Query Processing and Advanced Queries

Query Optimization (2)
We have optimized the logical query plan, applying relational algebra equivalences.

In order to refine this plan into a physical query plan, we in particular need to choose one of the available algorithms to implement the basic operations (selection, join, . . .) of the query plan.

For each alternative physical query plan, we estimate its cost.

The cost estimates are based on the size estimates that we discussed in the previous chapter.
Introduction

- Disk I/O (read / write of a disk block) is orders of magnitude more expensive than CPU operations.
- Therefore, we use the number of disk I/Os to measure the cost of a physical query plan.
- We ignore CPU costs, timing effects, and double buffering requirements.
- We assume that the arguments of an operator are found on disk, but the result of the operator is left in main memory.
We use the following *parameters* (statistics) to express the cost of an operator:
- $B(R) = \#$ of blocks containing R tuples,
- $f(R) = \text{max}\ # \text{ of tuples of } R \text{ per block}$,
- $M = \#$ memory blocks available in the buffer,
- $HT(i) = \#$ levels in index i,
- $LB(i) = \#$ of leaf blocks in index i.

M may comprise the entire main memory, but typically the main memory needs to be shared with other processes, and M is much (!) smaller.
The performance of relational operators depends on many parameters such as the following ones.

- Are the tuples of a relation stored physically contiguous (clustered)? If yes, the number of blocks to be read is greatly reduced compared to non-clustered storage.
- Is a relation sorted by the relevant (selection, join) attribute? Otherwise, it may need to be sorted on-the-fly.
- Which indexes exist? Some algorithms require the existence of a corresponding index.
Each operator (selection, join, . . .) in a logical query plan can be implemented by one of a fairly large number of alternative algorithms.

We distinguish three types of algorithms:
- *sorting-based* algorithms,
- *hash-based* algorithms,
- *index-based* algorithms.

Sorting, building of hash table or building of index can either have happened in advance or may happen on the fly.
We can also categorize algorithms according to the number of passes over the data:

- **one-pass algorithms**
 read data only once from disk,

- **two-pass algorithms**
 read data once from disk, write intermediate relation back to disk and then read the intermediate relation once.

- **multiple-pass algorithms**
 perform more than two passes over the data, not considered in class.
Consider the unary, tuple-at-a-time operations, selection and projection on relation R.

Read all the blocks of R into the input buffer, one at a time.

Perform the operation on each tuple and move the selected / projected tuple to the output buffer.
One-Pass Algorithms for Unary Operations

- Output buffer may be input buffer of other operation and is not counted.
- Thus, algorithm requires only $M = 1$ buffer blocks.
- I/O cost is $B(R)$.
- If some index is applicable for a selection, have to read only blocks that contain qualifying tuples.
One-Pass Algorithms for Binary Operations

- Binary operations: union, intersection, difference, Cartesian product, and join.
- Use subscripts B and S to distinguish between the set- and bag- version, e.g. \cup_B and \cup_S.
- The bag union $R \cup_B S$ can be computed using a very simple one-pass algorithm: copy each tuple of R to the output, and copy each tuple of S to the output. (for the SUM model of bag union)
- I/O cost is $B(R) + B(S)$, $M = 1$.
One-Pass Algorithms for Binary Operations

- Other binary operations require the reading of the smaller of the two input relations into main memory.
- One buffer to read blocks of the larger relation, $M-1$ buffers for holding the entire smaller table.
- I/O cost is $B(R) + B(S)$.
- In main memory, a data structure is built that efficiently supports insertions and searches.
- Data structure, e.g., hash table or binary balanced tree. Space overhead can be neglected.

$$M > \min(B(R), B(S))$$
For set union, read the smaller relation (S) into M-1 buffers, representing it in a data structure whose search key consists of all attributes.

All these tuples are also copied to the output.

Read all blocks of R into the M-th buffer, one at a time.

For each tuple \(t \) of R, check whether \(t \) is in S. If not, copy \(t \) to the output.

For set intersection, copy \(t \) to output if it also is in S.