Extending the Basic Reasoning System

CMPT 411/721
Topics

- Adding integrity constraints: Horn clauses
 - Assumption-Based Reasoning
- The closed world assumption
 - The Fitting operator
 - Datalog
- Adding disjunction
Beyond Definite Knowledge

- We begin first by considering two major extensions to the definite clause language:
 1. Add *integrity constraints* to definite clauses, giving *Horn clauses*.
 2. Adopt the *closed world assumption*, the assumption that our rules express *all* information about an atom.
Beyond Definite Knowledge

• We begin first by considering two major extensions to the definite clause language:
 1. Add *integrity constraints* to definite clauses, giving *Horn clauses*.
 2. Adopt the *closed world assumption*, the assumption that our rules express *all* information about an atom.

• Both extensions add a limited form of negation to our basic system.
 • Will later extend this further, in considering *answer set programming*.

• Following this we consider generalising the approach to effectively obtain propositional logic.
We now allow rules with the special atom \textit{false} (or: \(\bot\)), that is false in all interpretations, at the head of rules.

Clauses of the form

\[
\text{false} \iff a_1 \land \cdots \land a_k
\]

are called \textit{integrity constraints}.

Example: In the circuits domain, there is nothing to prevent a port being both on and off.

\[
\text{false} \iff \text{value}(X, \text{on}) \land \text{value}(X, \text{off})
\]
Extending the Basic Approach I:
Integrity Constraints and Horn Clauses

- We now allow rules with the special atom \textit{false} (or: \perp), that is false in all interpretations, at the head of rules.
- Clauses of the form \textit{false} \iff a_1 \land \cdots \land a_k are called \textit{integrity constraints}.
- A \textit{Horn clause} is a definite clause or an integrity constraint.
- Integrity constraints allow us to express that some combinations of atoms can’t all be true.
- That is, \textit{false} \iff a_1 \land \cdots \land a_k says that \(a_1, \ldots, a_k \) can’t all be true.
Extending the Basic Approach I: Integrity Constraints and Horn Clauses

• We now allow rules with the special atom $false$ (or: \bot), that is false in all interpretations, at the head of rules.

• Clauses of the form

\[false \iff a_1 \land \cdots \land a_k \] are called integrity constraints.

• A *Horn clause* is a definite clause or an integrity constraint.

• Integrity constraints allow us to express that some combinations of atoms can’t all be true.

• That is, $false \iff a_1 \land \cdots \land a_k$ says that a_1, \ldots, a_k can’t all be true.

• Example: In the circuits domain, there is nothing to prevent a port being both *on* and *off*.
 • With $false$ we can assert

\[false \iff value(X, on) \land value(X, off) \]
Integrity Constraints and Horn Clauses

• Example:

\[T_1 = \{ \text{false} \iff a \land b, \ a \iff c, \ b \iff c \} \]

• We conclude that \(c \) is \textit{false} in all models of \(T_1 \).

• In propositional logic this would be \(T_1 \models \neg c \).

 • Could also write this as \(T_1 \models \text{false} \iff c \).

\[\text{Note that } \neg \text{ isn’t part of the KB language, so writing } \]
\[T_1 \models \text{false} \iff c \text{ is better.} \]
Example (continued)

- Consider

\[T_2 = \{ \text{false} \iff a \land b, \ a \iff c, \ b \iff d, \ b \iff e \} \]

- Write \(\alpha \lor \beta \) for a formula that is true in interpretation \(\mathcal{I} \) iff \(\alpha \) is true in \(\mathcal{I} \) or \(\beta \) is true in \(\mathcal{I} \) (or both).

Again, \(\lor \) isn’t a symbol in our object language.

- Given this notation we have:

\[T_2 \models \neg c \lor \neg d \text{ and } T_2 \models \neg c \lor \neg e. \]

I.e. we have that

\[T_2 \models \text{false} \iff c \land d \text{ and } T_2 \models \text{false} \iff c \land e. \]

- Note that we cannot handle unrestricted disjunctions and negations.

- However we can derive disjunctions of negations of atoms.
Reasoning with Horn Clauses

- We can use our previous top-down and bottom-up reasoners with Horn clauses.

- If $KB \models false$ then KB is inconsistent.
 Example: $KB = \{\text{false} \leftarrow a., a.\}$.

- If the KB is consistent, then to derive (positive) atoms we can ignore integrity constraints. (Why?)

- However, we can exploit HC reasoning, as discussed next.
Assumption-Based Reasoning

The addition of integrity constraints seems minor; however it turns out to be a powerful tool.

- In many activities it is useful to know that some combination of truths are incompatible.
- Here we give an example in diagnosis.
- We will use the circuit example of the previous section.
 - Previously, given inputs, we could predict outputs.
 - For diagnosis, we may be given inputs, but the outputs may not be the expected outputs.
 - In this case we would like to prove what could be wrong with the circuit.
Assumption-Based Reasoning

- Define the **assumables** to be the atoms which we could accept as part of a (disjunctive) answer.
- Intuitively, assumables are things that we want to assume are true, if consistently possible.
 - In the circuit example, we will assume that a gate is not broken, where possible.
- If T is a set of clauses, a *conflict* of T is a set of assumables that, given T, imply *false*.
 - I.e. $C = \{c_1, \ldots, c_r\}$ is a conflict if
 \[
 T \models false \iff c_1 \land \cdots \land c_r
 \]
 that is,
 \[
 T \models \neg c_1 \lor \cdots \lor \neg c_r.
 \]
Assumption-Based Reasoning

- A minimal conflict is a conflict s.t. no subset is a conflict.
- Recall:

\[T_2 = \{ \text{false} \iff a \land b, \ a \iff c, \ b \iff d, \ b \iff e \} \]

- In \(T_2 \), if \(\{c, d, e\} \) are the assumables, then \(\{c, d\} \) and \(\{c, e\} \) are minimal conflicts.
- The use of false in the head of a clause allows the possibility of a set of clauses being unsatisfiable.
 - Q: Show KB’s without integrity constraints are satisfiable.
Consistency-Based Diagnosis

Consider our circuit example from before.

- For the clauses involving how gates work, we add a predicate \(ok \) expressing that the gate is working.
- For \(\text{and} \) gates we have:

\[
\text{value}(\text{out}(D), \text{on}) \iff \text{gate}(D, \text{and}) \land \text{ok}(D) \\
\quad \land \text{value}(\text{in}(1, D), \text{on}) \\
\quad \land \text{value}(\text{in}(2, D), \text{on}).
\]

\[
\text{value}(\text{out}(D), \text{off}) \iff \text{gate}(D, \text{and}) \land \text{ok}(D) \land \text{value}(\text{in}(1, D), \text{off}).
\]

\[
\text{value}(\text{out}(D), \text{off}) \iff \text{gate}(D, \text{and}) \land \text{ok}(D) \land \text{value}(\text{in}(2, D), \text{off}).
\]
Example

• $ok(D)$ will be assumable.
• We add the clause

$$false \iff value(X, \text{on}) \land value(X, \text{off}).$$

• Given a set of observations (input and output) we want to ask whether there is a gate that is not ok:

$$\text{? } \neg ok(D)$$
Example

- We test our circuit by giving it the following inputs.

\[
\begin{align*}
\text{value}(\text{in}(1, \text{adder}), \text{on}), \\
\text{value}(\text{in}(2, \text{adder}), \text{off}), \\
\text{value}(\text{in}(3, \text{adder}), \text{on}), \\
\text{value}(\text{out}(1, \text{adder}), \text{on}), \\
\text{value}(\text{out}(2, \text{adder}), \text{off}).
\end{align*}
\]

- With these values, the circuit cannot be operating correctly.
Example

- There are two minimal conflicts:
 \[
 \{\text{ok}(x_1), \text{ok}(x_2)\}
 \]
 \[
 \{\text{ok}(x_1), \text{ok}(a_2), \text{ok}(o_1)\}
 \]

- Hence:
 - (At least) one of the exclusive-or gates is faulty.
 - One of the gates x_1, a_2, o_1 is faulty.

- We can distribute the answers to get the logically equivalent result:
 \[
 \neg\text{ok}(x_1) \lor (\neg\text{ok}(x_2) \land \neg\text{ok}(a_2)) \lor (\neg\text{ok}(x_2) \land \neg\text{ok}(o_1)).
 \]

- Each conjunction in this disjunction is called a \textit{diagnosis}.
Implementation: Bottom-up algorithm

The bottom-up implementation is an augmentation of the bottom-up algorithm presented earlier.

- The conclusion is a set of pairs $\langle a, A \rangle$ where a is an atom and A is a set of assumables that together with the rules imply a.
- Initially the conclusion set C is $\{ \langle a, \{ a \} \rangle \mid a \text{ is assumable} \}$.
- Rules can be used to form new conclusions:

 If there is a rule

 \[h \Leftarrow b_1 \land \cdots \land b_m \]

 such that for each i there is A_i such that $\langle b_i, A_i \rangle \in C$, then add $\langle h, A_1 \cup \cdots \cup A_m \rangle$ to C.

- If we generate $\langle \text{false}, A \rangle$ we know the assumptions in A form a conflict.

 So if $A = \{ a_1, \ldots, a_k \}$ then $T \models \neg a_1 \lor \cdots \lor \neg a_k$.
A Bottom-up Procedure

First, we get rid of variables by \textit{grounding} all rules.

- That is, each rule is replaced by the set of its ground instances.
- We can do this here since we have a finite domain.
A Bottom-up Procedure

Algorithm:

\[C := \{ \langle a, \{ a \} \rangle \mid a \text{ is assumable} \}; \]
repeat
\[
\text{choose } r \in T \text{ such that } \begin{align*}
 r \text{ is } & 'h \leftarrow b_1 \land \cdots \land b_m' \\
 \langle b_i, A_i \rangle \in C \text{ for all } i, \text{ and } \\
 A = A_1 \cup \cdots \cup A_m \text{ and } \\
 \langle h, A \rangle \notin C; \end{align*}
\]
\[C := C \cup \{ \langle h, A \rangle \} \]
until no more choices
Example:

- Assume we have three and-gates, where the outputs from a_1 and a_2 are connected to the inputs of a_3.
- We observe that inputs $on/off/on/on$ give output on.
- Initially C has the value:

$$\{ \langle ok(a_1), \{ ok(a_1) \} \rangle, \langle ok(a_2), \{ ok(a_2) \} \rangle, \langle ok(a_3), \{ ok(a_3) \} \rangle \}$$
The following shows a possible sequence of values added to C:

\[
\begin{align*}
\langle & \text{value}(in(2, a_1), \text{off}), \{\} \rangle \\
\langle & \text{gate}(a_1, \text{and}), \{\} \rangle \\
\langle & \text{ok}(a_1), \{\text{ok}(a_1)\} \rangle \\
\langle & \text{value}(out(a_1), \text{off}), \{\text{ok}(a_1)\} \rangle \\
\langle & \text{connected}(\text{out}(a_1), \text{in}(1, a_3)), \{\} \rangle \\
\langle & \text{value}(in(1, a_3), \text{off}), \{\text{ok}(a_1)\} \rangle \\
\langle & \text{gate}(a_3, \text{and}), \{\} \rangle \\
\langle & \text{ok}(a_3), \{\text{ok}(a_3)\} \rangle \\
\langle & \text{value}(out(a_3), \text{off}), \{\text{ok}(a_1), \text{ok}(a_3)\} \rangle \\
\langle & \text{value}(out(a_3), \text{on}), \{\} \rangle \\
\langle & \text{false}, \{\text{ok}(a_1), \text{ok}(a_3)\} \rangle
\end{align*}
\]

Thus we can prove $\neg \text{ok}(a_1) \lor \neg \text{ok}(a_3)$.
Extending the Basic Approach II: Negation as Failure

- We can distinguish two types of “negative” situations with respect to trying to prove a query G:
 - We are able to show that $\neg G$ holds.
 - We are unable to show that G holds.

- Sometimes for the second case we want to assume that G is in fact false.

- This is known as *negation as (finite) failure* (naf).
Negation as Failure

• With our rule-based approach, we can justify naf if we assume that our rules express *all* knowledge about an atom.

• In this case, we can just store what is true, and so if we cannot derive something, it must be false.

 This is exactly the assumption made by relational databases.

• Thus an atom is false if none of the bodies implying the atom is true.
The Complete Knowledge Assumption

• For the ground case, consider where we have rules for atom \(a \):

\[
a \iff b_1 \\
\ldots \\
a \iff b_n
\]

• The Complete Knowledge Assumption says that if \(a \) is true then it must have been derived by one of the \(b_i \)'s.

• Hence one of the \(b_i \) must be true.

• I.e. \(a \Rightarrow b_1 \lor \cdots \lor b_n \), and thus

\[
a \iff b_1 \lor \cdots \lor b_n.
\]

• This is called the \textit{completion} of \(a \).
The Complete Knowledge Assumption

• For example, if

\[
\begin{align*}
\text{student} & \iff \text{grad} \\
\text{student} & \iff \text{ugrad}
\end{align*}
\]

then the completion is:

\[
\text{student} \iff \text{grad} \lor \text{ugrad}.
\]

• We won't go into it here, but this leads to a semantic account of the complete knowledge assumption (and negation as failure) known as the *Clark completion*.
Implementation: Fitting Operator

- The bottom-up implementation incorporating naf is an extension of the procedure for definite clauses.
 - We now allow literals of the form $\sim p$ in the bodies of rules.
 - $\sim p$ expresses that p \textit{finitely fails}.
 - I.e. $\sim p$ holds if we are unable to show that p holds.
 - Can also add atoms of the form $\sim p$ to the set C of consequences.

- From the complete knowledge assumption we have that:
 - The head atom of a rule must be true if the rule’s body is true.
 - An atom p must be false if the body of each rule having p as a head is false.
 - This leads to a three-valued model, in which atoms may be true, false, or undetermined.
- The Fitting operator can be implemented to run in linear time.
Implementation: Fitting Operator

- The bottom-up implementation incorporating naf is an extension of the procedure for definite clauses.
 - We now allow literals of the form $\sim p$ in the bodies of rules.
 - $\sim p$ expresses that p finitely fails.
 - I.e. $\sim p$ holds if we are unable to show that p holds.
 - Can also add atoms of the form $\sim p$ to the set C of consequences.
- From the complete knowledge assumption we have that:
 - The head atom of a rule must be true if the rule’s body is true.
 - An atom p must be false if the body of each rule having p as a head is false.
- This leads to a three-valued model, in which atoms may be true, false, or undetermined.
- The Fitting operator can be implemented to run in linear time.
Example Rules

\[p \iff q \land \neg r \]
\[p \iff s \]
\[q \iff \neg s \]
\[r \iff \neg t \]
\[t \]
\[s \iff w \]
A Bottom-up Procedure:

\[C := \{\}; \]
repeat
 either
 choose \(r \in A \) such that
 \(r \) is \(h \leftarrow b_1 \land \cdots \land b_m \)
 \(b_i \in C \) for all \(i \), and
 \(h \notin C \);
 \[C := C \cup \{h\} \]
 or
 choose \(h \) such that for every rule
 \(h \leftarrow b_1 \land \cdots \land b_m \)
 either for some \(b_i \) we have \(\lnot b_i \in C \)
 or some \(b_i = \lnot g \) and \(g \in C \)
 \[C := C \cup \{\lnot h\} \]
 until no more choices
Example

• Consider:

 \[p \iff q \land \lnot r \]

 \[p \iff s \]

 \[q \iff \lnot s \]

 \[r \iff \lnot t \]

 \[t \]

 \[s \iff w \]

• The following is a sequence of atoms added to \(C \):

 \[t, \lnot r, \lnot w, \lnot s, q, p. \]
Top-down Procedure

The top-down procedure proceeds by \emph{negation as finite failure}.

- Consider:

 \[a \leftarrow b_1 \]
 \[
 \vdots
 \]
 \[a \leftarrow b_n \]

- If we try to prove each b_i and fail each time, we can conclude that each b_i is false, and so is a.

- See a text on logic programming for more.
Logic in Databases: Datalog

- Datalog is a database query language based on definite clauses with negation as failure.
- A Datalog program consists of a finite set of facts and rules.
- Facts are assertions about the world, such as “John is the father of Harry”.
- Rules are sentences which allow us to deduce facts from other facts.
 E.g. “If X is a parent of Y and if Y is a parent of Y, then X is a grandparent of Y”.
Syntax

• Facts and rules are represented as Horn clauses of the form

\[L_0 \leftarrow L_1, \ldots, L_n \]

where

• each \(L_i \) is a literal of the form \(P(t_1, \ldots, t_k) \)
• such that \(P \) is a predicate symbol and the \(t_i \) are terms.
• and a term is either a constant or a variable.
 🕊 So no functions

• E.g. \(gp(Z, X) \leftarrow par(Y, X), \ par(Z, Y) \)

• The left-hand side of a Datalog clause is called its \textit{head} and the right-hand side is called its \textit{body}.

• Clauses with an empty body represent facts.
Datalog and Relational Databases

Consider two sets of clauses:

- **Extensional database (EDB):** Set of relations (ground facts) stored in the database.
 - Corresponds to a standard relational database instance
- **Intentional database (IDB):** A set of rules where the head does not appear in the EDB.
 - The IDB represents *derived* relations.
 - Can be thought of as *views.*
Pure and Extended Datalog

• “Datalog” has slightly different meanings depending on the reference.
• For us, pure Datalog will be the language where rules are composed of positive (EDB and IDB) predicates only.
• The “standard” version of Datalog (which we will be using henceforth) adds to pure Datalog:
 • Built-in special predicate symbols such as $>$, $<$, \geq, \leq, $=$, \neq.
 • These symbols can occur only in the body of a rule.
 • E.g. $X < 100$, $X + Y + 5 > Z$
 • Negation as failure.
 • The symbol \sim can precede any predicate symbol in the body of a rule.
 • E.g. $\text{ugrad}(X) \leftarrow \text{st}(X), \sim \text{grad}(X)$
Examples

- \(\text{ExpensiveProduct}(X) \leftarrow \text{Product}(X, C, P), \ P > 1000 \)
- \(\text{BritishProduct}(X) \leftarrow \text{Product}(X, C, P), \ \text{Company}(C, "\text{UK}") \)
- \(\text{StrictAbove}(X, Y) \leftarrow \text{Above}(X, Y), \sim\text{On}(X, Y) \)
Safety

• A **safe** Datalog program should always have a finite output
 • I.e., the relations defined by a Datalog program must be finite.
• A program \(P \) is safe if, for each rule in \(P \):

 Every variable that appears anywhere in the query
 must appear also in a relational, nonnegated atom in
 the body of the query.

• Unsafe rules:
 • \(Q(X, Y, Z) \leftarrow R(X, Y) \)
 • \(Q(X, Y, Z) \leftarrow R(X, Y), \ X < Z \)
 • \(Q(X, Y, Z) \leftarrow R(X, Y), \sim S(X, Y, Z) \)

 In each case an infinity of \(Z \)’s can satisfy the rule, even
 though \(R \) and \(S \) are finite relations.
Example:
Find employees participating in projects that don’t involve their department heads:

\[X: \text{Employee} \quad P: \text{Project} \]
\[H: \text{Department head} \quad N: \text{Department} \]

\[\text{EmpInv}(X, P, H) \iff \text{Proj}(P, X, S, E, B, D), \text{Empl}(X, N), \text{Dept}(N, H) \]
\[\text{DHInv}(X, P, H) \iff \text{Proj}(P, H, S, E, B, D), \text{Empl}(X, N), \text{Dept}(N, H) \]

\[\text{Answer}(X) \iff \text{EmpInv}(X, P, H), \sim \text{DHInv}(X, P, H). \]
From Relational Algebra to Datalog

Selection: $\sigma_{X>10}(R)$

$S(X, Y) \leftarrow R(X, Y), \ X > 10$
From Relational Algebra to Datalog

Selection: \(\sigma_{X>10}(R) \)
\[S(X, Y) \leftarrow R(X, Y), \ X > 10 \]

Projection: \(\Pi_{X,Y}(R) \)
\[P(X, Y) \leftarrow R(X, Y, Z) \]
From Relational Algebra to Datalog

Selection: $\sigma_{X>10}(R)$

$S(X, Y) \leftarrow R(X, Y), \ X > 10$

Projection: $\Pi_{X,Y}(R)$

$P(X, Y) \leftarrow R(X, Y, Z)$

Cartesian Product: $R \times T$

$P(X, Y, Z, W) \leftarrow R(X, Y), \ T(Z, W)$
From Relational Algebra to Datalog

Selection: $\sigma_{X>10}(R)$

$S(X, Y) \Leftarrow R(X, Y), \ X > 10$

Projection: $\Pi_{X,Y}(R)$

$P(X, Y) \Leftarrow R(X, Y, Z)$

Cartesian Product: $R \times T$

$P(X, Y, Z, W) \Leftarrow R(X, Y), \ T(Z, W)$

Natural Join: $R \bowtie T$

$J(X, Y, Z) \Leftarrow R(X, Y), \ T(Y, Z)$
From Relational Algebra to Datalog

Selection: \(\sigma_{X>10}(R) \)

\[S(X, Y) \Leftarrow R(X, Y), \ X > 10 \]

Projection: \(\Pi_{X,Y}(R) \)

\[P(X, Y) \Leftarrow R(X, Y, Z) \]

Cartesian Product: \(R \times T \)

\[P(X, Y, Z, W) \Leftarrow R(X, Y), \ T(Z, W) \]

Natural Join: \(R \bowtie T \)

\[J(X, Y, Z) \Leftarrow R(X, Y), \ T(Y, Z) \]

Theta Join: \(R \bowtie_{R.X > T.Z} T \)

\[J(X, Y, Z, W) \Leftarrow R(X, Y), \ T(Z, W), \ X > Z \]
From Relational Algebra to Datalog II

Intersection: \(R(X, Y) \cap T(X, Y) \)

\[I(X, Y) \Leftarrow R(X, Y), T(X, Y) \]
From Relational Algebra to Datalog II

Intersection: \(R(X, Y) \cap T(X, Y) \)

\(I(X, Y) \Leftarrow R(X, Y), T(X, Y) \)

Union: \(R(X, Y) \cup T(X, Y) \)

\(U(X, Y) \Leftarrow R(X, Y) \)
\(U(X, Y) \Leftarrow T(X, Y) \)
From Relational Algebra to Datalog II

Intersection: \(R(X, Y) \cap T(X, Y) \)

\[I(X, Y) \leftarrow R(X, Y), \ T(X, Y) \]

Union: \(R(X, Y) \cup T(X, Y) \)

\[U(X, Y) \leftarrow R(X, Y) \]
\[U(X, Y) \leftarrow T(X, Y) \]

Difference: \(R(X, Y) \setminus T(X, Y) \)

\[D(X, Y) \leftarrow R(X, Y), \ \sim T(X, Y) \]
Expressivity

- Datalog, as developed to this point, is as expressive as the *relational algebra*.
 - So Datalog can serve as a logical query language in a relational DB.
- If we include recursive definitions (next slide), it is *more* expressive than the relational algebra.
 - However, still not Turing complete.
E.g. Can define the notion of a *path* in a graph by:

\[\text{path}(X, Y) \iff \text{edge}(X, Y) \]
\[\text{path}(X, Y) \iff \text{path}(X, Z), \text{edge}(Z, Y) \]

Note that this corresponds with *transitive closure*, which cannot be expressed in first-order logic.

However, there may be problems with recursion when combined with negation as failure.

Example:

\[P(X) \iff R(X), \sim Q(X) \]
\[Q(X) \iff R(X), \sim P(X) \]
Solution: Stratified Datalog Programs

A Datalog program P is *stratified* if

- there is an assignment str of integers 0, 1, ... to the predicates p of P such that for each clause r in P the following holds:

 If p is the predicate in the head of r and q a predicate in the body of r, then
 - $str(p) \geq str(q)$ if q is positive, and
 - $str(p) > str(q)$ if q is negative.

Example:

- $\text{check sensors} \leftarrow \text{signal error, signal error} \leftarrow \text{valve closed, } \sim\text{signal 1}$
- $\text{signal error} \leftarrow \text{pressure loss, } \sim\text{signal 2}$
- $\text{signal error} \leftarrow \text{overheat, } \sim\text{signal 3}$

Assign 1 to check sensors, signal error and 0 to other atoms. Stratification condition is satisfied.
Solution: Stratified Datalog Programs

- A Datalog program P is *stratified* if
 - there is an assignment str of integers 0, 1, ... to the predicates p of P such that for each clause r in P the following holds:
 - If p is the predicate in the head of r and q a predicate in the body of r, then
 - $str(p) \geq str(q)$ if q is positive, and
 - $str(p) > str(q)$ if q is negative.

- Example:
 - $check_sensors \leftarrow signal_error$
 $signal_error \leftarrow valve_closed, \sim signal_1$
 $signal_error \leftarrow pressure_loss, \sim signal_2$
 $signal_error \leftarrow overheat, \sim signal_3$
 - Assign 1 to $check_sensors$, $signal_error$ and 0 to other atoms.
 - Stratification condition is satisfied.
Stratified Datalog Evaluation Algorithm

- Evaluate IDB predicates lowest-stratum-first
- Once evaluated, treat them as EDB
- Continue with next stratum, etc.
Extending the Basic Approach III: Disjunctive Knowledge

- We extend the Horn clause language to allow full disjunctive and negative knowledge.
- E.g. if I know that either a friend or her spouse is picking me up at the airport, then I know that I have a ride, without knowing who will pick me up.
- We also allow the direct statement of negative information, rather than assuming negative instances as in negation as failure.
Disjunctive Knowledge and Negation as Failure

- Disjunctive knowledge is incompatible with negation as failure.
- E.g. Given $a \lor b$ we can’t prove a, and so can assume $\neg a$, and similarly for b.
- However $\neg a$, $\neg b$ is inconsistent with the original sentence.
• We add the following to our language:
 • A **literal** is an atom or the negation of an atom.
 • A **clause** has the form

\[L_1 \lor \cdots \lor L_k \iff L_{k+1} \land \cdots \land L_n \]

where the \(L_i \) are literals.

• So for a clause,
 • if \(k = 1 \) and all the literals are atoms we have a definite clause.
 • if \(k = n \) we have a disjunction of literals.

• This has the same expressive power as propositional logic, but is syntactically restricted.
Semantics

- The meaning of clauses is given by the normal model-theoretic semantics, with the expected account for \neg and \lor.
- Note that we can “move” literals over the \iff sign.
 - I.e. we can “swap” a literal over the \iff if we negate it.
- Hence any set of formulas in propositional logic can be written as a set of formulas of the form

 \[P_1 \lor \cdots \lor P_k \iff P_{k+1} \land \cdots \land P_n \]

 where each P_i is an atom.
Semantics

• Unlike general clauses, definite clauses have a unique representation, up to commuting the conjuncts.

• The normal form of a general clause is an equivalent clause with no literals on the right hand side of the \iff sign.
 • That is, the normal form of
 \[L_1 \lor \cdots \lor L_k \iff L_{k+1} \land \cdots \land L_n \]
 is
 \[L_1 \lor \cdots \lor L_k \land \neg L_{k+1} \land \cdots \land \neg L_n \iff \]
 (where $\neg\neg P$ is replaced by P).
 • The \iff can then be omitted.

• Our notion of a query and an answer remain the same.
 • So, an answer $answer$ means that for some \vec{X}, $answer(\vec{X})$ is a logical consequence of the clause set C.
Example: Extended Circuit Diagnosis

- With the circuit diagnosis problem, there are some things that require disjunction.
- One is the single fault assumption, that says that there is only a single fault in the system.
 - This assumption allows some control over the combinatorial explosion of possible diagnoses.
 - It generalises to the n-fault assumption, for fixed n.
- For our circuit example we can express the single fault assumption as

 \[ok(G_1) \iff \neg ok(G_2) \land G_1 \neq G_2. \]

- For the adder example, if inputs were \textit{on}/\textit{off}/\textit{on}, and outputs \textit{on}/\textit{off}, we could prove that there is only one fault, \(\neg ok(x_1) \).
Another way to reduce the combinatorial explosion of possibilities is to assume that gates break down in a limited number of ways.

This is the *limited failure assumption*.

For example we might assume that a gate can only be *ok* or stuck *on* or stuck *off*:

\[
\begin{align*}
ok(G) &\iff \neg\text{stuckOn}(G) \land \neg\text{stuckOff}(G) \\
\text{val(out}(G), on) &\iff \text{stuckOn}(G) \\
\text{val(out}(G), off) &\iff \text{stuckOff}(G)
\end{align*}
\]
Example (continued)

- So with limited faults and multiple observations we can prune the possible errors.
- Note finally that we can combine these (or other) assumptions.
- In the case where we arrive at an inconsistency with one or more assumptions, we would know that that assumption (or one of our assumptions) was wrong.