
PROJECT REPORT OF BUILDING

COURSE MANAGEMENT SYSTEM

BY DJANGO FRAMEWORK

by

Yiran Zhou

a Report submitted in partial fulfillment

of the requirements for the SFU-ZU dual degree of

Bachelor of Science

in the School of Computing Science

Simon Fraser University

and

the College of Computer Science and Technology

Zhejiang University

c© Yiran Zhou 2010

SIMON FRASER UNIVERSITY AND ZHEJIANG UNIVERSITY

Spring 2010

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Yiran Zhou

Degree: Bachelor of Science

Title of Report: PROJECT REPORT OF BUILDING COURSE MANAGE-

MENT SYSTEM BY DJANGO FRAMEWORK

Examining Committee:

Dr. Qianping Gu, Supervisor

Dr. Ramesh Krishnamurti, Examiner

Date Approved:

ii

Abstract

This report introduces the process of creating part of a course management system which

is a data-driven website used by the instructors and students. This website has four ma-

jor components: grade, marking, group, and submission. The major part of the group

component and minor part of marking component are implemented by me and the imple-

mentation details will be introduced in the report. The implementation uses a tool called

Django Framework which is an excellent open source web application frame work for com-

plex data-driven website development. The major part of this report will introduce how to

use Django to create a database table, web page user interface and inner logic to handle

user request by going through the group component implementation process.

iii

Contents

Approval ii

Abstract iii

1 Introduction 1

1.1 Background . 1

1.2 Significance . 2

1.3 Method used . 2

1.4 Limitation . 2

1.5 Report Organization . 2

2 Preliminary 4

2.1 Django framework . 4

2.1.1 Model . 4

2.1.2 View . 4

2.1.3 Template . 5

2.2 Python . 5

3 Project overview 6

3.1 An overview of the project . 6

3.2 An overview of the Django framework development process 7

4 Create the database tables 9

5 Create the User Interface 12

6 Implement the view function 16

iv

7 Functionalities implemented in group component 19

7.1 An overall view of group component . 19

7.2 Functionalities in the project scope . 20

7.3 Functions out of project scope . 22

8 Conclusion 23

v

Chapter 1

Introduction

This project report will introduce how to build part of a course management system using

the Django framework[1]. Django is an open source web application frame work which is

written in Python[2]. This course management system built using Django has four major

components each of which has different functionality but similar architecture. In the project

report I will demonstrate details of using Django to build one major component of this

system: the group component, which is my major contribution to the whole system. Also

the technique and process which is showed here can be applied to build the other three

components in the course management system as well as other complex database-driven

websites.

1.1 Background

SFU has several disparate systems for course management. They are: grade book, which is

used to allow students to see their grades in every activity in their course; online marking

system, which is used by teaching assistants and instructors to calculate the grade of their

students; submission web service, which is by students to submit their assignments. These

three systems are logically related but in reality they are implemented as individual systems

and located on different servers. So the technical maintenance team needs to spend a lot of

time and energy to support these three different systems. Also these systems were built a

long time ago and it is hard for the technical team to maintain and add new functionalities

which are required as time goes by. So the purpose of this project is to create a new

integrated scalable course management system with all the existing functionalities in these

1

CHAPTER 1. INTRODUCTION 2

three systems, as well as new functionalities if required.

1.2 Significance

The new course management system will integrate all existing functionalities of the three

systems as well as other new functions. Thus the technical team only needs to maintain

one system instead of three. The scalability of the new system will allow them to add more

features to the system in future. Students and professors only need to log into one system

to accomplish what they did on the three systems before. This will be more convenient and

significantly improve their efficiency.

1.3 Method used

This system is built using Django web application framework. Django was originally devel-

oped for the news-oriented site of the world company in Lawrence, Kansas[3]. It simplifies

the development process of complex, data-base driven web applications like a news-oriented

site. Its well-designed framework includes three major parts: model, view and template[4].

Our course management system consists of four components which are grades, marking,

group and submission. Each component contains those three parts. When we develop the

course management system, we first design the model of the relative component for data

architecture, then the template for user interface, at last we implement the view which

includes all the functions.

1.4 Limitation

Complex websites such as the course management system usually take some time to test and

validate. The system may have some potential bugs or flaws because of the development

time constraint. However because of the flexibility and powerful functionality of Django,

these bugs or flaws can be fixed.

1.5 Report Organization

In next Chapter, which is Chapter 2, we give the preliminaries of the report. Chapter 3 is

an overview of the whole project. From Chapter 4 to Chapter 6, we will give the details of

CHAPTER 1. INTRODUCTION 3

each component in Django to implement one process in the group component of the system,

namely creating a new group for some group activities. Chapter 4 describes how to deal with

the database to create database tables for groups. The user interface for input information

for a new group is discussed in Chapter 5. Chapter 6 introduces the view function for

processing the create group request. Chapter 7 contains all the functionalities that I have

implemented.

Chapter 2

Preliminary

2.1 Django framework

Django is an open source web application frame work written in Python. The primary goal

of Django is to make the development of complex, data-based websites easier. Thus Django

emphasizes the reusability and pluggability of components to ensure rapid developments.

Django consists of three major parts: model, view and template[4].

2.1.1 Model

Model[4] is a single, definitive data source which contains the essential field and behavior

of the data. Usually one model is one table in the database. Each attribute in the model

represents a field of a table in the database. Django provides a set of automatically-generated

database application programming interfaces (APIs) for the convenience of users.

2.1.2 View

View[4] is short form of view file. It is a file containing Python function which takes web

requests and returns web responses. A response can be HTML content or XML documents

or a “404 error” and so on. The logic inside the view function can be arbitrary as long as it

returns the desired response. To link the view function with a particular URL we need to

use a structure called URLconf which maps URLs to view fucntions.

4

CHAPTER 2. PRELIMINARY 5

2.1.3 Template

Django’s template[4] is a simple text file which can generate a text-based format like HTML

and XML. The template contains variables and tags. Variables will be replaced by the result

when the template is evaluated. Tags control the logic of the template. We also can modify

the variables by using filters. For example, a lowercase filter can convert the variable from

uppercase into lowercase.

2.2 Python

Python[2] is the language used to build the Django framework. It is a dynamic scripting

language similar to Perl[5] and Ruby[6]. The principal author of Python is Guido van

Rossum[7]. Python supports dynamic typing and has a garbage collector for automatic

memory management. Another important feature of Python is dynamic name solution

which binds the names of functions and variables during execution[2].

Chapter 3

Project overview

3.1 An overview of the project

Our desired result of the course management system is an integrated web-based system com-

bining several current systems in use. It will include the following four major components:

• Grade component

This component is basically associated with course assignments and exams. In this

component the instructor can define the assignment/exam details such as assign-

ment/exam name, percentage, due date and so on. The instructor can also view

the grades of every student in the course or change the formula used for calculating

the final grade. A student can view his/her own grades in all the courses he/she has

taken. It also provides functionality such as import/export student grades from/to an

excel sheet.

• Submission component

This component is used to replace the submission system we currently have. It deals

with the student submissions for assignments. It can validate some commonly used

file extensions to see if the submission file is in the correct form and associate the

correct submission with the assignment.

• Marking component

This component is used to mark student assignments and exams. The instructor

or the teaching assistant can mark all questions in an assignment and record some

6

CHAPTER 3. PROJECT OVERVIEW 7

common problems or mistakes made by the students. The instructor or the teaching

assistant can also mark the assignment associated with a student or with a group if it

is a group assignment. This component also provides functionalities for the instructor

to copy the course setup from one course to another if they are the same course

in different semesters or different sections, thereby saving time. I have been in the

marking component development team for a while and implemented the copy course

setup function and functionalities associated with “common problems”. However these

functions have been changed significantly after I switched to the group component

development team. For details of the marking component, please refer to the project

report of Li Tan[8].

• Group component

The Group component is used by instructors and students to manage groups in the

class. Sometimes there are group assignments, so students can form a group to com-

plete these assignments. This component allows the instructors and students to create

groups. Instructors can assign students to a group and students can invite other stu-

dents to the group they belong to. I completed the majority of the work for this

component and will introduce this component in detail in Chapter 7.

Besides these four major components, there is another component separate from all the

above four. This component is called core data which contains information such as courses,

students and semesters. This data is used in the above four components.

3.2 An overview of the Django framework development pro-

cess

To build such a complicated web system, we need three major parts for each component:

database, user interface and the functions to interact in between. Django framework provides

sufficient functionalities to implement these three parts. Corresponding to database, user

interface and functions in between, Django has model, template and view components to

deal with each part respectively. Django’s model component helps programmer to define

and maintain tables in the database, while its template component helps to write html

files using a combination of both html syntax and Django syntax. For those functions in

CHAPTER 3. PROJECT OVERVIEW 8

between, Django provides a view component which reads the input from user interface and

makes corresponding changes in the database.

Chapter 4

Create the database tables

To get started, we need to create a backend of the system which is the database. All the

tables in the database for this course management system include information for courses, in-

structors, students, assignments, groups and so forth. These tables are created initially when

the course management system is deployed. Some information is input into the database at

the beginning, such as semester information and course information. However, most infor-

mation will be inserted or updated in the database dynamically (For example, creating a

group). Every time we want to create a new group, we will insert a tuple into the Group

table to make the database consistent with the real world.

To have a Group table in the database, we first need to choose which database we are

going to use. Django supports almost all popular databases such as mysql, sqlite3, and

oracle. The one we used for this course management system is sqlite3. We only need to

write one sentence to setup the database:

DATABASE_ENGINE = ’sqlite3’

Next, we create the Group table in the database. Django uses a class called model[R] to

represent the database table schema. To create a table we just need to write a new class

derived from model class. Here is an example:

class Group(models.Model):

"""

General group information in the courses

9

CHAPTER 4. CREATE THE DATABASE TABLES 10

"""

name = models.CharField(max_length=30, help_text=’Group name’)

manager = models.ForeignKey(Member, blank=False, null=False)

courseoffering = models.ForeignKey(CourseOffering)

slug = AutoSlugField(populate_from=autoslug, null=False, \

editable=False, unique_with=’courseoffering’)

class Meta:

unique_together = ("name", "courseoffering")

This piece of code creates a table called group which stores the information of groups

in courses. The table has three columns: name corresponding to the name of the group;

manager corresponding to the group manager; courseoffering corresponding to the course

that the group is in. Manager and courseoffering are foreign keys that refer to two other

tables: Member and CourseOffering. The structure of these two tables is very similar with

the group table. The actual Group table in the database looks like this:

Figure 4.1: Group table in database

The group component has two tables of its own, both of which are used in the creat-

ing group process. They are Group table which has already been introduced above, and

GroupMember table which represents the memberships of students in the group. I will skip

the details of the GroupMember table since it has a similar structure to the Group table.

Member table and CourseOffering table are the foreign keys of Group tables and are de-

fined in the core data component, which is separate from the four sub-systems and provides

information used all over the course management system.

These Group and GroupMember tables contain all group specific information for operating

the group component including operation of creating group. Once we create a group, we

CHAPTER 4. CREATE THE DATABASE TABLES 11

insert a tuple representing the new group into the Group table, and insert several tuples

representing the members into the GroupMember table. If a student quits or moves to

another group, we can update the corresponding tables to match.

Chapter 5

Create the User Interface

Although we have created the Group table and GroupMember table and can update

them using the Django model component, we should not allow the user to manipulate the

database directly. Otherwise it would be a disaster for both the users and the technical

maintenance team. Instead, we create a user interface to let users interact with the data

indirectly. Django provides the template component to create the user interface for users.

A template is just a simple html file with some Django syntax mixed in. Every template

corresponds to a web page which the users will use to interact with the system. Here is the

template for creating a group:

{% extends "base.html" %}

{% load course_display %}

{% block content %}

<h1>Create Group</h1>

{% if user %}

<form action="{% url groups.views.submit course_slug=course.slug %}"\

method="post">

<div class="group_name">

<label for="name">Group Name </label>

<input type="text" name="GroupName" id="name" />

</div>

12

CHAPTER 5. CREATE THE USER INTERFACE 13

<div class = "group_for_semester">

<h2>Group is for whole semester?</h2>

{{ groupForSemester.selected }}

<label for="id_selected">This group will stay together for \

any newly-created activities in this course</label>

</div>

<div class = "datatable_container">

<h2>Activities for this Group</h2>

<table class="display" id="activities">

<thead>

<tr>

<th>Selected</th>

<th>Title</th>

<th>Percent</th>

<th>Due Date</th>

</tr>

</thead>

<tbody>

{% for act in activityList %}

<tr>

<td>{{ act.activityForm.selected }}</td>

<td>{{ act.name }}</td>

<td>{{ act.percent }}</td>

<td>{{ act.due_date }}</td>

</tr>

{% endfor %}

</tbody>

</table>

</div>

<div><input class = ’submit’ type="submit" value="create"/></div>

</form>

{% else %}

<p> Student does not exist </p>

CHAPTER 5. CREATE THE USER INTERFACE 14

{% endif %}

{% endblock content %}

Every line surrounded by ”% %” is a Django sentence. Most of them deal with simple

“if-else” and “for” loop. The line surrounded by double curve brackets ” ” is a variable,

whose value is passed from a view function whenever this template has to be displayed. This

will be discussed in the next chapter. The rest of the code is just simple html sentences.

The actual web page of this template looks like this:

Figure 5.1: Group table in database

CHAPTER 5. CREATE THE USER INTERFACE 15

This template first displays a text box for inputting the group name. Second, it shows a

check box to ask the group creator if this group is for all group assignments in this course.

Third, it displays a table (not a database table) containing assignments, so the group creator

can choose the assignments that the group is for. Next, the template displays a student

table for the creator to choose the students belonging to this group. Last, there is a “create”

button at the bottom of the page. Once the creator clicks the “create” button, the group

name, the assignments and students chosen by the creator will be packaged in a http request

object and sent to the corresponding view function for processing.

Chapter 6

Implement the view function

So far we have our backend database and the frontend web page user interface. What we

need now is the logic in between to deal with the user requests and maintain the database.

Django view component provides a set of application programming interfaces to fulfill our

need and help us implement the logic.

The Django view file is where we write our function to achieve the above two goals. First,

it is used to pass parameters to the template and call the right template for the user. Every

time we input a URL in the address bar or click a hyperlink in the system, Django will call

the right view function based on that URL. Then the function will return a template as

well as the corresponding parameters. Thus we can see the actual web page displaying the

information we need. Second, if we submit something such as create group, the function

will have an http request as its input parameter. Based on that parameter the database is

updated or the user is provided the required information. The view function for creating a

group is given below:

def submit(request,course_slug):

#TODO: validate activity?

person = get_object_or_404(Person,userid=request.user.username)

course = get_object_or_404(CourseOffering, slug = course_slug)

member = Member.objects.get(person = person, offering = course)

error_info=None

name = request.POST.get(’GroupName’)

16

CHAPTER 6. IMPLEMENT THE VIEW FUNCTION 17

group = Group(name=name, manager=member, courseoffering=course, \

groupForSemester = groupForSemester)

group.save()

if is_course_student_by_slug(request.user, course_slug):

for activity in selected_act:

groupMember = GroupMember(group=group, student=member, \

confirmed=True, activity=activity)

groupMember.save()

messages.add_message(request, messages.SUCCESS, ’Group Created’)

return HttpResponseRedirect(reverse(’groups.views.groupmanage’, \

kwargs={’course_slug’: course_slug}))

elif is_course_staff_by_slug(request.user, course_slug):

students = Member.objects.select_related(’person’).filter(\

offering = course, role = ’STUD’)

for student in students:

studentForm = StudentForm(request.POST, \

prefix = student.person.userid)

if studentForm.is_valid() and \

studentForm.cleaned_data[’selected’] == True:

for activity in selected_act:

groupMember = GroupMember(group=group, student=student,\

confirmed=True, activity=activity)

groupMember.save()

messages.add_message(request, messages.SUCCESS, ’Group Created’)

return HttpResponseRedirect(reverse(’groups.views.groupmanage’,\

kwargs={’course_slug’: course_slug}))

CHAPTER 6. IMPLEMENT THE VIEW FUNCTION 18

This function deals with the group created by the user. In the last chapter, the user

inputs the group name and chooses the assignments and students for the group. The user

then clicks the ”create” button. As soon as the user clicks the button, the request is sent

to this function as a parameter. The first thing this function does is gather the group

information including the group name which is input by the user, the course, and the user

who created this group. These three pieces of information is exactly what we defined in the

Group table schema in the model chapter. They form a tuple regarding this new group and

is inserted it into the database by the group.save() function. After this, the function gathers

information to create group member tuples to insert into GroupMember table. Once the

database is updated, a message is created to tell the user that the group was successfully

created. Finally the web page is redirected to the group component home page, which

displays a list of groups for this course including the newly created group.

Chapter 7

Functionalities implemented in

group component

In the last three chapters we introduced the basic work flow of implementing the func-

tionality of creating a group. First we create the database tables for storing the group and

group member information. Then we create the user interface for the user to input the group

name, activities (include both assignments and exams) and student information. Finally we

add the view function to get the user input, process it and store it into the database. In this

chapter I will cover all the group functionalities implemented by me. All the implementation

processes of these functionalities follow the last two steps for each of the three described

above (we only need to create the database tables once).

7.1 An overall view of group component

As mentioned in Chapter 3, group component has two data tables, one is the Group

table and the other is the GroupMember table. All the functionalities of group component

operate on these two tables; they either insert new tuples into these two tables or update

existing tuples.

The group component currently has more than ten templates including that of create

group. Other templates are for instructors and students to view the group list, inviting

group members, confirming an invitation, edit group information, etc. These templates

constitute the major user interface of group component and provide sufficient support for

19

CHAPTER 7. FUNCTIONALITIES IMPLEMENTED IN GROUP COMPONENT 20

users to perform their desired operations on the web pages created by these templates.

Group component also has a bunch of view functions for processing the user request.

These functions basically match the purpose of the templates. All the functions, such as

viewing group list, creating a group, inviting a student to a group, and confirming invitation,

have their corresponding templates. With these functions, the group component can deal

with users’ requests and retrieve data from the database to show the desired information to

users, as well as update the database with the change the user made through the web page

user interface.

7.2 Functionalities in the project scope

The following functions in the view file with their corresponding templates are imple-

mented to fulfill the project requirement. With those functions the following requirements

in the project scope can be accomplished: an instructor/ student can view the groups that

already have been created; a instructor can create a group; a student can invite other stu-

dents to the group; a student being invited can confirm/refuse the invitation; an instructor

can assign a student (who is not in any group) to an existing group.

• Group manage function and its template

This function is used to display the group list for instructors and students. It first

checks the user who has logged into the course management system, based on the ID

of the user. It determines whether this user is a student or an instructor. Secondly, if

the user is a student, the function will use a SQL query to find all the groups which the

student belongs to and all the group members in those groups. Then this information

is passed to a template dedicated to display group list for student. Then the web

page created by this template will show a list of groups the student is in and all the

group members in each group. There is also an invite button in each group for this

student to invite other students to join his group, and a create button for this student

to create a new group if the student does not belong to any group. If the user is

an instructor then the instructor can see all the groups in this class, and have more

buttons to manage every group including creating new groups, removing students in

one group, assigning students to a group and so on.

CHAPTER 7. FUNCTIONALITIES IMPLEMENTED IN GROUP COMPONENT 21

• Create group function and its template

This function is the example I used in the previous three chapters. Please see previous

three chapters for details.

• Invite students function and its template

Once a student creates a group, he can invite other students to his group. As I

mentioned in the section of group manage function, there is a button called ”invite”

in the group manage web page. If the student clicks the invite button, it will call

the invite student function. At this stage the invite student function just simply

directs the student to an invite student web page which is created by the function’s

corresponding template. The student inputs the user id of the one he/she wants to

invite in a text box and click the invite button. Then the user id will be passed back to

the invite student function. The function will check if this user id is valid. If it is, the

function will create a new group member tuple and insert it into the GroupMember

table. However, because this invitation has not been confirmed by the other student,

one Boolean field in the group member tuple which is called confirmed will be false.

• Confirm invitation function and its template

After a student is invited to join a group, he/she can see the group which he/she is

invited to in the group manage web page. There is a confirm button and a refuse

button under the group name. If the student wants to join that group, he/she can

just click the confirm button and the confirm invitation function will be called. This

function will get the previously created group member tuple and change the Boolean

field confirmed to be true. If the student chooses to refuse this invitation, then the

group member tuple will be deleted.

• Assign student function and its template

The instructor of the course can also assign a student to a group if the student does

not belong to any group. The instructor can just click the assign student button in

the group manage web page and it will call the assign student function. This function

will first find all the students that are not in any group and direct the instructor to

the assign student web page created by the function’s corresponding template. In

the web page the instructor chooses a group that the students need to be assigned

to, selects the students and click the assign button. This request will then go back

CHAPTER 7. FUNCTIONALITIES IMPLEMENTED IN GROUP COMPONENT 22

to the assign student function. The function will create group member tuples for the

assigned students and insert all the newly created tuples into the GroupMember table.

7.3 Functions out of project scope

The previous functions provide basic functionalities for group management. Besides these

I also added some other functions which are not in the project scope but will make the group

component easier to use.

• Switch group functions and its template

An instructor can switch a group member from one group to another group. This

situation may not happen frequently but it is still good to have this functionality.

Once a student requests to switch a group and the instructor approves it, then the

instructor can go to group manage web page, click the switch group button that is

under the group that the student currently belongs to. It will call the switch group

function and this function will find all the group members belonging to that group

and all the groups that the student can switch to. Then the function will direct the

instructor to a switch group web page showing the information found by the function.

The instructor just selects the student who wants to switch the group, and chooses

the new group from a drop down menu and clicks submit. It will then go back to

the function and update the group member tuples belonging to that student. With

the GroupMember table updated, the next time the student logs in, he/she will see

himself/herself in the new group.

• Add activity to group function

If a course has several group activities, and when a group is created at the beginning

of the semester only some of the group activities are associated with the group, then

this function come into play. As I mentioned in the create group example, when a

group is created, the user chooses activities that this group is for. As the semester

goes on, there will be new group activities created by the instructor. So when a new

activity is created it will call this function to add the newly created activities to all

existing groups. By doing this the user no longer has to worry about the new activity

since this function will take care of the relationship between the new activities and

the already existing groups automatically.

Chapter 8

Conclusion

The Django framework gives us a simple and reliable way to create the course management

system. It provides powerful functionalities and concise syntax to help programmers deal

with the database, the web page and the inner logic. The experience of developing the

group component in the system also helped me learning a lot of website development with

Django. Within the Django framework, we have successfully accomplished the requirements

of the system. Once this system passes the testing phase, it can be used to serve students

and instructors and substitute several systems currently in service. It will make the work

for instructors to manage the course much easier. It also can simplify the operations for

students with grade book, submission, and group management all in one system. In short,

this system will bring great user experience to both instructors and students. The only

limitation for this course system is that although the developers have been testing it with

various use cases, it may still encounter problems during real time use. However, even if

that happens, the flexibility of Django would provide a simple way to fix the problem, as

well as add new features into the system.

23

Bibliography

[1] Django homepage. http://www.djangoproject.com/.

[2] Python documentation. http://www.python.org/doc.

[3] Django(web framework). http://en.wikipedia.org/wiki/Django.

[4] Django documentation. http://docs.djangoproject.com.

[5] The perl programming language. http://www.perl.org/.

[6] Ruby programming language. http://www.ruby-lang.org/en/.

[7] Python(programming language). http://en.wikipedia.org/wiki/Python.

[8] Li Tan. Course management web system, capstone project report, computing science,

simon fraser university, 2010.

24

