Answer Set Programming

CMPT 411/721

(based on slides by Torsten Schaub)
Introduction:
Model-Based Problem Solving
Goal: Declarative problem solving

In declarative problem solving:

- Instead of asking: “How can the problem be solved?”
- Ask: “How can the problem be described?”

Then use a domain-independent solver to compute a solution
Goal: Declarative problem solving

In declarative problem solving:
- Instead of asking: "How can the problem be solved?"
- Ask: "How can the problem be described?"

Then use a domain-independent solver to compute a solution.

General KR Methodology:

```
<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelling</td>
<td>Interpretation</td>
</tr>
<tr>
<td>Representation</td>
<td>Output</td>
</tr>
<tr>
<td>Computation</td>
<td></td>
</tr>
</tbody>
</table>
```
Answer set programming (ASP)

- Has its roots in
 - Knowledge representation and reasoning
 - In particular nonmonotonic reasoning
 - Deductive databases
 - Constraint solving (in particular, SAT solving)
 - Logic programming (with negation)

- Allows for solving all search problems within NP (and \(NP^{NP}\)) (over finite domains).

- Allows for using powerful off-the-shelf systems
 (nowadays capable of dealing with millions of variables)
Example: 3–colourability of graphs

C(I)
- vertex(1) ← edge(1,2)
- vertex(2) ← edge(2,3)
- vertex(3) ← edge(3,1)

C(P)
- coloured(V,r) ← not coloured(V,b), not coloured(V,g), vertex(V)
- coloured(V,b) ← not coloured(V,r), not coloured(V,g), vertex(V)
- coloured(V,g) ← not coloured(V,r), not coloured(V,b), vertex(V)
 - ← edge(V,U), coloured(V,C), coloured(U,C), colour(C)

Answer set
{ coloured(1,r), coloured(2,b), coloured(3,g), ... }

Goal: Find a *minimal* set of literals that *satisfies* the rules.

Such a set of literals is called an *answer set*.
Model-Based Problem Solving

Compare:

I Inference-based approach

1. Provide a specification of the problem.
2. A solution is given by a derivation of an appropriate query.
 - E.g. resolution in logic, top-down rule-based reasoning, Prolog
Model-Based Problem Solving

Compare:

I Inference-based approach

1. Provide a specification of the problem.
2. A solution is given by a derivation of an appropriate query.
 - E.g. resolution in logic, top-down rule-based reasoning, Prolog

II Model-based approach

1. Provide a specification of the problem.
2. A solution is given by a model of the specification.
 - E.g. ASP, also SAT
Model-Based Problem Solving

Compare:

I Inference-based approach

1. Provide a specification of the problem.
2. A solution is given by a *derivation* of an appropriate query.
 - E.g. resolution in logic, top-down rule-based reasoning, Prolog

II Model-based approach

1. Provide a specification of the problem.
2. A solution is given by a *model* of the specification.
 - E.g. ASP, also SAT

Key Idea: Rules represent *constraints* on the problem.
Applications of ASP

- Combinatorial search problems:
 - auctions, bio-informatics, computer-aided verification, configuration, constraint satisfaction, diagnosis, information integration, planning and scheduling, security analysis, semantic web, wire-routing, zoology and linguistics, ...

- ASP has also been used as a target language into which a high level language can be compiled.
 - E.g.: Action language \Rightarrow ASP
Introduction to ASP
ASP: Idea

- A (normal) rule, \(r \), is of the form

\[
A_0 \leftarrow A_1, \ldots, A_m, \text{not } A_{m+1}, \ldots, \text{not } A_n,
\]

- \textit{not} can be read as negation as failure.
- Variables are treated as standing for all possible instances.
ASP: Idea

- A (normal) rule, r, is of the form

 \[A_0 \leftarrow A_1, \ldots, A_m, \text{not } A_{m+1}, \ldots, \text{not } A_n, \]

- *not* can be read as negation as failure.
- Variables are treated as standing for all possible instances.

- Want to determine answer sets of a set of rules, or program.
- An answer set is a minimal set of atoms satisfying the rules.

 - i.e. for rule r above, if X is an answer set, then if A_1, \ldots, A_m are in X and no A_{m+1}, \ldots, A_n is in X then A_0 is in X.

E.g. \{ $a \leftarrow b$, not c., b \} has answer set \{ a, b \}.

\{ $a \leftarrow \text{not } b$.., $b \leftarrow \text{not } a$. \} has answer sets \{ a \} and \{ b \}.

ASP: Idea

- A (normal) rule, r, is of the form

 $$A_0 \leftarrow A_1, \ldots, A_m, \text{not } A_{m+1}, \ldots, \text{not } A_n,$$

- not can be read as negation as failure.
- Variables are treated as standing for all possible instances.

- Want to determine answer sets of a set of rules, or program.

- An answer set is a minimal set of atoms satisfying the rules.

 - I.e. for rule r above, if X is an answer set, then if A_1, \ldots, A_m are in X and no A_{m+1}, \ldots, A_n is in X then A_0 is in X.

- E.g. $\{a \leftarrow b, \text{not } c, , b.\}$ has answer set $\{a, b\}$.
ASP: Idea

- A (normal) rule, \(r \), is of the form
 \[
 A_0 \leftarrow A_1, \ldots, A_m, \text{not } A_{m+1}, \ldots, \text{not } A_n,
 \]
 - \text{not} can be read as negation as failure.
 - Variables are treated as standing for all possible instances.

- Want to determine answer sets of a set of rules, or program.

- An answer set is a minimal set of atoms satisfying the rules.
 - I.e. for rule \(r \) above, if \(X \) is an answer set, then if \(A_1, \ldots, A_m \) are in \(X \) and no \(A_{m+1}, \ldots, A_n \) is in \(X \) then \(A_0 \) is in \(X \).

- E.g. \{\(a \leftarrow b \), \text{not } c., \ b.\} \) has answer set \{\(a, b \).\}
 \{\(a \leftarrow \text{not } b., \ b \leftarrow \text{not } a.\)\} \) has answer sets \{\(a \)\} and \{\(b \)\}.

Normal logic programs

- A (normal) rule, r, is of the form
 $$A_0 \leftarrow A_1, \ldots, A_m, \text{not } A_{m+1}, \ldots, \text{not } A_n,$$
 where $n, m \geq 0$, and each A_i ($0 \leq i \leq n$) is an atom.
- A (normal) logic program is a finite set of rules.
- Notation
 - $\text{head}(r) = A_0$
 - $\text{body}(r) = \{A_1, \ldots, A_m, \text{not } A_{m+1}, \ldots, \text{not } A_n\}$
 - $\text{body}^+(r) = \{A_1, \ldots, A_m\}$
 - $\text{body}^-(r) = \{A_{m+1}, \ldots, A_n\}$
- A program is called positive if $\text{body}^-(r) = \emptyset$ for all its rules.
- $= \text{set of Horn clauses}$
(Rough) Notational Conventions

The following notation is used interchangeably in order to stress a particular view:

<table>
<thead>
<tr>
<th></th>
<th>if</th>
<th>and</th>
<th>or</th>
<th>negation as failure</th>
<th>classical negation</th>
</tr>
</thead>
<tbody>
<tr>
<td>logic program</td>
<td>←</td>
<td>,</td>
<td>;</td>
<td>not/∼</td>
<td>¬</td>
</tr>
<tr>
<td>formula</td>
<td>→</td>
<td>∧</td>
<td>∨</td>
<td></td>
<td>¬</td>
</tr>
<tr>
<td>source code</td>
<td>:-</td>
<td>,</td>
<td></td>
<td>not</td>
<td>−</td>
</tr>
</tbody>
</table>
Answer Set: Intuitions

• An **answer set** for a program P is a **minimal** set of atoms X such that, for every rule:

$$A_0 \leftarrow A_1, \ldots, A_m, \text{not } A_{m+1}, \ldots, \text{not } A_n,$$

if

$$\{A_1, \ldots, A_m\} \subseteq X$$

and

$$\{A_{m+1}, \ldots, A_n\} \cap X = \emptyset$$

then

$$A_0 \in X.$$

• This is a **nonconstructive** specification.

• Think of rules as specifying **constraints** on an answer set.
Answer Set: Formal Definition

Positive programs

- A set of atoms X is **closed under** a positive program Π iff for any $r \in \Pi$, $\text{head}(r) \in X$ whenever $\text{body}^+(r) \subseteq X$.
 - X corresponds to a model of Π (seen as a formula).
Answer Set: Formal Definition

Positive programs

- A set of atoms X is **closed under** a positive program Π iff for any $r \in \Pi$, $\text{head}(r) \in X$ whenever $\text{body}^+(r) \subseteq X$.
- X corresponds to a model of Π (seen as a formula).
- The **smallest** set of atoms which is closed under a positive program Π is denoted by $Cn(\Pi)$.
 - $Cn(\Pi)$ corresponds to the \subseteq-smallest model of Π
 - This is just the set of consequences obtained by forward chaining.
Answer Set: Formal Definition

Positive programs

- A set of atoms X is **closed under** a positive program Π iff for any $r \in \Pi$, $\text{head}(r) \in X$ whenever $\text{body}^+(r) \subseteq X$.
 - X corresponds to a model of Π (seen as a formula).
- The **smallest** set of atoms which is closed under a positive program Π is denoted by $Cn(\Pi)$.
 - $Cn(\Pi)$ corresponds to the \subseteq-smallest model of Π
 - This is just the set of consequences obtained by forward chaining.
- The set $Cn(\Pi)$ is an **answer set** of a **positive** program Π.

Example

\[
\{p \leftarrow, \quad q \leftarrow p, \quad r \leftarrow p, q, \quad t \leftarrow s\}
\]

has answer set $\{p, q, r\}$.

Some “logical” remarks

Recall:

- Positive rules are also called **definite clauses**.
 - Definite clauses are disjunctions with **exactly one** positive atom:

\[A_0 \lor \neg A_1 \lor \cdots \lor \neg A_m \]

- A set of definite clauses has a (unique) smallest model (where “smallest” is in terms of atoms true in the model).
Some “logical” remarks

Recall:

• Positive rules are also called definite clauses.
 • Definite clauses are disjunctions with exactly one positive atom:
 \[A_0 \lor \neg A_1 \lor \cdots \lor \neg A_m \]

 • A set of definite clauses has a (unique) smallest model (where “smallest” is in terms of atoms true in the model).

• Horn clauses are clauses with at most one positive atom.
 • Every definite clause is a Horn clause but not vice versa.
 • A set of Horn clauses has a smallest model or none.
Another “logical” remark

Answer sets versus (minimal) models

- Program \(\{ a \leftarrow \text{not } b \} \) has answer set \(\{ a \} \).
- Clause \(a \lor b \) (which is equivalent in classical logic to \(a \leftarrow \neg b \))
 - has models \(\{ a \} \), \(\{ b \} \), and \(\{ a, b \} \),
 - among which \(\{ a \} \) and \(\{ b \} \) are minimal.

The negation-as-failure operator \textit{not} makes a difference!
Consider the logical formula Φ and its three (classical) models:

$$\{p, q\}, \{q, r\}, \text{ and } \{p, q, r\}.$$
Answer sets: Basic idea

Consider the logical formula Φ and its three (classical) models:

$$\{p, q\}, \{q, r\}, \text{ and } \{p, q, r\}.$$

The corresponding logic program has one answer set:

$$\{p, q\}$$
Answer sets: Basic idea

Consider the logical formula Φ and its three (classical) models:

$$\{p, q\}, \{q, r\}, \text{ and } \{p, q, r\}.$$

The corresponding logic program has one answer set:

$$\{p, q\}$$

Roughly, a set of atoms X is an answer set of a logic program Π if

- X is a (classical) model of Π and
- all atoms in X are justified by some rule in Π
Answer set: Formal Definition

Normal programs

The reduct, \(\Pi_X \), of a program \(\Pi \) relative to a set \(X \) of atoms is defined by

\[
\Pi_X = \{ \text{head}(r) \leftarrow \text{body} + (r) \mid r \in \Pi \text{ and } \text{body}(r) \cap X = \emptyset \}.
\]

Think of \(X \) as being a "guess" of an answer set.

The reduct "compiles out" negation as failure, given \(X \).

A set \(X \) of atoms is an answer set of a program \(\Pi \) if \(\text{Cn}(\Pi_X) = X \).

Recall: \(\text{Cn}(\Pi_X) \) is the ⊆–smallest (classical) model of \(\Pi_X \).

Intuition: Every atom in \(X \) is justified by an "applying rule" from \(\Pi \).
The reduct, Π^X, of a program Π relative to a set X of atoms is defined by

$$\Pi^X = \{ \text{head}(r) \leftarrow \text{body}^+(r) \mid r \in \Pi \text{ and } \text{body}^-(r) \cap X = \emptyset \}.$$

- Think of X as being a “guess” of an answer set.
- The reduct “compiles out” negation as failure, given X.

Recall: $C_n(\Pi^X)$ is the \subseteq–smallest (classical) model of Π^X. Intuition: Every atom in X is justified by an “applying rule” from Π.

Answer set: Formal Definition

Normal programs
The reduct, Π^X, of a program Π relative to a set X of atoms is defined by

$$\Pi^X = \{ head(r) \leftarrow body^+(r) \mid r \in \Pi \text{ and } body^-(r) \cap X = \emptyset \}.$$

- Think of X as being a “guess” of an answer set.
- The reduct “compiles out” negation as failure, given X.

A set X of atoms is an answer set of a program Π if $\text{Cn}(\Pi^X) = X$.

Recall: $\text{Cn}(\Pi^X)$ is the ⊆–smallest (classical) model of Π^X.

Intuition: Every atom in X is justified by an “applying rule” from Π.

Answer set: Formal Definition

Normal programs
Answer set: Formal Definition

Normal programs

- The reduct, \(\Pi^X \), of a program \(\Pi \) relative to a set \(X \) of atoms is defined by

\[
\Pi^X = \{ \text{head}(r) \leftarrow \text{body}^+(r) \mid r \in \Pi \text{ and } \text{body}^-(r) \cap X = \emptyset \}.
\]

- Think of \(X \) as being a “guess” of an answer set.
- The reduct “compiles out” negation as failure, given \(X \).

- A set \(X \) of atoms is an answer set of a program \(\Pi \) if \(Cn(\Pi^X) = X \).

Recall: \(Cn(\Pi^X) \) is the \(\subseteq \)–smallest (classical) model of \(\Pi^X \).
Answer set: Formal Definition

Normal programs

- The reduct, Π^X, of a program Π relative to a set X of atoms is defined by

$\Pi^X = \{ head(r) \leftarrow body^+(r) \mid r \in \Pi \text{ and } body^-(r) \cap X = \emptyset \}$.

 - Think of X as being a “guess” of an answer set.
 - The reduct “compiles out” negation as failure, given X.

- A set X of atoms is an answer set of a program Π if $Cn(\Pi^X) = X$.

Recall: $Cn(\Pi^X)$ is the \subseteq-smallest (classical) model of Π^X.

Intuition: Every atom in X is justified by an “applying rule” from Π.
A Closer Look at Π^X

Given a set of atoms X from Π, Π^X is obtained from Π by deleting

1. each rule having a $not \ A$ in its body with $A \in X$
 and then

2. all negative atoms of the form $not \ A$ in the bodies of the remaining rules.

• Thus Π^X is Π, but where negative atoms are taken into account.

• Then X is an answer set of Π just if Π^X “generates” X, i.e. $Cn(\Pi^X) = X$.
A first example

\[\Pi = \{ p \leftarrow p, \quad q \leftarrow \text{not } p \} \]
A first example

\[\Pi = \{ \ p \leftarrow p, \ q \leftarrow \text{not } p \} \]

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\Pi^X)</th>
<th>(Cn(\Pi^X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(p \leftarrow p) (q \leftarrow)</td>
<td>({q})</td>
</tr>
<tr>
<td>({p})</td>
<td>(p \leftarrow p)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>({q})</td>
<td>(p \leftarrow p)</td>
<td>({q})</td>
</tr>
<tr>
<td>({p, q})</td>
<td>(p \leftarrow p)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
A first example

\[\Pi = \{ \ p \leftarrow p, \ q \leftarrow \text{not } p \} \]

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\Pi^X)</th>
<th>(Cn(\Pi^X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(p \leftarrow p)</td>
<td>({q})</td>
</tr>
<tr>
<td></td>
<td>(q \leftarrow)</td>
<td>![red x]</td>
</tr>
<tr>
<td>({p})</td>
<td>(p \leftarrow p)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>({q})</td>
<td>(p \leftarrow p)</td>
<td>({q})</td>
</tr>
<tr>
<td></td>
<td>(q \leftarrow)</td>
<td></td>
</tr>
</tbody>
</table>
A first example

\[\Pi = \{ p \leftarrow p, \quad q \leftarrow \text{not } p \} \]

<table>
<thead>
<tr>
<th>X</th>
<th>(\Pi^X)</th>
<th>(Cn(\Pi^X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(p \leftarrow p)</td>
<td>({q}) ✔️</td>
</tr>
<tr>
<td>({p})</td>
<td>(p \leftarrow p)</td>
<td>(\emptyset) ✔️</td>
</tr>
<tr>
<td>({q})</td>
<td>(p \leftarrow p)</td>
<td>({q})</td>
</tr>
<tr>
<td>({p, q})</td>
<td>(p \leftarrow p)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
A first example

\[\Pi = \{ p \leftarrow p, \quad q \leftarrow \text{not } p \} \]

<table>
<thead>
<tr>
<th>(\mathcal{X})</th>
<th>(\Pi^\mathcal{X})</th>
<th>(C_n(\Pi^\mathcal{X}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(p \leftarrow p)</td>
<td>{q}</td>
</tr>
<tr>
<td>({p})</td>
<td>(p \leftarrow p)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>({q})</td>
<td>(p \leftarrow p)</td>
<td>{q}</td>
</tr>
<tr>
<td>({p, q})</td>
<td>(p \leftarrow p)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
A first example

\[\Pi = \{ \ p \leftarrow p, \ q \leftarrow \text{not } p \} \]

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\Pi^X)</th>
<th>(Cn(\Pi^X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(p \leftarrow p)</td>
<td>({ q })</td>
</tr>
<tr>
<td>({ p })</td>
<td>(p \leftarrow p)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>({ q })</td>
<td>(p \leftarrow p)</td>
<td>({ q })</td>
</tr>
<tr>
<td>({ p, q })</td>
<td>(p \leftarrow p)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
A second example

\[\Pi = \{ \ p \leftarrow \text{not } q, \ q \leftarrow \text{not } p \ \} \]
A second example

\[\Pi = \{ p \leftarrow \text{not } q, \quad q \leftarrow \text{not } p \} \]

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\Pi^X)</th>
<th>(Cn(\Pi^X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(p \leftarrow)</td>
<td>({p, q})</td>
</tr>
<tr>
<td>({p})</td>
<td>(p \leftarrow)</td>
<td>({p})</td>
</tr>
<tr>
<td>({q})</td>
<td>(q \leftarrow)</td>
<td>({q})</td>
</tr>
<tr>
<td>({p, q})</td>
<td>(q \leftarrow)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
A second example

$$\Pi = \{ \ p \leftarrow \neg q, \ q \leftarrow \neg p \ \}$$

<table>
<thead>
<tr>
<th>X</th>
<th>Π^X</th>
<th>$\text{Cn}(\Pi^X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>p \leftarrow</td>
<td>${p, q}$ \times</td>
</tr>
<tr>
<td></td>
<td>q \leftarrow</td>
<td></td>
</tr>
<tr>
<td>${p}$</td>
<td>p \leftarrow</td>
<td>${p}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${q}$</td>
<td></td>
<td>${q}$</td>
</tr>
<tr>
<td></td>
<td>q \leftarrow</td>
<td></td>
</tr>
<tr>
<td>${p, q}$</td>
<td></td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
A second example

\[\Pi = \{ p \leftarrow \neg q, \quad q \leftarrow \neg p \} \]

<table>
<thead>
<tr>
<th>X</th>
<th>Π^X</th>
<th>$\text{Cn}(\Pi^X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>$p \leftarrow$</td>
<td>${p, q}$</td>
</tr>
<tr>
<td></td>
<td>$q \leftarrow$</td>
<td>\times</td>
</tr>
<tr>
<td>${p}$</td>
<td>$p \leftarrow$</td>
<td>${p}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\checkmark</td>
</tr>
<tr>
<td>${q}$</td>
<td></td>
<td>${q}$</td>
</tr>
<tr>
<td>${p, q}$</td>
<td>$q \leftarrow$</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
A second example

\[\Pi = \{ \ p \leftarrow \text{not } q, \ q \leftarrow \text{not } p \} \]

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\Pi^X)</th>
<th>(\text{Cn}(\Pi^X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(p \leftarrow)</td>
<td>{(p, q}} ×</td>
</tr>
<tr>
<td></td>
<td>(q \leftarrow)</td>
<td></td>
</tr>
<tr>
<td>{(p)}</td>
<td>(p \leftarrow)</td>
<td>{(p}} ✓</td>
</tr>
<tr>
<td></td>
<td>(q \leftarrow)</td>
<td></td>
</tr>
<tr>
<td>{(q)}</td>
<td></td>
<td>{(q}} ✓</td>
</tr>
<tr>
<td></td>
<td>(q \leftarrow)</td>
<td></td>
</tr>
<tr>
<td>{(p, q)}</td>
<td></td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
A second example

$$\Pi = \{ \ p \leftarrow \text{not } q, \ q \leftarrow \text{not } p \ \}$$

<table>
<thead>
<tr>
<th>X</th>
<th>Π^X</th>
<th>$\text{Cn}(\Pi^X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>$p \leftarrow$</td>
<td>${p, q}$ ✗</td>
</tr>
<tr>
<td></td>
<td>$q \leftarrow$</td>
<td></td>
</tr>
<tr>
<td>${p}$</td>
<td>$p \leftarrow$</td>
<td>${p}$ ✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${q}$</td>
<td></td>
<td>${q}$ ✓</td>
</tr>
<tr>
<td></td>
<td>$q \leftarrow$</td>
<td></td>
</tr>
<tr>
<td>${p, q}$</td>
<td></td>
<td>\emptyset ✗</td>
</tr>
</tbody>
</table>
A third example

\[\Pi = \{ p \leftarrow \text{not} \ p \} \]
A third example

$$\Pi = \{ \, p \leftarrow \text{not } p \, \}$$

<table>
<thead>
<tr>
<th>X</th>
<th>Π^X</th>
<th>$Cn(\Pi^X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>$p \leftarrow$</td>
<td>${p}$</td>
</tr>
<tr>
<td>${p}$</td>
<td></td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
A third example

\[\Pi = \{ p \leftarrow \text{not } p \} \]

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\Pi^X)</th>
<th>(Cn(\Pi^X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(p \leftarrow)</td>
<td>{p}</td>
</tr>
<tr>
<td>{p}</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
A third example

\[\Pi = \{ \ p \leftarrow \text{not } p \ \} \]

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\Pi^X)</th>
<th>(Cn(\Pi^X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(p \leftarrow)</td>
<td>{p} \times</td>
</tr>
<tr>
<td>{p}</td>
<td></td>
<td>(\emptyset) \times</td>
</tr>
</tbody>
</table>
A final example

\[\Pi = \{ a \leftarrow, \ c \leftarrow \text{not } b, \text{not } d, \ d \leftarrow a, \text{not } c, \} \]
A final example

$$\Pi = \{ \ a \leftarrow, \ c \leftarrow \mathit{not \ b}, \mathit{not \ d}, \ d \leftarrow a, \mathit{not \ c}, \ \}$$

This program has two answer sets, \(\{a, c\} \) and \(\{a, d\} \).
A final example

\[\Pi = \{ \ a \leftarrow, \ c \leftarrow \text{not } b, \text{not } d, \ d \leftarrow a, \text{not } c, \ \} \]

This program has two answer sets, \{a, c\} and \{a, d\}. Here are 3 possibilities for \(X\):

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\Pi^X)</th>
<th>(Cn(\Pi^X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(a \leftarrow)</td>
<td>{a, c, d}</td>
</tr>
<tr>
<td></td>
<td>(c \leftarrow)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d \leftarrow a)</td>
<td></td>
</tr>
<tr>
<td>{a, c}</td>
<td>(a \leftarrow)</td>
<td>{a, c}</td>
</tr>
<tr>
<td></td>
<td>(c \leftarrow)</td>
<td></td>
</tr>
<tr>
<td>{a, b, c, d}</td>
<td>(a \leftarrow)</td>
<td>{a}</td>
</tr>
</tbody>
</table>
A final example

$$\Pi = \{ \ a \leftarrow, \ c \leftarrow \text{not } b, \text{not } d, \ d \leftarrow a, \text{not } c, \ \}$$

This program has two answer sets, \(\{a, c\} \) and \(\{a, d\} \).

Here are 3 possibilities for \(X \):

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\Pi^X)</th>
<th>(\text{Cn}(\Pi^X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(a \leftarrow)</td>
<td>({a, c, d} \times)</td>
</tr>
<tr>
<td></td>
<td>(c \leftarrow)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d \leftarrow a)</td>
<td></td>
</tr>
<tr>
<td>({a, c})</td>
<td>(a \leftarrow)</td>
<td>({a, c})</td>
</tr>
<tr>
<td></td>
<td>(c \leftarrow)</td>
<td></td>
</tr>
<tr>
<td>({a, b, c, d})</td>
<td>(a \leftarrow)</td>
<td>({a})</td>
</tr>
</tbody>
</table>
A final example

$$\Pi = \{ a \leftarrow, \ c \leftarrow \text{not } b, \text{not } d, \ d \leftarrow a, \text{not } c, \}$$

This program has two answer sets, \{a, c\} and \{a, d\}. Here are 3 possibilities for \(X\):

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\Pi^X)</th>
<th>(Cn(\Pi^X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(a \leftarrow)</td>
<td>({a, c, d})</td>
</tr>
<tr>
<td></td>
<td>(c \leftarrow)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d \leftarrow a)</td>
<td></td>
</tr>
<tr>
<td>({a, c})</td>
<td>(a \leftarrow)</td>
<td>({a, c})</td>
</tr>
<tr>
<td></td>
<td>(c \leftarrow)</td>
<td></td>
</tr>
<tr>
<td>({a, b, c, d})</td>
<td>(a \leftarrow)</td>
<td>({a})</td>
</tr>
</tbody>
</table>
A final example

\[\Pi = \{ \ a \leftarrow, \ c \leftarrow \text{not } b, \text{not } d, \ d \leftarrow a, \text{not } c, \} \]

This program has two answer sets, \{a, c\} and \{a, d\}. Here are 3 possibilities for \(X\):

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\Pi^X)</th>
<th>(\text{Cn}(\Pi^X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(a \leftarrow)</td>
<td>({a, c, d})</td>
</tr>
<tr>
<td>({a, c})</td>
<td>(a \leftarrow)</td>
<td>({a, c})</td>
</tr>
<tr>
<td>({a, b, c, d})</td>
<td>(a \leftarrow)</td>
<td>({a})</td>
</tr>
</tbody>
</table>
Answer sets: Some properties

- A program may have zero, one, or multiple answer sets.
- If X is an answer set of a logic program Π, then X is a model of Π (seen as formulas of classical logic).
- If X and Y are answer sets of a logic program Π, then $X \not\subset Y$.
Let Π be a logic program.

- The *Herbrand Universe* U^Π is the set of constants in Π.
- The *Herbrand Base* B^Π is the set of (variable-free) atoms constructible from U^Π.

We usually denote this as A, and call it the *alphabet*.
Programs with Variables

- **Ground instances** of $r \in \Pi$:

 Set of variable-free rules obtained by replacing all variables in r by elements from U^Π:

 $$\text{ground}(r) = \{ r\theta \mid \theta : \text{var}(r) \rightarrow U^\Pi \}$$

 where $\text{var}(r)$ stands for the set of all variables occurring in r and θ is a (ground) substitution.
Programs with Variables

- **Ground instances** of \(r \in \Pi \):

 Set of variable-free rules obtained by replacing all variables in \(r \) by elements from \(U^\Pi \):

 \[
ground(r) = \{ r\theta \mid \theta : \text{var}(r) \rightarrow U^\Pi \}\]

 where \(\text{var}(r) \) stands for the set of all variables occurring in \(r \) and \(\theta \) is a (ground) substitution.

- **Ground instantiation** of \(\Pi \):

 \[
ground(\Pi) = \{ \ground(r) \mid r \in \Pi \}\]
An Example

\[\Pi = \{ \; r(a, b) \leftarrow, \; r(b, c) \leftarrow, \; t(X, Y) \leftarrow r(X, Y) \; \} \]
An Example

\[\Pi = \{ \ r(a, b) \leftarrow, \ r(b, c) \leftarrow, \ t(X, Y) \leftarrow r(X, Y) \ \} \]
\[U^\Pi = \{ a, b, c \} \]
An Example

\[\Pi = \{ \; r(a, b) \leftarrow, \; r(b, c) \leftarrow, \; t(X, Y) \leftarrow r(X, Y) \; \} \]

\[U^\Pi = \{ a, b, c \} \]

\[B^\Pi = \left\{ \begin{array}{c}
 r(a, a), \; r(a, b), \; r(a, c), \\
 r(b, a), \; r(b, b), \; r(b, c), \\
 r(c, a), \; r(c, b), \; r(c, c), \\
 t(a, a), \; t(a, b), \; t(a, c), \\
 t(b, a), \; t(b, b), \; t(b, c), \\
 t(c, a), \; t(c, b), \; t(c, c)
\end{array} \right\} \]
\(\Pi = \{ \ r(a, b) \leftarrow, \ r(b, c) \leftarrow, \ t(X, Y) \leftarrow r(X, Y) \ \} \)

\(U^\Pi = \{ a, b, c \} \)

\(B^\Pi = \{ \begin{array}{c}
 r(a, a), \ r(a, b), \ r(a, c), \\
 r(b, a), \ r(b, b), \ r(b, c), \\
 r(c, a), \ r(c, b), \ r(c, c), \\
 t(a, a), \ t(a, b), \ t(a, c), \\
 t(b, a), \ t(b, b), \ t(b, c), \\
 t(c, a), \ t(c, b), \ t(c, c)
\end{array} \} \)

\(\text{ground}(\Pi) = \{ \begin{array}{c}
 r(a, b) \leftarrow, \\
 r(b, c) \leftarrow, \\
 t(a, a) \leftarrow r(a, a), \ t(b, a) \leftarrow r(b, a), \ t(c, a) \leftarrow r(c, a), \\
 t(a, b) \leftarrow r(a, b), \ t(b, b) \leftarrow r(b, b), \ t(c, b) \leftarrow r(c, b), \\
 t(a, c) \leftarrow r(a, c), \ t(b, c) \leftarrow r(b, c), \ t(c, c) \leftarrow r(c, c)
\end{array} \} \)
An Example

\[\Pi = \{ \ r(a, b) \leftarrow, \ r(b, c) \leftarrow, \ t(X, Y) \leftarrow r(X, Y) \ \} \]

\[U^\Pi = \{ a, b, c \} \]

\[B^\Pi = \begin{cases}
 \{ \ r(a, a), \ r(a, b), \ r(a, c), \\
 \ r(b, a), \ r(b, b), \ r(b, c), \\
 \ r(c, a), \ r(c, b), \ r(c, c), \\
 \ t(a, a), \ t(a, b), \ t(a, c), \\
 \ t(b, a), \ t(b, b), \ t(b, c), \\
 \ t(c, a), \ t(c, b), \ t(c, c) \}
\end{cases} \]

\[\text{ground}(\Pi) = \begin{cases}
 \{ \ r(a, b) \leftarrow, \\
 \ r(b, c) \leftarrow, \\
 \ t(a, b) \leftarrow, \\
 \ t(b, c) \leftarrow, \\
 \ t(b, c) \leftarrow, \\
 \ t(b, c) \leftarrow \}
\end{cases} \]

• Intelligent Grounding aims to reduce the ground instantiation.
Answer Sets of Programs with Variables

Let Π be a normal logic program with variables.

We define a set X of \textit{(ground)} atoms as an \textit{answer set} of Π if $Cn(\text{ground}(\Pi)^X) = X$.
Programs with Integrity Constraints

Purpose: Integrity constraints eliminate unwanted candidate solutions
Programs with Integrity Constraints

Purpose: Integrity constraints eliminate unwanted candidate solutions

Syntax: An integrity constraint is of the form

\[\leftarrow A_1, \ldots, A_m, \text{not } A_{m+1}, \ldots, \text{not } A_n, \]

where \(n \geq m \geq 1 \), and each \(A_i \) (\(1 \leq i \leq n \)) is a atom.

Example

\[\leftarrow Edge(X, Y), Col(X, C), Col(Y, C) \]
Programs with Integrity Constraints

Purpose: Integrity constraints eliminate unwanted candidate solutions

Syntax: An integrity constraint is of the form

\[\leftarrow A_1, \ldots, A_m, \text{not } A_{m+1}, \ldots, \text{not } A_n, \]

where \(n \geq m \geq 1 \), and each \(A_i \) (\(1 \leq i \leq n \)) is a atom.

Example

\[\leftarrow \text{Edge}(X, Y), \text{Col}(X, C), \text{Col}(Y, C) \]

Implementation: For a new symbol \(x \),

map: \[\leftarrow A_1, \ldots, A_m, \text{not } A_{m+1}, \ldots, \text{not } A_n \]

to: \[x \leftarrow A_1, \ldots, A_m, \text{not } A_{m+1}, \ldots, \text{not } A_n, \text{not } x \]
Computation: Standard Scheme

Global parameters: Logic program Π and its set of atoms \mathcal{A}.

- X is a set of atoms known to be true;
- Y is a set of atoms known to be false.

$$\text{answer}\text{set}_\Pi(X, Y) :$$

1. $(X, Y) \leftarrow \text{propagation}_\Pi(X, Y)$
2. if $(X \cap Y) \neq \emptyset$ then fail
3. if $(X \cup Y) = \mathcal{A}$ then return(X)
4. select $A \in \mathcal{A} \setminus (X \cup Y)$
5. $\text{answer}\text{set}_\Pi(X \cup \{A\}, Y)$
6. $\text{answer}\text{set}_\Pi(X, Y \cup \{A\})$
Computation: Standard Scheme

Comments:

• \((X, Y)\) is supposed to be a 3-valued model such that \(X \subseteq Z\) and \(Y \cap Z = \emptyset\) for any answer set \(Z\) of \(\Pi\).

• Key operations:
 • \(\text{propagation}_{\Pi}(X, Y)\) and
 • “\(\text{select } A \in \mathcal{A} \setminus (X \cup Y)\)”

• Worst case complexity: \(\mathcal{O}(2^{\lvert \mathcal{A} \rvert})\)

More later...