Query Processing and Advanced Queries

Query Processing (2)
Review: Query Processing

SQL query → parse → parse tree → convert → logical query plan → query rewrite → “improved” l.q.p → estimate result sizes → l.q.p. + sizes → consider physical plans

{P1, P2, …..} → estimate costs → {(P1, C1), (P2, C2), …..} → pick best → execute → answer

CMPT 454: Database Systems II – Query Processing (2)
The following grammar describes a simple subset of SQL.

Queries

\[\text{<Query>} ::= \text{SELECT} \text{ <SelList>} \text{ FROM} \text{ <FromList>} \text{ WHERE} \text{ <Condition>} ; \]

Selection lists

\[\text{<SelList>} ::= \text{ <Attribute> , <SelList>} \]
\[\text{<SelList>} ::= \text{ <Attribute>} \]

From lists

\[\text{<FromList>} ::= \text{ <Relation> , <FromList>} \]
\[\text{<FromList>} ::= \text{ <Relation>} \]
Grammar for SQL

- Conditions
 - `<Condition>::= <Condition> AND <Condition>`
 - `<Condition>::= <Attribute> IN (<Query>)`
 - `<Condition>::= <Attribute> = <Attribute>`
 - `<Condition>::= <Attribute> LIKE <Pattern>`

- Syntactic categories Relation and Attribute are not defined by grammar rules, but by the database schema.
- Syntactic category Pattern defined as some regular expression.
Example: A SQL Query

StarsIn (movieTitle, movieYear, starName)
MovieStar (name, address, gender, birthdate)

Goal: find the movies with stars born in 1960

SELECT movieTitle
FROM StarsIn, MovieStar
WHERE starName = name AND birthdate LIKE ‘%1960’
A Parse Tree

```
SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> movieTitle <Relation> StarsIn <FromList>

<Attribute> MovieStar <Relation> <Condition>

<Attribute> AND <Attribute> <Pattern> LIKE '1960'

starName = name

birthdate

CMPT 454: Database Systems II – Query Processing (2)
```
Conversion to Logical Query Plan

- How to convert a parse tree into a logical query plan, i.e. a relational algebra expression?

- Queries with conditions without subqueries are easy:
 - Form **Cartesian product** of all relations in <FromList>.
 - Apply a **selection** σ_c where C is given by <Condition>.
 - Finally apply a **projection** π_L where L is the list of attributes in <SelList>.

- Queries involving subqueries are more difficult.
 - Remove subqueries from conditions and represent them by a two-argument selection in the logical query plan.
An Algebraic Expression Tree

\[\pi_{\text{movieTitle}} \]
\[\sigma_{\text{starName}=\text{name AND birthdate LIKE } '1960'} \]
\[X \]

\[\text{StarsIn} \quad \text{MovieStar} \]
Another SQL Query

StarsIn (movieTitle, movieYear, starName)
MovieStar (name, address, gender, birthdate)

Goal: find the movies with stars born in 1960

SELECT title
FROM StarsIn
WHERE starName IN (SELECT name FROM MovieStar
WHERE birthdate LIKE ‘%1960’);
Another Parse Tree

```
SELECT  <SelList>    FROM    <FromList>     WHERE     <Condition>
     <Attribute>              <Relation>
         title               StarsIn ( )
            IN
                        <Attribute> IN ( )
                           スターName

SELECT  <SelList>    FROM    <FromList>     WHERE     <Condition>
     <Attribute>              <Relation>
         name                MovieStar LIKE <Pattern>
                        birthDate LIKE ‘%1960’
```
Another Algebraic Expression Tree

\[\pi_{\text{movieTitle}} \sigma \text{StarsIn \atop \langle \text{condition} \rangle} \langle \text{Attribute} \rangle \text{IN} \pi_{\text{name}} \sigma_{\text{starName}} \sigma_{\text{birthdate LIKE ‘%1960’}} \text{MovieStar} \]
Algebraic Laws for Query Plans

Introduction

- Algebraic laws allow us to transform a Relational Algebra (RA) expression into an equivalent one.
- Two RA expressions are equivalent if, for all database instances, they produce the same answer.
- The resulting expression may have a more efficient physical query plan.
- Algebraic laws are used in the query rewrite phase.
Introduction

- **Commutative law:**
 Order of arguments does not matter.
 \[x + y = y + x \]

- **Associative law:**
 May group two uses of the operator either from the left or the right.
 \[(x + y) + z = x + (y + z) \]

- Operators that are commutative and associative can be grouped and ordered arbitrarily.
Algebraic Laws for Query Plans

Natural Join, Cartesian Product and Union

\[R \bowtie S = S \bowtie R \]
\[(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T) \]
\[R \times S = S \times R \]
\[(R \times S) \times T = R \times (S \times T) \]
\[R \cup S = S \cup R \]
\[R \cup (S \cup T) = (R \cup S) \cup T \]
Algebraic Laws for Query Plans

Selection

\[\sigma_{p_1 \land p_2}(R) = \sigma_{p_1} \left[\sigma_{p_2}(R) \right] \]

\[\sigma_{p_1 \lor p_2}(R) = \left[\sigma_{p_1}(R) \right] \cup \left[\sigma_{p_2}(R) \right] \]

\[\sigma_{p_1} \left[\sigma_{p_2}(R) \right] = \sigma_{p_2} \left[\sigma_{p_1}(R) \right] \]

- Simple conditions \(p_1 \) or \(p_2 \) may be pushed down further than the complex condition.
Bag Union

What about the union of relations with duplicates (bags)?

\[R = \{a,a,b,b,b,c\} \]
\[S = \{b,b,c,c,d\} \]
\[R \cup S = ? \]

Number of occurrences either SUM or MAX of occurrences in the input relations.

SUM: \[R \cup S = \{a,a,b,b,b,b,b,c,c,c,d\} \]
MAX: \[R \cup S = \{a,a,b,b,b,c,c,d\} \]
Selection

- $\sigma_{p_1 \lor p_2}(R) = \sigma_{p_1}(R) \cup \sigma_{p_2}(R)$
- MAX implementation of union makes rule work.

- $R = \{a,a,b,b,b,c\}$
 - p_1 satisfied by a,b, p_2 satisfied by b,c
 - $\sigma_{p_1 \lor p_2}(R) = \{a,a,b,b,b,c\}$
 - $\sigma_{p_1}(R) = \{a,a,b,b,b\}$
 - $\sigma_{p_2}(R) = \{b,b,b,c\}$
 - $\sigma_{p_1}(R) \cup \sigma_{p_2}(R) = \{a,a,b,b,b,c\}$
Algebraic Laws for Query Plans

Selection

- \(\sigma_{p_1 \lor p_2}(R) = \sigma_{p_1}(R) \cup \sigma_{p_2}(R) \)

SUM implementation of union makes more sense.

- Senators (……..)
- Reps (……..)

\[
\begin{array}{ccc}
T1 & = & \pi_{yr, state} \text{ Senators}, \\
T2 & = & \pi_{yr, state} \text{ Reps}
\end{array}
\]

<table>
<thead>
<tr>
<th>T1 Year</th>
<th>T1 State</th>
<th>T2 Year</th>
<th>T2 State</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>CA</td>
<td>99</td>
<td>CA</td>
</tr>
<tr>
<td>99</td>
<td>CA</td>
<td>99</td>
<td>CA</td>
</tr>
<tr>
<td>98</td>
<td>AZ</td>
<td>98</td>
<td>CA</td>
</tr>
</tbody>
</table>

Use SUM implementation, but then some laws do not hold.
Algebraic Laws for Query Plans

Selection and Set Operations

\[\sigma_p(R \cup S) = \sigma_p(R) \cup \sigma_p(S) \]

\[\sigma_p(R - S) = \sigma_p(R) - S = \sigma_p(R) - \sigma_p(S) \]
Algebraic Laws for Query Plans

Selection and Join

- p: predicate with only R attributes
- q: predicate with only S attributes
- m: predicate with attributes from R and S

$$\sigma_p (R \bowtie S) = [\sigma_p (R)] \bowtie S$$

$$\sigma_q (R \bowtie S) = R \bowtie [\sigma_q (S)]$$
Selection and Join

\[\sigma_{p \land q} (R \bowtie S) = [\sigma_p (R)] \bowtie [\sigma_q (S)] \]

\[\sigma_{p \land q \land m} (R \bowtie S) = \]
\[\sigma_m [(\sigma_p R) \bowtie (\sigma_q S)] \]

\[\sigma_{p \lor q} (R \bowtie S) = \]
\[[(\sigma_p R) \bowtie S] \cup [R \bowtie (\sigma_q S)] \]
Algebraic Laws for Query Plans

Projection

- X: set of attributes
- Y: set of attributes
- XY: X U Y

\[\pi_{xy}(R) = \pi_x[\pi_y(R)] \]

May introduce projection anywhere in an expression tree as long as it eliminates no attributes needed by an operator above and no attributes that are in result
Algebraic Laws for Query Plans

Projection and Selection

- X: subset of R attributes
- Z: attributes in predicate P (subset of R attributes)

\[\pi_x (\sigma_p R) = \pi_x \{\sigma_p [\pi_x (R)]\} \]

- Need to keep attributes for the selection and for the result
Algebraic Laws for Query Plans

Projection and Selection

- X: subset of R attributes
- Y: subset of S attributes
- Z: intersection of R, S attributes

\[\pi_{xy}(R \bowtie S) = \pi_{xy}\{[\pi_{xz}(R)] \bowtie [\pi_{yz}(S)]\} \]
Projection, Selection and Join

\[\pi_{xy} \{\sigma_p (R \bowtie S)\} = \]

\[\pi_{xy} \{\sigma_p [\pi_{xz'} (R) \bowtie \pi_{yz'} (S)]\} \]

\[z' = z \cup \{\text{attributes used in } P\} \]
What Are Good Transformation?

- No transformation is always good
- Usually good: early selections/projections