
CMPT 125 - Introduction to Computing Science an Programming
IId

Lab 02

Thanks to: Sepid (sepidh@sfu.ca)

Outline

● Passing arguments to main()

● Redirecting stdin and stdout

● Example: Reading letters from input and
calculating the frequencies.

Passing arguments to main()

Until now :

Our main() functions were not receiving any arguments.

But main() similar to other functions can receive arguments, just there is some notes to follow:

● main() function can receive two arguments.
● To do that, the main() function should be defined as int main(int argc, char* argv[]) .
● argv: Argument vector, size argc+1
● let say our main() function is in test.c, we can pass arguments to it using :

gcc test.c -o test

./ test argv1 argv2 … argvn

argv[0]

argv[1]

argv[2]

./sum

7

-3.4

ex: ./sum 7 -3.4

Passing arguments to main()

Lest clear thing up with an example:

Write a function that recivine two integer as main function arguments and return sum of them.

#include <stdlib.h> // for atoi() and friends

#include <stdio.h>

int main(int argc, char* argv[])

{

printf("what is in argv[0]? %s\n",argv[0]);

//The arguments will be type of char*

// To convert them to int and float you cant use atoi and atof respectively.

int sum=atoi(argv[1])+atoi(argv[2]);

printf("First number : %s, second one : %s\n", argv[1], argv[2]);

printf("sum is: %d. \n", sum);

return sum;

}

Passing arguments to main()

Exercise 1:

Now write a function the receives three number and return the biggest one.

Answer is in the next slide!

Passing arguments to main()

Exercise 1- Solution:

#include <stdlib.h> // for atoi() and friends

#include <stdio.h>

int main(int argc, char* argv[])

{

float x= atof(argv[1]);

float y= atof(argv[2]);

float z= atof(argv[3]);

float max = x;

if(y > max)

max = y;

if(z > max)

max = z;

printf("max is: %f. \n", max);

return 0;

}

Redirecting stdin and stdout

you can use > and < to direct your stdin and stdout.

for example:

./hello > myfile.txt will redirect your printf to myfile.txt

so if you have a program that do printf(“Hello World”), instead of seeing output on terminal you can find it in myfile.txt .

similarly an other example: ./read_numbers <numbers.txt will redirect stdin to numbers.txt and it will read inside the file .

number.txt

read_numbers.c

The program will read file numbers.txt and print out it line by line

Redirecting stdin and stdout

Lest clear thing up with an example:

Write a function that read a file and write it in the other file.

● First for making a file in linux there are several ways one of them is using cat.
○ for making a file and writing in it you can use cat > filename.txt
○ for reading that file you can use cat filename.txt

check this example:

After you do cat >file.txt you can write what you want in the file

for going next line in file you can press enter, to finish writing

press ctrl+d.

https://www.tecmint.com/13-basic-cat-command-examples-in-linux/

Redirecting stdin and stdout

Lest clear thing up with an example:

Write a function that read a file and write it in the other file.

now let's write a function that receive our file.txt and print it line by line in file2.txt

#include <stdio.h>

int main () {

// let assume is line has maximim 256 char

char str[256];

/* opening file for reading */

while(fgets(str, 256, stdin)!=NULL) {

/* writing content to stdout */

printf("%s", str);

}

return 0;

}

Redirecting stdin and stdout

Exercise 2:

Using cat make a file with integer inside called number.txt (picture 1). write a function that read those number add 1 to each
and write it to the other file.

Answer is in the next slide!

picture 1

Redirecting stdin and stdout

Exercise 2_ Soloution:
#include <stdio.h>

#include <stdlib.h> // for atoi() and friends

int main () {

// let assume is line has maximim 256 char

char str[256];

/* opening file for reading */

while(fgets(str, 256, stdin)!=NULL) {

/* writing content to stdout */

int number= atoi(str)+1;

printf("%d\n", number);

}

return 0;

}

Reading letters from input and calculating the frequencies.

Exercise 3:

1. Write a program that calculates the frequency of letter occurrences in text.
2. Read ASCII text from standard input.
3. On reaching EOF, print to stdout the normalized frequency of occurrence for each letter a-z that appeared in the input, one

per line, in alphabetical order using the format produced by
printf("%c %.4f\n", letter, freq)

4. You need to receive inputs from myfile.txt
5. use cat > myfile.txt to create the file and to end the file with EOF press ctrl+d same picture 1. (in the other word instead of

pressing enter which save it as char in the file after you are done just hold ctrl and press d (you may need to press d two
times)

6. Letters that occur zero times should not appear in the output.
7. Characters other than lower and upper case letters should be ignored.
8. Lower and upper case instances count as the same letter, e.g. 'a' and 'A' are both reported for the letter 'a' on the output.
9. The frequencies reported should sum to approximately 1 (with a little slack for accumulation of printf rounding errors).
10. By the way, you cannot implement this function by writing 26 "if" statements (1 for each letter). Hint: Each letter has a

numerical ASCII value. Can this numerical value be used at all?
Answer is in the next slide!

picture 1

Exercise 3_ Solution part 1, code:

Reading letters from input and calculating the frequencies.

Exercise 3_ Solution part2 , terminal:

Reading letters from input and calculating the frequencies.

Exercise 3_ Solution part 3, code in text format:
#include <stdio.h>

#include <stdlib.h> // for atoi() and friends

#include <ctype.h> //for using to lower to lowercase all chars

int main () {

// let assume is line has maximim 256 char

char str[256];

// array of length 26 for saving the frequencies (float)

float freq[26]={0};

/* opening file for reading */

int i=0;

while(fgets(str, 256, stdin)!=NULL)

{

/* writing content to stdout */

while(str[i]!='\0')

{

//printf("%c\n",str[i]); //to check if we are reading correctly

char temp= tolower(str[i]); //lower casing the char

int index= (int)temp-97 ; //conver asci to int

// ascii will start from 97 https://www.rapidtables.com/code/text/ascii-table.html

freq[index]++; //increasing the entry in freq that is relates to read char

i++;

}

}

float length= i;

for (int k=0; k<26; k++)

{

if(freq[k]!=0)

{

float fr = freq[k]/length;

printf("%c : %f\n",(k+97), fr);

}

}

return 0;

}

