Extending the Basic Reasoning System

CMPT 411/721
Topics

- Adding integrity constraints: Horn clauses
 - Assumption-Based Reasoning
- The closed world assumption
 - The Fitting operator
 - Datalog
- Adding disjunction
Beyond Definite Knowledge

- We begin first by considering two major extensions to the definite clause language:
 1. Add *integrity constraints* to definite clauses, giving *Horn clauses*.
 2. Adopt the *closed world assumption*, the assumption that our rules express *all* information about an atom.
Beyond Definite Knowledge

- We begin first by considering two major extensions to the definite clause language:
 1. Add *integrity constraints* to definite clauses, giving *Horn clauses*.
 2. Adopt the *closed world assumption*, the assumption that our rules express *all* information about an atom.

- Both extensions add a limited form of negation to our basic system.
 - Will later extend this further, in considering *answer set programming*.

- Following this we consider generalising the approach to effectively obtain propositional logic.
Extending the Basic Approach I: Integrity Constraints and Horn Clauses

- We now allow rules with the special atom \textit{false} (or: \(\bot\)), that is false in all interpretations, at the head of rules.
- Clauses of the form
 \[\text{false} \iff a_1 \land \cdots \land a_k\]
 are called \textit{integrity constraints}.
Extending the Basic Approach I: Integrity Constraints and Horn Clauses

- We now allow rules with the special atom $false$ (or: \bot), that is false in all interpretations, at the head of rules.
- Clauses of the form $false \iff a_1 \land \cdots \land a_k$ are called integrity constraints.
- A Horn clause is a definite clause or an integrity constraint.
- Integrity constraints allow us to express that some combinations of atoms can’t all be true.
- That is, $false \iff a_1 \land \cdots \land a_k$ says that a_1, \ldots, a_k can’t all be true.
Extending the Basic Approach I: Integrity Constraints and Horn Clauses

- We now allow rules with the special atom *false* (or: ⊥), that is false in all interpretations, at the head of rules.
- Clauses of the form \(\text{false} \leftarrow a_1 \land \cdots \land a_k \) are called *integrity constraints*.
- A *Horn clause* is a definite clause or an integrity constraint.
- Integrity constraints allow us to express that some combinations of atoms can’t all be true.
- That is, \(\text{false} \leftarrow a_1 \land \cdots \land a_k \) says that \(a_1, \ldots, a_k \) can’t all be true.
- Example: In the circuits domain, there is nothing to prevent a port being both *on* and *off*.
 - With *false* we can assert
 \[
 \text{false} \leftarrow \text{value}(X, \text{on}) \land \text{value}(X, \text{off})
 \]
Integrity Constraints and Horn Clauses

• Example:

\[T_1 = \{false \leftarrow a \land b, \ a \leftarrow c, \ b \leftarrow c\} \]

• We conclude that \(c \) is false in all models of \(T_1 \).
• In propositional logic this would be \(T_1 \models \neg c \).
 • Could also write this as \(T_1 \models false \leftarrow c \).

\(\star\) Note that \(\neg\) isn’t part of the KB language, so writing \(T_1 \models false \leftarrow c \) is better.
Example (continued)

- Consider

\[T_2 = \{ false \iff a \land b, a \iff c, b \iff d, b \iff e \} \]

- Write \(\alpha \lor \beta \) for a formula that is true in interpretation \(\mathcal{I} \) iff \(\alpha \)
 is true in \(\mathcal{I} \) or \(\beta \) is true in \(\mathcal{I} \) (or both).

 \(\lor \) again, \(\lor \) isn’t a symbol in our object language.

- Given this notation we have:

\[T_2 \models \neg c \lor \neg d \quad \text{and} \quad T_2 \models \neg c \lor \neg e. \]

I.e. we have that

\[T_2 \models false \iff c \land d \quad \text{and} \quad T_2 \models false \iff c \land e. \]

- Note that we cannot handle unrestricted disjunctions and negations.

- However we can derive disjunctions of negations of atoms.
We can use our previous top-down and bottom-up reasoners with Horn clauses.

If $KB \models false$ then KB is inconsistent.

Example: $KB = \{false \iff a., a.\}$.

If the KB is consistent, then to derive (positive) atoms we can ignore integrity constraints. (Why?)

However, we can exploit HC reasoning, as discussed next.
Assumption-Based Reasoning

The addition of integrity constraints seems minor; however it turns out to be a powerful tool.

- In many activities it is useful to know that some combination of truths are incompatible.
- Here we give an example in diagnosis.
- We will use the circuit example of the previous section.
 - Previously, given inputs, we could predict outputs.
 - For diagnosis, we may be given inputs, but the outputs may not be the expected outputs.
 - In this case we would like to prove what could be wrong with the circuit.
Assumption-Based Reasoning

- Define the *assumables* to be the atoms which we could accept as part of a (disjunctive) answer.
- Intuitively, assumables are things that we want to assume are true, if consistently possible.
 - In the circuit example, we will assume that a gate is not broken, where possible.
- If T is a set of clauses, a *conflict* of T is a set of assumables that, given T, imply false.
 - I.e. $C = \{c_1, \ldots, c_r\}$ is a conflict if
 \[
 T \models \text{false} \iff c_1 \land \cdots \land c_r
 \]
 that is,
 \[
 T \models \neg c_1 \lor \cdots \lor \neg c_r.
 \]
Assumption-Based Reasoning

• A *minimal conflict* is a conflict s.t. no subset is a conflict.

• Recall:

\[T_2 = \{ \text{false} \iff a \land b, \ a \iff c, \ b \iff d, \ b \iff e \} \]

• In \(T_2 \), if \(\{ c, d, e \} \) are the assumables, then \(\{ c, d \} \) and \(\{ c, e \} \) are minimal conflicts.

• The use of *false* in the head of a clause allows the possibility of a set of clauses being unsatisfiable.

 • Q: Show KB’s without integrity constraints are satisfiable.
Consistency-Based Diagnosis

Consider our circuit example from before.

- For the clauses involving how gates work, we add a predicate \textit{ok} expressing that the gate is working.

- For \textit{and} gates we have:

\begin{align*}
\text{value}(\text{out}(D), \text{on}) & \iff \text{gate}(D, \text{and}) \land \text{ok}(D) \\
& \quad \land \text{value}(\text{in}(1, D), \text{on}) \\
& \quad \land \text{value}(\text{in}(2, D), \text{on}).
\end{align*}

\begin{align*}
\text{value}(\text{out}(D), \text{off}) & \iff \text{gate}(D, \text{and}) \land \text{ok}(D) \land \text{value}(\text{in}(1, D), \text{off}).
\end{align*}

\begin{align*}
\text{value}(\text{out}(D), \text{off}) & \iff \text{gate}(D, \text{and}) \land \text{ok}(D) \land \text{value}(\text{in}(2, D), \text{off}).
\end{align*}
Example

- $ok(D)$ will be assumable.
- We add the clause

$$false \iff value(X, on) \land value(X, off).$$

- Given a set of observations (input and output) we want to ask whether there is a gate that is not ok:

$$? \neg ok(D)$$
• We test our circuit by giving it the following inputs.

\[
\text{value}(\text{in}(1, \text{adder}), \text{on}),
\text{value}(\text{in}(2, \text{adder}), \text{off}),
\text{value}(\text{in}(3, \text{adder}), \text{on}),
\text{value}(\text{out}(1, \text{adder}), \text{on}),
\text{value}(\text{out}(2, \text{adder}), \text{off}).
\]

With these values, the circuit cannot be operating correctly.
There are two minimal conflicts:
\[
\{ \text{ok}(x_1), \text{ok}(x_2) \}
\]
\[
\{ \text{ok}(x_1), \text{ok}(a_2), \text{ok}(o_1) \}
\]
Hence:
\begin{itemize}
 \item (At least) one of the exclusive-or gates is faulty.
 \item One of the gates x_1, a_2, o_1 is faulty.
\end{itemize}
We can distribute the answers to get the logically equivalent result:
\[
\neg \text{ok}(x_1) \lor (\neg \text{ok}(x_2) \land \neg \text{ok}(a_2)) \lor (\neg \text{ok}(x_2) \land \neg \text{ok}(o_1)).
\]
Each conjunction in this disjunction is called a \textit{diagnosis}.
Implementation: Bottom-up algorithm

The bottom-up implementation is an augmentation of the bottom-up algorithm presented earlier.

- The conclusion is a set of pairs $\langle a, A \rangle$ where a is an atom and A is a set of assumables that together with the rules imply a.
- Initially the conclusion set C is $\{ \langle a, \{ a \} \mid a \text{ is assumable} \}$.
- Rules can be used to form new conclusions:

 \[h \leftarrow b_1 \land \cdots \land b_m \]

 \text{such that for each } i \text{ there is } A_i \text{ such that } \langle b_i, A_i \rangle \in C, \text{ then add } \langle h, A_1 \cup \cdots \cup A_m \rangle \text{ to } C. \]

- If we generate $\langle \text{false}, A \rangle$ we know the assumptions in A form a conflict.
 - So if $A = \{ a_1, \ldots, a_k \}$ then $T \models \neg a_1 \lor \cdots \lor \neg a_k$.

A Bottom-up Procedure

First, we get rid of variables by *grounding* all rules.

- That is, each rule is replaced by the set of its ground instances.
- We can do this here since we have a finite domain.
A Bottom-up Procedure

Algorithm:

\[C := \{ \langle a, \{a\} \rangle \mid a \text{ is assumable} \}; \]
repeat

choose \(r \in T \) such that
\(r \) is ‘\(h \leftarrow b_1 \land \cdots \land b_m \)’
\(\langle b_i, A_i \rangle \in C \) for all \(i \), and
\(A = A_1 \cup \cdots \cup A_m \) and
\(\langle h, A \rangle \not\in C \);

\[C := C \cup \{ \langle h, A \rangle \} \]

until no more choices
Example:

- Assume we have three and-gates, where the outputs from \(a_1\) and \(a_2\) are connected to the inputs of \(a_3\).
- We observe that inputs \(on/off/on/on\) give output \(on\).
- Initially \(C\) has the value:
 \[
 \{ \langle ok(a_1), \{ ok(a_1) \} \rangle, \\
 \langle ok(a_2), \{ ok(a_2) \} \rangle, \\
 \langle ok(a_3), \{ ok(a_3) \} \rangle \}
 \]
Example

- The following shows a possible sequence of values added to C:

\[
\langle \text{value}(\text{in}(2, a_1), \text{off}), \{\} \rangle \\
\langle \text{gate}(a_1, \text{and}), \{\} \rangle \\
\langle \text{ok}(a_1), \{\text{ok}(a_1)\} \rangle \\
\langle \text{value}(\text{out}(a_1), \text{off}), \{\text{ok}(a_1)\} \rangle \\
\langle \text{connected}(\text{out}(a_1), \text{in}(1, a_3)), \{\} \rangle \\
\langle \text{value}(\text{in}(1, a_3), \text{off}), \{\text{ok}(a_1)\} \rangle \\
\langle \text{gate}(a_3, \text{and}), \{\} \rangle \\
\langle \text{ok}(a_3), \{\text{ok}(a_3)\} \rangle \\
\langle \text{value}(\text{out}(a_3), \text{off}), \{\text{ok}(a_1), \text{ok}(a_3)\} \rangle \\
\langle \text{value}(\text{out}(a_3), \text{on}), \{\} \rangle \\
\langle \text{false}, \{\text{ok}(a_1), \text{ok}(a_3)\} \rangle \\
\]

- Thus we can prove $\neg \text{ok}(a_1) \lor \neg \text{ok}(a_3)$.
Extending the Basic Approach II: Negation as Failure

• We can distinguish two types of “negative” situations with respect to trying to prove a query G:
 • We are able to show that $\neg G$ holds.
 • We are unable to show that G holds.

• Sometimes for the second case we want to assume that G is in fact false.

• This is known as *negation as (finite) failure* (naf).
Negation as Failure

• With our rule-based approach, we can justify naf if we assume that our rules express *all* knowledge about an atom.

• In this case, we can just store what is true, and so if we cannot derive something, it must be false.

 This is exactly the assumption made by relational databases.

• Thus an atom is false if none of the bodies implying the atom is true.
The Complete Knowledge Assumption

• For the ground case, consider where we have rules for atom a:

 $a \iff b_1$

 \ldots

 $a \iff b_n$

• The Complete Knowledge Assumption says that if a is true then it must have been derived by one of the b_i’s.
• Hence one of the b_i must be true.
• I.e. $a \Rightarrow b_1 \lor \cdots \lor b_n$, and thus

 $a \iff b_1 \lor \cdots \lor b_n$.
• This is called the completion of a.
The Complete Knowledge Assumption

• For example, if

 \[\text{student} \Leftrightarrow \text{grad}\]
 \[\text{student} \Leftrightarrow \text{ugrad}\]

 then the completion is:

 \[\text{student} \Leftrightarrow \text{grad} \lor \text{ugrad}.\]

• We won't go into it here, but this leads to a semantic account of the complete knowledge assumption (and negation as failure) known as the \textit{Clark completion}.
Implementation: Fitting Operator

- The bottom-up implementation incorporating naf is an extension of the procedure for definite clauses.
 - We now allow literals of the form $\sim p$ in the bodies of rules.
 - $\sim p$ expresses that p finitely fails.
 - I.e. $\sim p$ holds if we are unable to show that p holds.
 - Can also add atoms of the form $\sim p$ to the set C of consequences.

From the complete knowledge assumption we have that:
- The head atom of a rule must be true if the rule’s body is true.
- An atom p must be false if the body of each rule having p as a head is false.
- This leads to a three-valued model, in which atoms may be true, false, or undetermined.
- The Fitting operator can be implemented to run in linear time.
Implementation: Fitting Operator

- The bottom-up implementation incorporating naf is an extension of the procedure for definite clauses.
 - We now allow literals of the form $\sim p$ in the bodies of rules.
 - $\sim p$ expresses that p finitely fails.
 - I.e. $\sim p$ holds if we are unable to show that p holds.
 - Can also add atoms of the form $\sim p$ to the set C of consequences.
- From the complete knowledge assumption we have that:
 - The head atom of a rule must be true if the rule’s body is true.
 - An atom p must be false if the body of each rule having p as a head is false.
- This leads to a three-valued model, in which atoms may be true, false, or undetermined.
- The Fitting operator can be implemented to run in linear time.
Example Rules

\[p \iff q \land \sim r \]
\[p \iff s \]
\[q \iff \sim s \]
\[r \iff \sim t \]
\[t \]
\[s \iff w \]
A Bottom-up Procedure:

\[C := \{\} ; \]
repeat
 either
 choose \(r \in A \) such that
 \(r \) is ‘\(h \Leftarrow b_1 \land \cdots \land b_m \)’
 \(b_i \in C \) for all \(i \), and
 \(h \notin C \);
 \(C := C \cup \{ h \} \)
 or
 choose \(h \) such that for every rule
 \(h \Leftarrow b_1 \land \cdots \land b_m \)
 either for some \(b_i \) we have \(\sim b_i \in C \)
 or some \(b_i = \sim g \) and \(g \in C \)
 \(C := C \cup \{ \sim h \} \)
until no more choices
Example

• Consider:

 \[p \iff q \land \neg r \]
 \[p \iff s \]
 \[q \iff \neg s \]
 \[r \iff \sim t \]
 \[t \]
 \[s \iff w \]

• The following is a sequence of atoms added to \(C \):

 \(t, \sim r, \sim w, \sim s, q, p \).
Top-down Procedure

The top-down procedure proceeds by *negation as finite failure*.

- Consider:

 \[
 a \leftarrow b_1 \\
 \vdots \\
 a \leftarrow b_n
 \]

- If we try to prove each \(b_i \) and fail each time, we can conclude that each \(b_i \) is false, and so is \(a \).

- See a text on logic programming for more.
Logic in Databases: Datalog

- Datalog is a database query language based on definite clauses with negation as failure.
- A Datalog program consists of a finite set of facts and rules.
- Facts are assertions about the world, such as “John is the father of Harry”.
- Rules are sentences which allow us to deduce facts from other facts.
 E.g. “If \(X \) is a parent of \(Y \) and if \(Y \) is a parent of \(Y \), then \(X \) is a grandparent of \(Y \)”.

Syntax

• Facts and rules are represented as Horn clauses of the form

\[L_0 \leftarrow L_1, \ldots, L_n \]

where

• each \(L_i \) is a literal of the form \(P(t_1, \ldots, t_k) \)
• such that \(P \) is a predicate symbol and the \(t_i \) are terms.
• and a term is either a constant or a variable.

So no functions

• E.g. \(gp(Z, X) \leftarrow par(Y, X), \ par(Z, Y) \)

• The left-hand side of a Datalog clause is called its \textit{head} and the right-hand side is called its \textit{body}.

• Clauses with an empty body represent facts.
Consider two sets of clauses:

- **Extensional database (EDB):** Set of relations (ground facts) stored in the database.
 - Corresponds to a standard relational database instance
- **Intentional database (IDB):** A set of rules where the head does not appear in the EDB.
 - The IDB represents derived relations.
 - Can be thought of as views.
Pure and Extended Datalog

• “Datalog” has slightly different meanings depending on the reference.
• For us, pure Datalog will be the language where rules are composed of positive (EDB and IDB) predicates only.
• The “standard” version of Datalog (which we will be using henceforth) adds to pure Datalog:
 • Builtin special predicate symbols such as
 \(>, <, \geq, \leq, =, \neq \).
 • These symbols can occur only in the body of a rule.
 • E.g. \(X < 100, X + Y + 5 > Z \)
 • Negation as failure.
 • The symbol \(\sim \) can precede any predicate symbol in the body of a rule.
 • E.g. \(ugrad(X) \leftarrow st(X), \sim grad(X) \)
Examples

- $\text{ExpensiveProduct}(X) \leftarrow \text{Product}(X, C, P), \ P > 1000$
- $\text{BritishProduct}(X) \leftarrow \text{Product}(X, C, P), \ \text{Company}(C, \ "UK")$
- $\text{StrictAbove}(X, Y) \leftarrow \text{Above}(X, Y), \ \sim \text{On}(X, Y)$
Safety

- A **safe** Datalog program should always have a finite output
 - i.e., the relations defined by a Datalog program must be finite.
- A program P is safe if, for each rule in P:

 > Every variable that appears anywhere in the query must appear also in a relational, nonnegated atom in the body of the query.

- Unsafe rules:
 - $Q(X, Y, Z) \leftarrow R(X, Y)$
 - $Q(X, Y, Z) \leftarrow R(X, Y), \; X < Z$
 - $Q(X, Y, Z) \leftarrow R(X, Y), \; \sim S(X, Y, Z)$

[frame] In each case an infinity of Z’s can satisfy the rule, even though R and S are finite relations.
Datalog as a Database Query Language

Example:

Find employees participating in projects that don’t involve their department heads:

\[\text{X: Employee} \quad \text{P: Project} \]
\[\text{H: Department head} \quad \text{N: Department} \]

\[\text{EmpInv}(X, P, H) \leftarrow \]
\[Proj(P, X, S, E, B, D), \quad Empl(X, N), \quad Dept(N, H) \]

\[\text{DHInv}(X, P, H) \leftarrow \]
\[Proj(P, H, S, E, B, D), \quad Empl(X, N), \quad Dept(N, H) \]

\[\text{Answer}(X) \leftarrow \]
\[\text{EmpInv}(X, P, H), \quad \sim \text{DHInv}(X, P, H). \]
Selection: $\sigma_{X>10}(R)$

$S(X, Y) \leftarrow R(X, Y), X > 10$
From Relational Algebra to Datalog

Selection: $\sigma_{X>10}(R)$

$S(X, Y) \Leftarrow R(X, Y), \ X > 10$

Projection: $\Pi_{X,Y}(R)$

$P(X, Y) \Leftarrow R(X, Y, Z)$
From Relational Algebra to Datalog

Selection: \(\sigma_{X > 10}(R) \)

\[S(X, Y) \leftarrow R(X, Y), \; X > 10 \]

Projection: \(\Pi_{X, Y}(R) \)

\[P(X, Y) \leftarrow R(X, Y, Z) \]

Cartesian Product: \(R \times T \)

\[P(X, Y, Z, W) \leftarrow R(X, Y), \; T(Z, W) \]
From Relational Algebra to Datalog

Selection: $\sigma_{X>10}(R)$

$S(X, Y) \leftarrow R(X, Y), \ X > 10$

Projection: $\Pi_{X,Y}(R)$

$P(X, Y) \leftarrow R(X, Y, Z)$

Cartesian Product: $R \times T$

$P(X, Y, Z, W) \leftarrow R(X, Y), \ T(Z, W)$

Natural Join: $R \bowtie T$

$J(X, Y, Z) \leftarrow R(X, Y), \ T(Y, Z)$
From Relational Algebra to Datalog

Selection: $\sigma_{X>10}(R)$

$S(X, Y) \leftarrow R(X, Y), \ X > 10$

Projection: $\Pi_{X,Y}(R)$

$P(X, Y) \leftarrow R(X, Y, Z)$

Cartesian Product: $R \times T$

$P(X, Y, Z, W) \leftarrow R(X, Y), \ T(Z, W)$

Natural Join: $R \bowtie T$

$J(X, Y, Z) \leftarrow R(X, Y), \ T(Y, Z)$

Theta Join: $R \bowtie_{R.X>T.Z} T$

$J(X, Y, Z, W) \leftarrow R(X, Y), \ T(Z, W), \ X > Z$
From Relational Algebra to Datalog II

Intersection: \(R(X, Y) \cap T(X, Y) \)
\[
I(X, Y) \leftarrow R(X, Y), \ T(X, Y)
\]
From Relational Algebra to Datalog II

Intersection: $R(X, Y) \cap T(X, Y)$

$I(X, Y) \iff R(X, Y), \ T(X, Y)$

Union: $R(X, Y) \cup T(X, Y)$

$U(X, Y) \iff R(X, Y)$

$U(X, Y) \iff T(X, Y)$
Intersection: $R(X, Y) \cap T(X, Y)$

$I(X, Y) \iff R(X, Y), T(X, Y)$

Union: $R(X, Y) \cup T(X, Y)$

$U(X, Y) \iff R(X, Y)$
$U(X, Y) \iff T(X, Y)$

Difference: $R(X, Y) - T(X, Y)$

$D(X, Y) \iff R(X, Y), \sim T(X, Y)$
Expressivity

- Datalog, as developed to this point, is as expressive as the relational algebra.
 - So Datalog can serve as a logical query language in a relational DB.
- If we include recursive definitions (next slide), it is more expressive than the relational algebra.
 - However, still not Turing complete.
Recursive Datalog

- E.g. Can define the notion of a *path* in a graph by:
 \[
 \text{path}(X, Y) \iff \text{edge}(X, Y) \\
 \text{path}(X, Y) \iff \text{path}(X, Z), \text{edge}(Z, Y)
 \]

- Note that this corresponds with *transitive closure*, which cannot be expressed in first-order logic.

- However, there may be problems with recursion when combined with negation as failure.

- Example:
 \[
 P(X) \iff R(X), \sim Q(X) \\
 Q(X) \iff R(X), \sim P(X)
 \]
Solution: Stratified Datalog Programs

• A Datalog program P is *stratified* if
 • there is an assignment str of integers $0, 1, \ldots$ to the predicates p of P such that for each clause r in P the following holds:
 If p is the predicate in the head of r and q a predicate in the body of r, then
 • $str(p) \geq str(q)$ if q is positive, and
 • $str(p) > str(q)$ if q is negative.
Solution: Stratified Datalog Programs

- A Datalog program P is *stratified* if
 - there is an assignment str of integers 0, 1, ... to the predicates p of P such that for each clause r in P the following holds:
 - If p is the predicate in the head of r and q a predicate in the body of r, then
 - $str(p) \geq str(q)$ if q is positive, and
 - $str(p) > str(q)$ if q is negative.

- Example:

 - $check_sensors \leftarrow signal_error$
 - $signal_error \leftarrow valve_closed, \sim signal_1$
 - $signal_error \leftarrow pressure_loss, \sim signal_2$
 - $signal_error \leftarrow overheat, \sim signal_3$

 - Assign 1 to $check_sensors$, $signal_error$ and 0 to other atoms.

 - Stratification condition is satisfied.
Stratified Datalog Evaluation Algorithm

- Evaluate IDB predicates lowest-stratum-first
- Once evaluated, treat them as EDB
- Continue with next stratum, etc.
Extending the Basic Approach III: Disjunctive Knowledge

• We extend the Horn clause language to allow full disjunctive and negative knowledge.

• E.g. if I know that either a friend or her spouse is picking me up at the airport, then I know that I have a ride, without knowing who will pick me up.

• We also allow the direct statement of negative information, rather than assuming negative instances as in negation as failure.
Disjunctive Knowledge and Negation as Failure

- Disjunctive knowledge is incompatible with negation as failure.
- E.g. Given \(a \lor b \) we can’t prove \(a \), and so can assume \(\neg a \), and similarly for \(b \).
- However \(\neg a, \neg b \) is inconsistent with the original sentence.
• We add the following to our language:
 • A *literal* is an atom or the negation of an atom.
 • A *clause* has the form

\[L_1 \lor \cdots \lor L_k \iff L_{k+1} \land \cdots \land L_n \]

where the \(L_i \) are literals.

• So for a clause,
 • if \(k = 1 \) and all the literals are atoms we have a definite clause.
 • if \(k = n \) we have a disjunction of literals.

• This has the same expressive power as propositional logic, but is syntactically restricted.
• The meaning of clauses is given by the normal model-theoretic semantics, with the expected account for \(\neg \) and \(\lor \).

• Note that we can “move” literals over the \(\iff \) sign.

 • I.e. we can “swap” a literal over the \(\iff \) if we negate it.

 • Thus \(p \lor q \iff r \land \neg s \) is equivalent to

 \[
 p \iff \neg q \land r \land \neg s
 \]

 which is equivalent to

 \[
 p \lor \neg r \iff \neg q \land \neg s
 \]

• Hence any set of formulas in propositional logic can be written as a set of formulas of the form

 \[
 P_1 \lor \cdots \lor P_k \iff P_{k+1} \land \cdots \land P_n
 \]

where each \(P_i \) is an atom.
Semantic

- Unlike general clauses, definite clauses have a unique representation, up to commuting the conjuncts.
- The normal form of a general clause is an equivalent clause with no literals on the right hand side of the ⇐ sign.
 - That is, the normal form of
 \[L_1 \lor \cdots \lor L_k \iff L_{k+1} \land \cdots \land L_n \]
 is
 \[L_1 \lor \cdots \lor L_k \lor \neg L_{k+1} \lor \cdots \lor \neg L_n \iff \]
 - Then the ⇐ can be omitted.
- Our notion of a query and an answer remain the same.
 - So, an answer answer means that for some \(\tilde{X} \), answer(\(\tilde{X} \)) is a logical consequence of the clause set \(C \).
Example: Extended Circuit Diagnosis

- With the circuit diagnosis problem, there are some things that require disjunction.
- One is the *single fault assumption*, that says that there is only a single fault in the system.
 - This assumption allows some control over the combinatorial explosion of possible diagnoses.
 - It generalises to the n-fault assumption, for fixed n.
- For our circuit example we can express the single fault assumption as

 \[ok(G_1) \iff \neg ok(G_2) \land G_1 \neq G_2. \]

- For the adder example, if inputs were $on/off/on$, and outputs on/off, we could prove that there is only one fault, $\neg ok(x_1)$.
Example: Extended Circuit Diagnosis

• Another way to reduce the combinatorial explosion of possibilities is to assume that gates break down in a limited number of ways.

• This is the *limited failure assumption*.

• For example, we might assume that a gate can only be *ok* or stuck *on* or stuck *off*:

 \[ok(G) \iff \neg \text{stuckOn}(G) \land \neg \text{stuckOff}(G) \]

 \[\text{val(out}(G), \text{on}) \iff \text{stuckOn}(G) \]

 \[\text{val(out}(G), \text{off}) \iff \text{stuckOff}(G) \]
Example (continued)

- So with limited faults and multiple observations we can prune the possible errors.
- Note finally that we can combine these (or other) assumptions.
- In the case where we arrive at an inconsistency with one or more assumptions, we would know that that assumption (or one of our assumptions) was wrong.