Description Logics:

ALC
Topics:

1. Introduction to description logics
2. The description logic \mathcal{ALC}
3. Extensions to \mathcal{ALC}
4. A tableau algorithm for \mathcal{ALC}
Introduction

Description logics

• A DL is a formalism for expressing concepts, their attributes (or associated roles), and the relationships between them.
 • E.g. Person could be a concept and a role could be ParentOf.

• Can be regarded as a KR system based on a structured representation of knowledge.

• Most DLs are fragments of FOL, written in a distinct syntax.

Predecessors of DLs

• Semantic networks of the 70s
• Frame-based systems
Why Description Logics?

Ideal AI case:

- Approaches have scientific (logical) and engineering aspects
- **Scientific**: Analyse the problem formally and in detail
- **Engineering**: Get something working quickly and efficiently
- **Success**: When these two approaches coincide – efficient implementations of (formally) well-understood systems.

- Description Logic research has (arguably) reached this point
Background: Concepts, Roles, Constants

• In a description logic, there are sentences that will be true or false (as in FOL).
 • These are restricted to *subsumption* and *instance* assertions.
• In addition, there are three sorts of expressions that act like nouns and noun phrases in English:
 • *Concepts* are like category nouns: Person, Female, GraduateStudent
 • *Roles* are like relational nouns: AgeOf, ParentOf, AreaOfStudy
 • Specify attributes of concepts and their types
 • *Constants* are like proper nouns: John, Mary
• These correspond to unary predicates, binary predicates and constants (respectively) in FOL.
• Unlike in FOL, concepts need not be atomic and can have structure.
DL Knowledge Bases

An KB in a DL contains two parts:

- Define terminology: \textit{TBox}
 - E.g. \(MWD : \equiv Mother \sqcap \forall ParentOf . \neg Female \)
- Give assertions: \textit{ABox}
 - E.g. \(MWD(sue) \).
Main components of the TBox:

- **Concepts**: classes of individuals
 - E.g. *Mother*

- **Roles**: binary relations between individuals
 - E.g. $\forall ParentOf \neq Female$

- **Complex concepts using constructors**
 - E.g. $Mother \sqcap \forall ParentOf \neq Female$

- **Assertions concerning complex concepts**
 - E.g. $MWD = Mother \sqcap \forall ParentOf \neq Female$

$Mother \sqsubseteq Female$
DL Knowledge Bases: TBox

Main components of the TBox:

- **Concepts**: classes of individuals
 - E.g. *Mother*
- **Roles**: binary relations between individuals
 - E.g. $\forall ParentOf. \neg Female$
Main components of the TBox:

- **Concepts**: classes of individuals
 - E.g. *Mother*
- **Roles**: binary relations between individuals
 - E.g. $\forall ParentOf. \neg Female$
- **Complex concepts** using constructors
 - E.g. *Mother* $\sqcap \forall ParentOf. \neg Female$
DL Knowledge Bases: TBox

Main components of the TBox:

- **Concepts**: classes of individuals
 - E.g. *Mother*

- **Roles**: binary relations between individuals
 - E.g. $\forall ParentOf. \neg Female$

- **Complex concepts** using constructors
 - E.g. $Mother \sqcap \forall ParentOf. \neg Female$

- **Assertions** concerning complex concepts
 - E.g. $MWD \models Mother \sqcap \forall ParentOf. \neg Female$
 - $Mother \sqsubseteq Female$
DL Knowledge Bases: ABox

ABox: Assertions that individuals satisfy certain concepts and roles.

- Think of as a simple relational database.
- E.g. $MWD(Mary)$, $ParentOf(Mary, John)$.
DL: Advantages

- Well-defined formal semantics.
- Known (and often good) complexity characteristics or implementations.
- Relatively easy to specify DL knowledge bases, in a structured hierarchical fashion.
- DLs constitute a large family of approaches.
 - Can tailor a language to a specific application.
Applications

Useful whenever a common vocabulary is important.

E.g.:

- Enhanced database systems
 - *DL-Lite*
- Medical informatics: Snomed CT, Galen
 - *EL*
- Semantic Web
 - Next generation web
 - *OWL*: W3C recommendation.

ически We’ll look at perhaps the most central DL, *ALC*.
The Logic \textit{ALC}

An \textit{ALC} KB contains two parts:

- Define terminology: TBox
- Give assertions: ABox
The Logic \textit{ALC}

An \textit{ALC} KB contains two parts:

\begin{itemize}
 \item Define terminology: TBox
 \item Give assertions: ABox
\end{itemize}

Main components of the TBox:

\begin{itemize}
 \item Concepts: Represent classes of individuals
 \item Roles: Represent binary relations between individuals
 \item Complex concepts using constructors
\end{itemize}

Examples:

\begin{itemize}
 \item Concept names: Person, Female
 \item Role names: ParentOf, HasHusband
 \item Individual names (in the ABox): John, Mary
\end{itemize}
The Logic \mathcal{ALC}: Language

Logical symbols:

- **Propositional constructors:** \sqcap, \sqcup, \neg
- **Other restrictions:** \forall, \exists
 - Note: These are different from quantifiers as seen in FOL
- \top, \bot
The Logic \mathcal{ALC}: Language

Logical symbols:

- Propositional constructors: \sqcap, \sqcup, \neg
- Other restrictions: \forall, \exists
 - Note: These are different from quantifiers as seen in FOL
- \top, \bot

Nonlogical symbols:

- Concept names
- Role names
The Logic \mathcal{ALC}: Language

Logical symbols:
- Propositional constructors: \sqcap, \sqcup, \neg
- Other restrictions: \forall, \exists
 - Note: These are different from quantifiers as seen in FOL
- \top, \bot

Nonlogical symbols:
- Concept names
- Role names

Concept construction
- Let C and D be concepts and R a role.
- $\neg C$, $C \sqcap D$, $C \sqcup D$ are concepts.
- $\forall R.C$, $\exists R.C$ are concepts.
Let C and D be concepts and R a role.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not C.
- $C \sqcap D$ is the concept of things that are both C and D.
- E.g. $\text{Female} \sqcap \text{Human}$
- $C \sqcup D$ is the concept of things that are either C or D or both.
- E.g. $\text{Male} \sqcup \text{Female}$
- $\forall R.C$ is the concept of things such that all things that are R related to it are C's.
- E.g. $\forall \text{ParentOf}. \text{Female}$: things all of whose children are female
- $\exists R.C$ is the concept of things such that some thing R related to it is a C.
- $\exists \text{ParentOf}. \text{Female}$: things with a female child
The Logic \mathcal{ALC}: Language

Let C and D be concepts and R a role.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
The Logic \mathcal{ALC}: Language

Let C and D be concepts and R a role.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $C \sqcap D$ is the concept of things that are both C and D.
 - E.g. $Female \sqcap Human$
- $C \sqcup D$ is the concept of things that are either C or D or both.
- $\forall R. C$ is the concept of things such that all things that are R related to it are C's.
 - E.g. $\forall ParentOf. Female$: things all of whose children are female
- $\exists R. C$ is the concept of things such that some thing R related to it is a C.
 - E.g. $\exists ParentOf. Female$: things with a female child
The Logic \mathcal{ALC}: Language

Let C and D be concepts and R a role.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $C \sqcap D$ is the concept of things that are both C and D.
 - E.g. $Female \sqcap Human$
- $C \sqcup D$ is the concept of things that are either C or D or both.
 - E.g. $Male \sqcup Female$
The Logic \mathcal{ALC}: Language

Let C and D be concepts and R a role.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $C \sqcap D$ is the concept of things that are both C and D.
 - E.g. $Female \sqcap Human$
- $C \sqcup D$ is the concept of things that are either C or D or both.
 - E.g. $Male \sqcup Female$
- $\forall R.\ C$ is the concept of things such that all things that are R related to it are C’s.
 - E.g. $\forall ParentOf.\ Female$: things all of whose children are female
The Logic \mathcal{ALC}: Language

Let C and D be concepts and R a role.

- C stands for a concept or set of individuals.
- $\neg C$ stands for the concept of things that are not a C.
- $C \sqcap D$ is the concept of things that are both C and D.
 - E.g. $Female \sqcap Human$
- $C \sqcup D$ is the concept of things that are either C or D or both.
 - E.g. $Male \sqcup Female$
- $\forall R. C$ is the concept of things such that all things that are R related to it are C’s.
 - E.g. $\forall ParentOf . Female$: things all of whose children are female
- $\exists R. C$ is the concept of things such that some thing R related to it is a C.
 - $\exists ParentOf . Female$: things with a female child
The Logic \mathcal{ALC}: Knowledge Bases

Axioms (assertions) in the TBox:

- Subsumption: $C \sqsubseteq D$ where C and D are concepts
- Equivalence axioms: $C \equiv D$ where C and D are concepts

Assertions in the ABox:

- $C(a)$ where C is a concept and a is an individual name.
- $R(a, b)$ where R is a role name, a and b are individual names.

DL knowledge base:

- Set of TBox statements
- Set of ABox statements
The Logic \mathcal{ALC}: Knowledge Bases

Axioms (assertions) in the TBox:

- Subsumption: $C \sqsubseteq D$ where C and D are concepts
- Equivalence axioms: $C \equiv D$ where C and D are concepts

Assertions in the ABox:

- $C(a)$ where C is a concept and a is an individual name.
- $R(a, b)$ where R is a role name, a and b are individual names.
The Logic \mathcal{ALC}: Knowledge Bases

Axioms (assertions) in the TBox:

- Subsumption: $C \sqsubseteq D$ where C and D are concepts
- Equivalence axioms: $C \equiv D$ where C and D are concepts

Assertions in the ABox:

- $C(a)$ where C is a concept and a is an individual name.
- $R(a, b)$ where R is a role name, a and b are individual names.

DL knowledge base:

- Set of TBox statements
- Set of ABox statements
Examples

TBox:

- \(\text{Person} \sqsubseteq \text{Animal} \sqcap \text{Biped}\)
- \(\text{Woman} \equiv \text{Person} \sqcap \text{Female}\)
- \(\text{Mother} \equiv \text{Woman} \sqcap \exists \text{ParentOf} \cdot \text{Person}\)
- \(\text{Parent} \equiv \text{Mother} \sqcup \text{Father}\)
- \(\text{Man} \equiv \text{Person} \sqcap \neg \text{Woman}\)
- \(\text{MotherWithoutDaughter} \equiv \text{Mother} \sqcap \forall \text{ParentOf} \cdot \neg \text{Female}\)
- \(\text{GrandMother} \equiv \text{Woman} \sqcap \exists \text{ParentOf} \cdot \text{Parent}\)

ABox:

- \(\text{GrandMother}(\text{Sally})\)
- \((\text{Person} \sqcap \text{Male})(\text{John})\)
Formal Semantics for Concepts and Names

Semantically, a DL can be seen as a fragment of FOL.
Semantically, a DL can be seen as a fragment of FOL.

An interpretation is a pair $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$

- Domain Δ: non-empty set of objects
- Interpretation function $\cdot^{\mathcal{I}}$: Maps structures into the domain.
- Recall, Brachman and Levesque write this as $\mathcal{I} = \langle D, I \rangle$.
Formal Semantics for Concepts and Names

Semantically, a DL can be seen as a fragment of FOL

An interpretation is a pair $\mathcal{I} = \langle \Delta, .^\mathcal{I} \rangle$

- Domain Δ: non-empty set of objects
- Interpretation function $.^\mathcal{I}$: Maps structures into the domain.
- Recall, Brachman and Levesque write this as $\mathcal{I} = \langle D, I \rangle$.

Then:

- $^\mathcal{I}$ maps every concept name A to a subset $A^\mathcal{I} \subseteq \Delta$
- $^\mathcal{I}$ maps every role name R to a binary relation $R^\mathcal{I} \subseteq \Delta \times \Delta$
- $^\mathcal{I}$ maps individual names a to elements of $\Delta : a^\mathcal{I} \in \Delta$
- $\top^\mathcal{I} = \Delta$ and $\bot^\mathcal{I} = \emptyset$.
Semantics for Complex Concepts

Assume C, D are concepts, and R is a role.

- $(\neg C)^I = \Delta \setminus C^I$
- $(C \cap D)^I = C^I \cap D^I$
- $(C \cup D)^I = C^I \cup D^I$
- $(\forall R. C)^I = \{x \mid y \in C^I \text{ for every } y \text{ s.t. } (x, y) \in R^I\}$
- $(\exists R. C)^I = \{x \mid y \in C^I \text{ for some } y \text{ s.t. } (x, y) \in R^I\}$
Semantics for Axioms and Assertions

Assume C, D are concepts, R is a role, a and b are individual names.
Let $\mathcal{I} = (\Delta, I^\mathcal{I})$ be an interpretation.

- $C \subseteq D$ is true in \mathcal{I} iff $C^\mathcal{I} \subseteq D^\mathcal{I}$
- $C \equiv D$ is true in \mathcal{I} iff $C^\mathcal{I} = D^\mathcal{I}$
- $C(a)$ is true in \mathcal{I} iff $a^\mathcal{I} \in C^\mathcal{I}$
- $R(a, b)$ is true in \mathcal{I} iff $(a^\mathcal{I}, b^\mathcal{I}) \in R^\mathcal{I}$
Reasoning in \mathcal{ALC}

- Sentences: Axioms or assertions
- \mathcal{I} is a *model* for a sentence S iff S is true in \mathcal{I}
- \mathcal{I} is a model for a DL knowledge base K iff it is a model for every sentence in K
- Models of K are denoted by $[K]$
- S is *entailed* by K, written $K \models S$ iff $[K] \subseteq [S]$ (i.e. every model of K is a model of S.)

Types of Reasoning in \mathcal{ALC}

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
Types of Reasoning in \mathcal{ALC}

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
- Subsumption checking: $K \models C \sqsubseteq D$
Types of Reasoning in \mathcal{ALC}

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
- Subsumption checking: $K \models C \sqsubseteq D$
- Equivalence checking: $K \models C \equiv D$
Types of Reasoning in \mathcal{ALC}

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
- Subsumption checking: $K \models C \sqsubseteq D$
- Equivalence checking: $K \models C \equiv D$
- Consistency checking: $K \not\models \top \sqsubseteq \bot$
- Concept satisfiability: $K \not\models C \sqsubseteq \bot$
- Disjoint concepts: $K \models C \sqcap D \sqsubseteq \bot$
Types of Reasoning in ALC

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
- Subsumption checking: $K \models C \sqsubseteq D$
- Equivalence checking: $K \models C \equiv D$
- Consistency checking: $K \not\models \top \sqsubseteq \bot$
- Concept satisfiability: $K \not\models C \sqsubseteq \bot$
Types of Reasoning in \mathcal{ALC}

K a DL knowledge base;
C and D are concepts;
R is a role;
a and b are individual names

- Instance checking: $K \models C(a)$ or $K \models R(a, b)$
- Subsumption checking: $K \models C \sqsubseteq D$
- Equivalence checking: $K \models C \equiv D$
- Consistency checking: $K \not\models \top \sqsubseteq \bot$
- Concept satisfiability: $K \not\models C \sqsubseteq \bot$
- Disjoint concepts: $K \models C \cap D \sqsubseteq \bot$
Reduction to Consistency Checking

Let b be a new individual

- **Instance checking:**
 \[K \models C(a) \text{ iff } K \cup \{ \neg C(a) \} \models \top \sqsubseteq \bot \]

- **Subsumption checking:**
 \[K \models C \sqsubseteq D \text{ iff } K \cup \{ (C \sqcap \neg D)(b) \} \models \top \sqsubseteq \bot \]

- **Equivalence checking:**
 \[K \models C \equiv D \text{ iff } K \cup \{ (C \sqcap \neg D)(b), (\neg C \sqcap D)(b) \} \models \top \sqsubseteq \bot \]

- **Concept satisfiability:**
 \[K \not\models C \sqsubseteq \bot \text{ iff } K \cup \{ C(b) \} \not\models \top \sqsubseteq \bot \]

- **Disjoint concepts:**
 \[K \models C \sqcap D \sqsubseteq \bot \text{ iff } K \cup \{ C \sqcap D)(b) \} \models \top \sqsubseteq \bot \]
Reduction to Consistency Checking

Let b be a new individual

- Instance checking:
 \[K \models C(a) \text{ iff } K \cup \{\neg C(a)\} \models \top \sqsubseteq \bot \]

- Subsumption checking:
 \[K \models C \sqsubseteq D \text{ iff } K \cup \{(C \cap \neg D)(b)\} \models \top \sqsubseteq \bot \]
Reduction to Consistency Checking

Let \(b \) be a new individual

- **Instance checking:**
 \[K \models C(a) \iff K \cup \{ \neg C(a) \} \models \top \sqsubseteq \bot \]

- **Subsumption checking:**
 \[K \models C \sqsubseteq D \iff K \cup \{(C \cap \neg D)(b)\} \models \top \sqsubseteq \bot \]

- **Equivalence checking:**
 \[K \models C \equiv D \iff K \cup \{(C \cap \neg D)(b), (\neg C \cap D)(b)\} \models \top \sqsubseteq \bot \]
Reduction to Consistency Checking

Let b be a new individual

- **Instance checking:**
 \[K \models C(a) \iff K \cup \{\neg C(a)\} \models \top \sqsubseteq \bot \]

- **Subsumption checking:**
 \[K \models C \sqsubseteq D \iff K \cup \{(C \sqcap \neg D)(b)\} \models \top \sqsubseteq \bot \]

- **Equivalence checking:**
 \[K \models C \equiv D \iff K \cup \{(C \sqcap \neg D)(b), (\neg C \sqcap D)(b)\} \models \top \sqsubseteq \bot \]

- **Concept satisfiability:**
 \[K \not\models C \sqsubseteq \bot \iff K \cup \{C(b)\} \not\models \top \sqsubseteq \bot \]
Reduction to Consistency Checking

Let b be a new individual

- **Instance checking:**
 \[K \models C(a) \iff K \cup \{\neg C(a)\} \models \top \sqsubseteq \bot \]

- **Subsumption checking:**
 \[K \models C \sqsubseteq D \iff K \cup \{(C \sqcap \neg D)(b)\} \models \top \sqsubseteq \bot \]

- **Equivalence checking:**
 \[K \models C \equiv D \iff K \cup \{(C \sqcap \neg D)(b), (\neg C \sqcap D)(b)\} \models \top \sqsubseteq \bot \]

- **Concept satisfiability:**
 \[K \not\models C \sqsubseteq \bot \iff K \cup \{C(b)\} \not\models \top \sqsubseteq \bot \]

- **Disjoint concepts:**
 \[K \models C \sqcap D \sqsubseteq \bot \iff K \cup \{(C \sqcap D)(b)\} \models \top \sqsubseteq \bot \]
Aside: Extensions to \(ALC \)

- There are many other possible constructors that can be added

- Extended concepts
 - Number restrictions: \((\leq n_R, C)\) and \((\geq n_R, C)\)

- Nominals: Allow individuals in the TBox

- Role operators
 - Inverse roles: \(R^{-}\) where \(R\) is a role

- Role axioms
 - Role hierarchy: \(R \sqsubseteq S\) where \(R\) and \(S\) are roles
 - So far have just used \(\sqsubseteq\) for concepts.
 - Transitive roles: \(R \in R^+\) where \(R\) is a role
Aside: Extensions to \mathcal{ALC}

There are many other possible constructors that can be added

For example:

Extended concepts

- Number restrictions: $(\leq nR.C)$ and $(\geq nR.C)$
Aside: Extensions to \mathcal{ALC}

There are many other possible constructors that can be added.

For example:

Extended concepts

- Number restrictions: $(\leq nR.C)$ and $(\geq nR.C)$
- Nominals: Allow individuals in the TBox
Aside: Extensions to \textit{ALC}

There are many other possible constructors that can be added

For example:

Extended concepts
- Number restrictions: $(\leq nR.C)$ and $(\geq nR.C)$
- Nominals: Allow individuals in the TBox

Role operators
- Inverse roles: R^- where R is a role
Aside: Extensions to \mathcal{ALC}

There are many other possible constructors that can be added. For example:

Extended concepts

- Number restrictions: $(\leq nR.C)$ and $(\geq nR.C)$
- Nominals: Allow individuals in the TBox

Role operators

- Inverse roles: R^{-} where R is a role

Role axioms

- Role hierarchy: $R \sqsubseteq S$ where R and S are roles
 - So far have just used \sqsubseteq for concepts.
Aside: Extensions to \mathcal{ALC}

There are many other possible constructors that can be added. For example:

Extended concepts
- Number restrictions: $(\leq nR.C)$ and $(\geq nR.C)$
- Nominals: Allow individuals in the TBox

Role operators
- Inverse roles: R^- where R is a role

Role axioms
- Role hierarchy: $R \sqsubseteq S$ where R and S are roles
- Transitive roles: $R \in R^+$ where R is a role

So far have just used \sqsubseteq for concepts.
Extensions to \mathcal{ALC}: Examples

- $\text{ParentWithManySons} \triangleq (\geq 3\text{ParentOf}.\text{Male})$
- $\text{IndianCitizen} \triangleq \text{Person} \sqcap \exists \text{CitizenOf}.\{\text{India}\}$
- $\exists \text{ParentOf}^- \text{.Citizen} \sqsubseteq \text{Citizen}$
- $\text{ParentOf} \sqsubseteq \text{AncestorOf}$
- $\text{AncestorOf} \in R^+$
Extensions to \mathcal{ALC}: Semantics

- $(\leq nR.C)^I = \{x \mid |\{y \in C^I \mid (x, y) \in R^I\}| \leq n\}$
- $(\geq nR.C)^I = \{x \mid |\{y \in C^I \mid (x, y) \in R^I\}| \geq n\}$
- Inverse roles: $(R^-)^I = \{(y, x) \mid (x, y) \in R^I\}$
- $R \sqsubseteq S$ is true in I iff $R^I \subseteq S^I$ for roles R and S.
- $R \in R^+$ is true in I iff
 $$(x, z) \in R^I \text{ whenever } (x, y) \in R^I \text{ and } (y, z) \in R^I$$
A Tableau Algorithm for \textit{ALC}

Goal: Show $KB \models A \sqsubseteq B$ by showing $KB \cup \{A \sqcap \neg B\}$ unsatisfiable.

Assume an \textit{unfoldable terminology}:

- Axioms are of the form $A \sqsubseteq C$ and $A \equiv C$ where A is a concept name.
- For each concept name A, at most one axiom of the form $A \sqsubseteq C$ or $A \equiv C$.
- Axioms are acyclic:
 - $A \sqsubseteq C$ or $A \equiv C$ \textit{directly uses} a concept name A_1 iff A_1 occurs in C.
 - $A \sqsubseteq C$ or $A \equiv C$ \textit{uses} a concept name A_1 iff it directly uses A_1 or it directly uses a concept name A_2 and A_2 uses A_1.
 - $A \sqsubseteq C$ or $A \equiv C$ is \textit{acyclic} iff it does not use A.
General Method

Show $KB \models A \subseteq B$ by showing $KB \cup \{A \cap \neg B\}$ is unsatisfiable.

Try to prove concept (un)satisfiability by constructing a model.

- A *tableau* is a graph representing such a model.
- A set of tableau *expansion rules* is used to construct the tableau.
- Either a model is constructed or a contradiction is found.
General Method

At the start:

- Assume an unfoldable terminology.
- Assume that all axioms are of the form $P \models Q$
 - This can be done by replacing any axiom of the form $A \sqsubseteq B$ by $A \models B \cap C$ where C is a new concept name.
General Method

At the start:

- Assume an unfoldable terminology.
- Assume that all axioms are of the form $P \Downarrow Q$
 - This can be done by replacing any axiom of the form $A \sqsubseteq B$ by $A \Downarrow B \sqcap C$ where C is a new concept name.

If the query is $A \sqsubseteq B$:

- *negate* the query to get $A \sqcap \neg B$ (to show unsatisfiable);
- *unfold* the negated query;
- *convert* to *negation normal form*.
General Method

At the start:

- Assume an unfoldable terminology.
- Assume that all axioms are of the form $P \vdash Q$
 - This can be done by replacing any axiom of the form $A \sqsubseteq B$ by $A \sqsupseteq B \cap C$ where C is a new concept name.

If the query is $A \sqsubseteq B$:

- **negate** the query to get $A \sqcap \neg B$ (to show unsatisfiable);
- **unfold** the negated query;
- **convert** to negation normal form.

⚠️ Once the negated query has been unfolded, the rest of the KB can be ignored.
Unfold:
Expand every concept name occurring in the (negated) query.

- I.e. if concept C appears in the query and $C \sqsubseteq D$ is in the KB, replace C by D in the query.
- Recall that for $C \sqsubseteq D$ in the KB, C is a concept name and D is an arbitrary \mathcal{ALC} concept expression.
To Start

Unfold:
Expand every concept name occurring in the (negated) query.
 • I.e. if concept C appears in the query and $C \sqsubseteq D$ is in the KB, replace C by D in the query.
 • Recall that for $C \sqsubseteq D$ in the KB, C is a concept name and D is an arbitrary \mathcal{ALC} concept expression.

Negation normal form:
Negation occurs only in front of concept names
 • $\neg (C \sqcap D)$ gives $\neg C \sqcup \neg D$, and
 • $\neg (C \sqcup D)$ gives $\neg C \sqcap \neg D$
 • $\neg \exists R.C$ gives $\forall R.\neg C$, and
 • $\neg \forall R.C$ gives $\exists R.\neg C$
 • $\neg \neg C$ gives C
Algorithm

- Use a tree to represent the model being constructed
- Each node x represents an individual, labelled with a set $L(x)$ of concepts it has to satisfy
 - $C \in L(x)$ implies $x \in C^I$
- Each edge (x, y) represents a pair occurring in the interpretation of a role, labelled with the role name
 - $R = L((x, y))$ implies $(x, y) \in R^I$
To Determine the Satisfiability of a Concept C

- Initialise the tree T with a single node x with $L(x) = \{C\}$.
- Expand by repeatedly applying a set of **expansion rules**.
- T is **fully expanded** when none of the rules can be applied.
- T contains a **clash** when, for a node y and a concept D,
 $\bot \in L(y)$ or $\{D, \neg D\} \subseteq L(y)$.
- If T can’t be expanded without producing a clash, the concept is unsatisfiable.
Expansion Rules

(∩-rule) If \((C_1 \cap C_2) \in L(x)\) and \(\{C_1, C_2\} \not\subseteq L(x)\) then:
Add \(C_1\) and \(C_2\) to \(L(x)\).
Expansion Rules

(\cap\text{-rule}) If \((C_1 \cap C_2) \in L(x)\) and \(\{C_1, C_2\} \not\subseteq L(x)\) then:
Add \(C_1\) and \(C_2\) to \(L(x)\).

(\cup\text{-rule}) If \((C_1 \cup C_2) \in L(x)\) and \(\{C_1, C_2\} \cap L(x) = \emptyset\) then:
Add \(C_1\) to \(L(x)\).
If this leads to a clash, go back and add \(C_2\) to \(L(x)\).
Expansion Rules

(\cap\text{-rule}) If \((C_1 \cap C_2) \in L(x)\) and \(\{C_1, C_2\} \not\subseteq L(x)\) then:
Add \(C_1\) and \(C_2\) to \(L(x)\).

(\cup\text{-rule}) If \((C_1 \cup C_2) \in L(x)\) and \(\{C_1, C_2\} \cap L(x) = \emptyset\) then:
Add \(C_1\) to \(L(x)\).
If this leads to a clash, go back and add \(C_2\) to \(L(x)\).

(\exists\text{-rule}) If \(\exists R. C \in L(x)\) and there is no \(y\) s.t. \(L((x, y)) = R\) and \(C \in L(y)\) then:
Create a new node \(y\) and edge \((x, y)\) with \(L(y) = C\) and \(L((x, y)) = R\).
Expansion Rules

(\cap\text{-rule}) If \((C_1 \cap C_2) \in L(x)\) and \(\{C_1, C_2\} \not\subseteq L(x)\) then:
Add \(C_1\) and \(C_2\) to \(L(x)\).

(\cup\text{-rule}) If \((C_1 \cup C_2) \in L(x)\) and \(\{C_1, C_2\} \cap L(x) = \emptyset\) then:
Add \(C_1\) to \(L(x)\).
If this leads to a clash, go back and add \(C_2\) to \(L(x)\).

(\exists\text{-rule}) If \(\exists R.C \in L(x)\) and there is no \(y\) s.t. \(L((x, y)) = R\) and \(C \in L(y)\) then:
Create a new node \(y\) and edge \((x, y)\) with \(L(y) = C\) and \(L((x, y)) = R\).

(\forall\text{-rule}) If \(\forall R.C \in L(x)\) and there is some \(y\) s.t. \(L((x, y)) = R\) and \(C \not\in L(y)\) then:
Add \(C\) to \(L(y)\).
Interpreting a tree T

- If T contains a clash the concept C is unsatisfiable.
- If T is fully expanded and clash-free, then C is satisfiable.
- In the second case, construct a model I as follows:
 - $\Delta = \{x \mid x \text{ is a node in } T\}$.
 - $A^I = \{x \in \Delta \mid A \in L(x)\}$ for all concept names A in C.
 - $R^I = \{(x, y) \mid (x, y) \text{ is an edge in } T \text{ and } L((x, y)) = R\}$.
Termination of the Algorithm

- The \(\cap \)-, \(\cup \)-and \(\exists \)-rules can only be applied once to a concept in \(L(x) \).
- The \(\forall \)-rule can be applied many times to a given \(\forall R.C \) expression in \(L(x) \), but only once to a given edge \((x, y)\).
- Applying any rule to a concept \(C \) extends the labelling with a concept strictly smaller than \(C \).

Therefore the algorithm must terminate.
Tableau Algorithm: Example 1

DL knowledge base:

- \(\text{vegan} \equiv \text{person} \sqcap \forall \text{eats.plant} \)
- \(\text{vegetarian} \equiv \text{person} \sqcap \forall \text{eats.(plants \sqcup dairy)} \)

Query: \(\text{vegan} \sqsubseteq \text{vegetarian} \)

Convert to:

- \(\text{vegan} \sqcap \neg \text{vegetarian} \text{ is unsatisfiable?} \)
Example 1

- Unfold and normalise $\text{vegan} \sqcap \neg \text{vegetarian}$:

 $\text{person} \sqcap \forall \text{eats}. \text{plant} \sqcap (\neg \text{person} \sqcup \exists \text{eats}.(\neg \text{plant} \sqcap \neg \text{dairy}))$
Example 1

- Unfold and normalise \(\text{vegan} \sqcap \neg \text{vegetarian} \):
 \[\text{person} \sqcap \forall \text{eats}.\text{plant} \sqcap (\neg \text{person} \sqcup \exists \text{eats}.(\neg \text{plant} \sqcap \neg \text{dairy})) \]

- Initialise \(T \) to \(L(x) \) to contain:
 \[\text{person} \sqcap \forall \text{eats}.\text{plant} \sqcap (\neg \text{person} \sqcup \exists \text{eats}.(\neg \text{plant} \sqcap \neg \text{dairy})) \]
Example 1

- Unfold and normalise `vegan ⊓ ¬vegetarian`:
 \[\text{person} ⊓ \forall \text{eats.plant} ⊓ (¬\text{person} ⊔ ∃ \text{eats.} (¬\text{plant} ⊓ ¬\text{dairy})) \]

- Initialise \(T \) to \(L(x) \) to contain:
 \[\text{person} ⊓ \forall \text{eats.plant} ⊓ (¬\text{person} ⊔ ∃ \text{eats.} (¬\text{plant} ⊓ ¬\text{dairy})) \]

- Apply \(∩ \)-rule and add to \(L(x) \):
 \[\{ \text{person}, \forall \text{eats.plant}, ¬\text{person} ⊔ ∃ \text{eats.} (¬\text{plant} ⊓ ¬\text{dairy}) \} \]
Example 1

- Apply \sqcup-rule to $\neg person \sqcup \exists eats.(\neg plant \land \neg dairy)$:
 - Add $\neg person$ to $L(x)$: Clash
 - Go back and add $\exists eats. (\neg plant \land \neg dairy)$ to $L(x)$
Example 1

- Apply \sqcup-rule to \negperson $\sqcup \exists$eats.$(\neg$plant $\sqcap \neg$dairy$):$
 Add \negperson to $L(x)$: Clash
 Go back and add \existseats.$(\neg$plant $\sqcap \neg$dairy$)$ to $L(x)$

- Apply \exists-rule to \existseats.$(\neg$plant $\sqcap \neg$dairy$)$:
 Create new node y and new edge (x, y):
 $L(y) = \{\neg$plant $\sqcap \neg$dairy$\}; L((x, y)) = eats$
Example 1

- Apply \sqcup-rule to $\neg person \sqcup \exists eats. (\neg plant \land \neg dairy)$:
 - Add $\neg person$ to $L(x)$: Clash
 - Go back and add $\exists eats. (\neg plant \land \neg dairy)$ to $L(x)$

- Apply \exists-rule to $\exists eats. (\neg plant \land \neg dairy)$:
 - Create new node y and new edge (x, y):

 $L(y) = \{\neg plant \land \neg dairy\}; \quad L((x, y)) = eats$

- Apply \forall-rule to $\forall eats.plant$ in $L(x)$ and $L((x, y)) = eats$:
 - Add $plant$ to $L(y)$
Example 1

- Apply \(\sqcap \)-rule to \(\neg plant \sqcap \neg dairy \) in \(L(y) \):
 Add \(\{\neg plant, \neg dairy\} \) to \(L(y) \): Clash

Conclusion

- Both applications of the \(\sqcup \)-rule lead to clashes
- So vegan \(\sqcap \neg vegetarian \) is unsatisfiable
- So vegan \(\sqsubseteq vegetarian \)
Example 1

• Apply \neg-rule to $\neg plant \sqcap \neg dairy$ in $L(y)$:
 Add $\{\neg plant, \neg dairy\}$ to $L(y)$: Clash

• Conclusion
 • Both applications of the \sqcup-rule lead to clashes
 • So $\text{vegan} \sqcap \neg \text{vegetarian}$ is unsatisfiable
 • So $\text{vegan} \sqsubseteq \text{vegetarian}$
Example 2

- Query: \(\text{vegetarian} \sqsubseteq \text{vegan} \)
- Convert to: \(\text{vegetarian} \sqcap \neg \text{vegan} \) is satisfiable?
- Unfold and normalise \(\text{vegetarian} \sqcap \neg \text{vegan} \):
 \[
 \text{person} \sqcap \forall \text{eats.} (\text{plant} \sqcup \text{dairy}) \sqcap (\neg \text{person} \sqcup \exists \text{eats.} \neg \text{plant})
 \]
- Initialise \(T \) to \(L(x) \) to contain:
 \[
 \{ \text{person} \sqcap \forall \text{eats.} (\text{plant} \sqcup \text{dairy}) \sqcap (\neg \text{person} \sqcup \exists \text{eats.} \neg \text{plant}) \}
 \]
Example 2

- Apply \(\sqcap \)-rule and add to \(L(x) \):
 \[
 \{ \text{person}, \forall \text{eats.} (\text{plant} \sqcup \text{dairy}), \neg \text{person} \sqcup \exists \text{eats.} \neg \text{plant} \}
 \]
Example 2

• Apply \Box-rule and add to $L(x)$:
 \[
 \{\text{person}, \forall \text{eats.}(\text{plant} \sqcup \text{dairy}), \neg \text{person} \sqcup \exists \text{eats.}\neg \text{plant}\}\]

• Apply \sqcup-rule to $\neg \text{person} \sqcup \exists \text{eats.}\neg \text{plant}$:
 Add $\neg \text{person}$ to $L(x)$: Clash
 Go back and add $\exists \text{eats.}\neg \text{plant}$ to $L(x)$
Example 2

• Apply \sqcap-rule and add to $L(x)$:
 \{\textit{person}, \forall\textit{eats.\,(\textit{plant} \sqcup \textit{dairy})}, \neg\textit{person} \sqcup \exists\textit{eats.\,\neg\textit{plant}}\}

• Apply \sqcup-rule to \neg\textit{person} \sqcup \exists\textit{eats.\,\neg\textit{plant}}:
 Add \neg\textit{person} to $L(x)$: Clash
 Go back and add \exists\textit{eats.\,\neg\textit{plant}} to $L(x)$

• Apply \exists-rule to \exists\textit{eats.\,\neg\textit{plant}}:
 Create new node y and new edge (x, y)
 $L(y) = \{\neg$\textit{plant}\}; L((x, y)) = \textit{eats}$
Example 2

- Apply \forall-rule to $\forall eats. (plant \sqcup dairy)$ in $L(x)$ and $L((x, y)) = eats$:
 Add $plant \sqcup dairy$ to $L(y)$
Example 2

- Apply \forall-rule to $\forall eats. (plant \sqcup dairy)$ in $L(x)$ and $L((x, y)) = eats$:
 Add $plant \sqcup dairy$ to $L(y)$

- Apply \sqcup-rule to $plant \sqcup dairy$ in $L(y)$:
 Add $plant$ to $L(y)$: Clash
 Go back and add $dairy$ to $L(y)$

- Conclusion
 - No rules are applicable, so T is fully expanded
 - So vegetarian $\sqcap \neg$ vegan is satisfiable
 - So vegetarian $\not\sqsubseteq$ vegan
Example 2

- Apply \forall-rule to $\forall e (\text{plant} \sqcup \text{dairy})$ in $L(x)$ and $L((x, y)) = e$:
 Add $\text{plant} \sqcup \text{dairy}$ to $L(y)$

- Apply \sqcup-rule to $\text{plant} \sqcup \text{dairy}$ in $L(y)$:
 Add plant to $L(y)$: Clash
 Go back and add dairy to $L(y)$

- Conclusion
 - No rules are applicable, so T is fully expanded
 - So $\text{vegetarian} \sqcap \neg \text{vegan}$ is satisfiable
 - So $\text{vegetarian} \not\sqsubseteq \text{vegan}$
The Brachman&Levesque DL and \mathcal{ALC}

<table>
<thead>
<tr>
<th>Constructor</th>
<th>B&L</th>
<th>\mathcal{ALC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conj.</td>
<td>$(\text{AND } A \ B)$</td>
<td>$A \sqcap B$</td>
</tr>
<tr>
<td>Univ. quant.</td>
<td>$(\text{ALL } R \ C)$</td>
<td>$\forall R. C$</td>
</tr>
<tr>
<td>Exist. quant.</td>
<td></td>
<td>$\exists R. C$</td>
</tr>
<tr>
<td>Unqual. exist. quant.</td>
<td>$(\text{EXISTS } 1 \ R)$</td>
<td>$\exists R. \top$</td>
</tr>
<tr>
<td>Number restriction</td>
<td>$(\text{EXISTS } n \ R)$</td>
<td></td>
</tr>
<tr>
<td>Role filler</td>
<td>$(\text{FILLS } R \ a)$</td>
<td></td>
</tr>
<tr>
<td>Assertion</td>
<td>$a \rightarrow C$</td>
<td>$C(a)$</td>
</tr>
</tbody>
</table>

- \mathcal{FL}^- consists of Conj., Univ. quant., and Unqual. exist. quant.
- The B&L DL is slightly more general than \mathcal{FL}^-.
- \mathcal{ALC} is \mathcal{FL}^- plus \top, \bot, and general negation.
- The extension to \mathcal{ALC} for a role filler would use $\forall R. \{a\}$.
References

- Franz Baader, Ian Horrocks, Carsten Lutz, Uli Sattler: An Introduction to Description Logic
- Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, Peter Patel-Schneider (ed.): The Description Logic Handbook
- http://www.inf.unibz.it/~franconi/dl/course/
- http://www.dl.kr.org