CMPT409/815: Advanced Algorithms

Homework Assignment 5

Instructor: Igor Shinkar Due date: December 2, 2019

Instructions: Submit either in class (hard copy) or to Coursys (if scanned, make sure it is good quality).

Question 1 (25 points) Prove that $PCP_{1,0.5}[r = O(\log(n)), q = \text{poly}(n)] = NP$.

Question 2 (25 points) Let $s \in (0,1)$, and $r, q \in \mathbb{N}$. Prove that

$$\mathsf{PCP}_{1,s}[r,q]_{\{0,1\}} \subseteq \mathsf{PCP}_{1,s'}[r + \lceil \log(q) \rceil, 2]_{\Sigma = \{0,1\}^q},$$

where $s' = 1 - \frac{1-s}{q}$.

Question 3 (25 points) DEG-2-SAT is the following problem. The input is a finite field \mathbb{F} (think of $\mathbb{F} = \mathbb{F}_2$, and a collection of polynomials $p_1, \ldots, p_m : \mathbb{F}^n \to \mathbb{F}$ of degree at most 2. In the search version of the problem the goal is to find an assignment $a = (a_1, \ldots, a_n) \in \mathbb{F}^n$ such that $p_i(a) = 0$ for all $i \in [m]$. In the decision version of the problem the goal is to decide whether such an assignment exists.

Prove that DEG - 2 - SAT is NP-complete.

Question 4 (25 points) For parameters 0 < s < c < 1 consider the gap-DEG-2-SAT_{c,s} problem. The input is a finite field \mathbb{F} , and a collection of polynomials $p_1, \ldots, p_m : \mathbb{F}^n \to \mathbb{F}$ of degree at most 2. In the decision version of the problem the goal is to decide between

- 1. (YES case): there exists an assignment $a = (a_1, \ldots, a_n) \in \mathbb{F}^n$ such that $|\{i \in [m] : p_i(a) = 0\}| \ge cm$.
- 2. (NO case): every assignment $a = (a_1, \ldots, a_n) \in \mathbb{F}^n$ such that $|\{i \in [m] : p_i(a) = 0\}| < sm$.

In the search version of the problem we are guaranteed that there exists an assignment $a = (a_1, \ldots, a_n) \in \mathbb{F}^n$ such that $|\{i \in [m] : p_i(a) = 0\}| \ge cm$, and the goal is to find an assignment $a = (a_1, \ldots, a_n) \in \mathbb{F}^n$ that satisfies $p_i(a) = 0$ for more than sm polynomials (i.e., disprove the NO case).

Prove that gap-DEG-2-SAT_{1,2/3} is NP-complete.

(Hint: Use the following fact: Explicit linear error correcting codes: For any $m \in \mathbb{N}$ there exists $m' \leq \operatorname{poly}(m)$ and a matrix $M \in \mathbb{F}^{m \times m'}$ with the following guarantee: For any non-zero $x \in \mathbb{F}^m$ the vector $y = Mx \in \mathbb{F}^{m'}$ satisfies $|\{i \in [m'] : y_i \neq 0\}| \geq m'/3$. Furthermore, such M can be constructed in time $\operatorname{poly}(m)$.