CMPT881: Special Topics in Theoretical Computer Science

Homework assignment 3

Instructor: Igor Shinkar Due date: March 28, 2019

Question 1 Design an algorithm that gets a 4-colorable graph G and outputs in polynomial time a legal $\tilde{O}(n^{4/7})$ coloring of G. You may use as a subroutine the algorithm we saw in class that colors a 3-colorable graph with $\tilde{O}(n^{1/4})$ colors.

Question 2 Given an n-vertex graph G = (V, E) consider the following SDP

find a feasible solution:
$$v_1,\dots,v_n\in\mathbb{R}^n$$

$$\langle v_i,v_j\rangle=-\frac{1}{k-1}\quad\forall (i,j)\in E$$

$$\|v_i\|=1$$

Prove that if G is k-colorable, then the SDP has a feasible solution.

[Hint: prove it first for k = 4]

Question 3 Prove that if a boolean function $f: \{0,1\}^n \to \{0,1\}$ is 0.1-close to some linear function L, then it is at least 0.4-far from all other linear functions.

[Hint: Prove that for any two distinct linear functions L_1, L_2 it holds that $\Pr_{x \in \{0,1\}^n}[L_1(x) = L_2(x)] = 1/2$.]

Question 4 Let $f: \{0,1\}^n \to \{0,1\}$ be a boolean function, and let $C_{1/2+delta}(f)$ be the set of all linear functions L such that $\Pr[f(x) = L(x)] > 1/2 + \delta$. Prove that $|C_{1/2+delta}(f)| \le O(1/\delta^2)$ for all f and all $\delta \in (0,0.1)$.

[Hint: Look at the Fourier coefficients of f.]

Question 5 We saw in class that for any $\varepsilon \in (0,0.49)$ if a boolean function $f: \{0,1\}^n \to \{0,1\}$ satisfies $\Pr_{x,y \in \{0,1\}^n}[f(x) + f(y) = f(x+y)] > 1 - \varepsilon$, then f is ε -close to some linear function.

Prove the converse of this statement (up to a constant factor). Specifically, prove that for $\varepsilon \in (0, 0.1)$ if f is close to some linear function, then $\Pr[f(x) + f(y) = f(x+y)] > 1 - 3\varepsilon$.