5.
If k >= length of the list, then the list remains the same

void​ LL_remove_kth_from_end(LL_t* list, ​int​ k);

[4 points]​​ What is the running time of your function?

4) [35 points] ​Binary Trees​:
In this question you may only use the struct and the functions below.
If you want to use any other function, you need to implement it.

// Binary Tree node

struct​ BTnode {
 ​int​ data;
 ​struct​ BTnode* left;
 ​struct​ BTnode* right;
 ​struct​ BTnode* parent;
};

typedef​ ​struct​ BTnode BTnode_t;

// creates a BTnode_t data=value, and all pointers set to NULL

BTnode_t* create_node(​int​ value);

(a) [12 points]​​ What are the Inorder, Preorder and Postorder traversals of the

binary tree below.

(b) [8 points] ​​Draw two different trees T​1​ and T​2​, with all values in T​1​ distinct, such
that preOrder(T​1​)=preOrder(T​2​) and postOrder(T​1​)=postOrder(T​2​) .

(c) [10 points]​​ Write an algorithm that gets two sequence of distinct ints (no
repetitions), representing the inorder and the preorder traversals of some binary
tree, and returns the tree.
[5 points]​​ Prove that for a given inOrder and preOrder, the tree is unique.

For example, if inOrder=[1,2,3,4] and preOrder=[3,2,1,4], then the unique binary
tree is

