
Efficient Algorithm for Embedding Hypergraphs in a Cycle

Qian-Ping Gu and Yong Wang

School of Computing Science
Simon Fraser University

Burnaby B.C. Canada V5A 1S6
Email: {qgu,ywangb}@cs.sfu.ca

Abstract: The problem of Minimum Congestion Hypergraph Embedding in a Cycle (MCHEC)
is to embed the hyperedges of a hypergraph as paths in a cycle such that the maximum con-
gestion (the maximum number of paths that use any single link in the cycle) is minimized.
This problem has many applications, including minimizing communication congestions in
computer networks and parallel computations. The MCHEC problem is NP-hard. We give
a 1.8-approximation algorithm for the problem. This improves the previous 2-approximation
results. The algorithm has the optimal O(mn) time for the hypergraph with m hyperedges
and n nodes.

Key words: Hypergraph embedding in a cycle, approximation algorithms, communication
on rings, link congestion minimization.

Technical area: Algorithms

Corresponding author

Qian-Ping Gu

School of Computing Science

Simon Fraser University

Burnaby BC Canada V5A 1S6

Phone: 1-604-268-6705

Email: qgu@cs.sfu.ca

1

1 Introduction

The problem of Minimum Congestion Hypergraph Embedding in a Cycle (MCHEC) [3] is to

embed the hyperedges of a hypergraph as paths in a cycle on the same number of nodes such

that the maximum congestion is minimized, where the congestion of a link in the cycle is

the number of paths that use the link. The MCHEC problem has applications in network

communication, parallel computation, electronic design automation, and so on [2, 5, 6, 7, 9]. A

communication application on a network can be defined by a set of routing requests and each

request is defined by a subset of network nodes to be connected in the request. For one-to-one

routing (unicast), a request has two nodes, the source and destination. For more complicated

communication applications, such as multicast, a request may have more than two nodes of the

network. In general, a communication application on a network can be further modeled as a

hypergraph on the same node set of the network with each routing request in the application

represented by a hyperedge in the hypergraph. To realize a communication application, a

routing algorithm is required to set-up a virtual or dedicated routing path in the network

to connect the nodes in each hyperedge. A most important issue in designing the routing

algorithm is to minimize the congestion on the links in the network. An algorithm for the

MCHEC problem realizes the communication application represented by the hypergraph on

the ring with link congestion minimized. Similarly, in parallel computation, the processors of a

parallel computer can be represented by the nodes of the hypergraph and a group of processors

which are required to communicate with each other can be represented by a hyperedge. A

solution to the MCHEC problem gives a routing for the communications among the processors

in each group on the ring connected parallel computers with the congestion on links minimized.

If each hyperedge of the hypergraph contains exactly two nodes then the MCHEC problem

becomes graph embedding in a cycle problem and the optimal solution of the problem can be

solved in polynomial time [2]. For general hypergraphs (a hyperedge can contain more than

two nodes), Ganley and Cohoon proved that the MCHEC problem is NP-hard and gave a 3-

approximation algorithm for the problem [3]. They also gave an algorithm which determines if

an instance of the MCHEC problem has a solution with maximum congestion l in O((mn)l+1)

time in [3] for hypergraphs with m hyperedges and n nodes. The O((mn)l+1) result implies

that the MCHEC problem can be solved in polynomial time if the maximum congestion is a

2

constant. For non-constant maximum congestions, better approximation algorithms have been

proposed based on different approaches [1, 4, 8]. In [1] a simple algorithm based on clockwise

embedding is proposed for the MCHEC problem. In clockwise embedding, the nodes in the

cycle are clockwise numbered by 0, 1, ..., n− 1 and the nodes in a hyperedge are connected by

a path in the cycle from the smallest node to the largest one in the clockwise direction. In

[4] two algorithms were given for the MCHEC problem. The first algorithm transforms the

MCHEC problem to an Integer Linear Programming (ILP) problem. Approximate solutions

for the ILP problem are obtained from rounding-off the solutions of the corresponding linear

programming problem in polynomial time. The second algorithm transforms the MCHEC

problem to the graph embedding in a cycle problem. In [8] an algorithm based on longest

adjacent path removing was given. All the algorithms in [1, 4, 8] have the approximation ratio

two.

In this paper, we give a 1.8-approximation algorithm for the MCHEC problem. Our

algorithm starts from the clockwise embedding. Then the algorithm tries to re-embed some

hyperedges to reduce the maximum congestion. Let L be the maximum congestion in the

clockwise embedding and L∗ be the maximum congestion in the optimal embedding. Our

algorithm tries to re-embed k hyperedges to get an embedding of maximum congestion L− k

for k as large as possible. The approximation ratio of the algorithm is (L − k)/L∗. Since

�L/2� ≤ L∗ [1], the approximation ratio of our algorithm is at most (L−k)/�L/2�. This gives

a good approximation ratio for large k. For the case that k is small, we prove a new lower

bound on L∗. Roughly speaking, the approximation ratio of the algorithm increases from 1 to

1.8 when k decreases from L/2 to L/10, the ratio decreases from 1.8 to 1.5 when k decreases

from L/10 to 0, and the ratio is 1.8 in the worst case. Our algorithm has the optimal O(mn)

time for the hypergraph with m hyperedges and n nodes.

The rest of the paper is organized as follows. In Section 2, we give the preliminary of the

paper and review the clockwise embedding. Section 3 gives our algorithm and the analysis of

the algorithm. The final section concludes the paper.

3

2 Preliminary

A cycle C of n nodes is an undirected graph with node set {i|0 ≤ i ≤ n − 1}. There is a

link between nodes i and j if i = j ± 1, where and in what follows, the arithmetic involving

nodes is performed implicitly using modulo n operation. A hypergraph H(V, EH) of n nodes

and m hyperedges is a hypergraph with node set V = {i|0 ≤ i ≤ n − 1} and hyperedge set

EH = {e1, ..., em}, where each hyperedge ei is a subset of V with two or more nodes. For

1 ≤ i ≤ m, a connecting path (or c-path) pi in C for hyperedge ei is a path in C such that all

nodes in ei are in pi. An embedding of hypergraph H(V, EH) in cycle C is a set of c-paths in

C that each hyperedge of H(V, EH) has exactly one c-path in the set. Given an embedding

of a hypergraph, the congestion of each link of C is the number of c-paths that contain the

link. The MCHEC problem is that given a hypergraph and a cycle on the same node set, find

an embedding of the hypergraph such that the maximum congestion of any link in the cycle

is minimized.

We assume that the nodes of C are clockwise numbered by 0, 1, ..., n− 1 and link (i, i + 1)

in C is numbered i (see Figure 1). In [1], a simple algorithm called clockwise embedding is

given: The c-path for each hyperedge ei in the given hypergraph connects all the nodes of

ei in C from the smallest node to the largest node in the clockwise direction. Figure 1 gives

the embedding of the hypergraph with edges e1 = {0, 1, 8}, e2 = {1, 4, 7}, e3 = {2, 3, 4}, and

e4 = {3, 5, 7}.
A segment of C is a connected subgraph of C. Cycle C is cut into two segments by

removing any two links. We call the two links a cut of C. A hyperedge is separated by a

cut if there is a node of the hyperedge in each of the two segments obtained from the cut.

Obviously, the c-path in any embedding for a separated hyperedge must contain at least one

of the two links in the cut. Let N(x, y) be the number of hyperedges separated by links x

and y. Then �N(x, y)/2� ≤ L∗. For the clockwise embedding, define l(i) to be the congestion

of link i in C and L = max{l(i)|0 ≤ i ≤ n − 1} be the maximum congestion. Notice that

l(n − 1) = 0. Assume that link s has the maximum congestion L. Then N(n − 1, s) = L. In

any embedding, the c-apth for a separated hyperedge must contain at least one of the links

n − 1 and s. From this, we have �L/2� ≤ L∗ and the approximation ratio of the clockwise

4

0

1

2

3

45

6

7

8 0

1

2

3
4

5

6

7

8

9

9

c-path for {0,1,8}

c-path for {1,4,7}

c-path for {2,3,4}

c-path for {3,5,7}

gh
11

h

g2

2

Figure 1: The cycle and clockwise embedding

embedding is L/L∗ ≤ L/�L/2� ≤ 2 [1].

Define segment 〈i, j〉 of C to be the segment of C which includes the nodes from i to j in

clockwise direction.

3 Embedding algorithm

In this section, we describe and analyze our algorithm for the MCHEC problem. We first

introduce some terminologies for this purpose. Recall that l(i) is the congestion of link i and

L is the maximum congestion in the clockwise embedding, and L∗ is the maximum congestion

in the optimal embedding. For integer k with 1 ≤ k ≤ �L/2�, let gk be the smallest link with

l(gk) ≥ L − 2k + 1. Similarly, let hk be the largest link with l(hk) ≥ L − 2k + 1. Notice that

0 ≤ gk ≤ hk < n − 1. In Figure 1, L = 4, gk = 0 and hk = 7 for k = 2. For k = 1, gk = 2

and hk = 6. We call a hyperedge a re-embedding candidate with respect to k (or candidate

w.r.t. k) if the hyperedge has a node in segment 〈0, gk〉, has a node in segment 〈hk +1, n−1〉,
and has no node in segment 〈gk + 1, hk〉. In Figure 1, hyperedge {0, 1, 8} is a candidate w.r.t.

k = 1. For each candidate w.r.t. k, we can embed it in such a way that the c-path does not

contain any link i with gk ≤ i ≤ hk (see Figure 2). From the definitions of gk, hk, and the

5

0

1

2

3

45

6

7

8 0

1

2

3
4

5

6

7

8
9 9

c-path for {0,1,8} in
clockwise embedding

gh
11

c-path for {0,1,8} after
the re-embedding

Figure 2: The c-paths for the candidate w.r.t. k = 1 in clockwise embedding and after the
re-embedding.

candidate w.r.t. k, we can get gk+1 ≤ gk, hk+1 ≥ hk, and a candidate w.r.t. k + 1 is also a

candidate w.r.t. k (the inverse may not be true). Let xk be the number of candidates w.r.t.

k. Then xk+1 ≤ xk.

The outline of our algorithm is as follows: We start with the clockwise embedding. Then

we try to re-embed the candidates w.r.t. k such that the c-path for each candidate does not

contain any link i with gk ≤ i ≤ hk. The re-embedding process starts from k = �L/2�. If

xk ≥ k then we re-embed k or k + 1 candidates and the algorithm terminates. Otherwise, k

is decreased by one and the re-embedding process is repeated. As shown later, the algorithm

outlined above has approximation ratio 1.8 except for a few special cases of constant L.

Although the O((mn)L∗+1) time algorithm in [3] can be used to find the optimal embedding

for constant L, the time complexity could be too high in practice. We give a subroutine to

handle those special cases. The subroutine is efficient and guarantees the 1.8 approximation

ratio for the special cases. Our algorithm and subroutine are given in Figure 3.

Algorithm R Embedding terminates with k taking one of {0, 1, ..., �L/2�}. Let Lk be the

maximum congestion of the embedding by the algorithm.

6

Procedure R Embedding
Input: A hypergraph on the same node set of the cycle.
Output: An embedding of the hypergraph in the cycle.
begin

1. Perform the clockwise embedding for the hypergraph.
2. Find links gk and hk for k = 1, 2, ..., �L/2�.

xk is defined 0 for k = �L/2� + 1 and k = 0.
3. For k := �L/2� step −1 until 1 do

if (xk ≥ k) then goto step 4.
4. If xk ≥ k + 1 and xk+1 ≥ 1 then

re-embed k + 1 candidates w.r.t. k including
at least one candidate w.r.t. k + 1

else
if ((L = 2 or L = 4) and k = 0) or (L = 12 and k = 1) then

call Subroutine Special Cases
else re-embed k candidates w.r.t. k.

end.

Subroutine Special Cases
Input The clockwise embedding of the hypergraph.
Output An embedding of the hypergraph in the cycle.
begin
/* Let s be the link with the maximum congestion L in the clockwise embedding,

E be the set of hyperedges whose c-paths contain link s in the clockwise embedding,
and pi be the c-path for ei ∈ E that does not contain link s. */
If (L = 2 or L = 4) and k = 0 then

for every ei ∈ E do
if re-embedding ei by pi reduces the maximum congestion by one then

re-embed ei by pi and return
else /* L = 12 and k = 1 */

for every pair ei, ej ∈ E do
if re-embedding ei by pi and ej by pj reduces the maximum congestion by two then

re-embed ei by pi and ej by pj and return
re-embed one candidate w.r.t. k = 1.

Return
end.

Figure 3: The embedding algorithm for the MCHEC problem.

7

Lemma 1 Lk = L − k or Lk = L − k − 1.

Proof: When Algorithm R Embedding terminates without calling Subroutine Special Cases,

either k candidates w.r.t. k are re-embedded, or k + 1 candidates w.r.t. k, including at least

one candidate w.r.t. k + 1, are re-embedded. After a candidate w.r.t. k is re-embedded, the

congestion of each link i with gk ≤ i ≤ hk is decreased by one and the congestion of each link

i with i < gk or i > hk is increased by at most one.

Assume that k candidates w.r.t. k are re-embedded. Since for link i with gk ≤ i ≤ hk,

l(i) ≤ L, and for i with i < gk or i > hk, l(i) ≤ L−2k, we can have an embedding of maximum

congestion L − k.

Assume that k + 1 candidates w.r.t. k are re-embedded. For each link i with gk ≤ i ≤ hk,

the congestion of i after the re-embedding becomes l(i) − (k + 1) ≤ L − k − 1. For each

link i with i < gk+1 or i > hk+1, the congestion of i after the re-embedding is at most

l(i) + (k + 1) ≤ L − 2(k + 1) + (k + 1) = L − k − 1. Since the k + 1 candidates re-embedded

include at least one candidate w.r.t. k + 1, the congestion of link i with gk+1 ≤ i < gk or

hk+1 ≥ i > hk is bounded by l(i) − 1 + k ≤ L − 2k − 1 + k = L − k − 1.

Assume that Subroutine Special Cases is executed. For k = 0, Lk = L− 1 or Lk = L. For

k = 1, Lk = L − 2 or L − 1.

From the above lemma, the approximation ratio of our algorithm can be obtained from

(L − k)/L∗ or (L − k − 1)/L∗. For large k, we can use �L/2� as the lower bound on L∗ and

get the approximation ratio (L − k)/�L/2� or (L − k − 1)/�L/2� for our algorithm. This

suggests that when the algorithm terminates with a large k, we have a good approximation

ratio. However, if the algorithm terminates with a small k, e.g., k = 0 then the approximation

ratio given by Lk/�L/2� is 2, no better than the clockwise embedding. In what follows, we

prove that if the algorithm terminates with a small k then a lower bound better than �L/2�
on L∗ can be found. By this better lower bound, we can get the 1.8 approximation ratio of

our algorithm. The lower bound �L/2� is obtained from the cut of two links in the cycle. The

new lower bound derived below involves three links n − 1, gk, and hk.

To derive the lower bound, we need some new notation. For arbitrary links g and h in the

cycle with 0 ≤ g < h < n − 1, we define

8

W : the set of the hyperedges such that each hyperedge has a node in segment 〈0, g〉, a node

in segment 〈g + 1, h〉, and a node in segment 〈h + 1, n − 1〉;

X: the set of the hyperedges such that each hyperedge has a node in segment 〈0, g〉, has NO

node in segment 〈g + 1, h〉, and has a node in segment 〈h + 1, n − 1〉;

Y : the set of the hyperedges such that each hyperedge has a node in segment 〈0, g〉, a node

in segment 〈g + 1, h〉, and has NO node in segment 〈h + 1, n − 1〉; and

Z: the set of the hyperedges such that each hyperedge has NO node in segment 〈0, g〉, has a

node in segment 〈g + 1, h〉, and a node in segment 〈h + 1, n − 1〉.

In Figure 1, let g = 2 and h = 6. Then hyperedge {1, 4, 7} is in W , hyperedge {0, 1, 8} is in

X, hyperedge {2, 3, 4} is in Y , and hyperedge {3, 5, 7} is in Z.

The intuition for proving the new lower bound on L∗ is as follows: When Algorithm

R Embedding terminates with a small k, the number of c-paths in clockwise embedding that

use link gk (and hk) is close to L. A hyperedge whose c-path in clockwise embedding uses link

gk (resp. hk) belongs to one of the sets W, X, or Y (resp. W, X or Z). A key observation is

that a c-path in any embedding for a hyperedge in W must contain at least two of the three

links n − 1, gk, and hk. This implies that the lower bound on L∗ is at least 2|W |/3. Also, a

hyperedge in X is separated by links n− 1 and gk (or hk). Similarly, a hyperedge in Y (resp.

Z) is separated by links gk and hk (or n − 1) (resp. by links hk and n − 1 (or gk)). Based on

the above observations, a better lower bound than �L/2� on L∗ can be obtained for small k.

Especially we have the following result.

Lemma 2 For any links g and h with 0 ≤ g < h < n − 1,

L∗ ≥ 2

3
|W | + 1

3
(|X| + |Y | + |Z|).

Proof: Let I be an arbitrary embedding. For any links g and h with 0 ≤ g < h < n − 1,

define

lI(i): the number of c-paths in embedding I that contain link i for the hyperedges of W ∪
X ∪ Y ∪ Z;

9

w̄I(i): the number of c-paths in embedding I that DO NOT contain link i for the hyperedges

of W ;

xI(i): the number of c-paths in embedding I that contain link i for the hyperedges of X;

yI(i): the number of c-paths in embedding I that contain link i for the hyperedges of Y ; and

zI(i): the number of c-paths in embedding I that contain link i for the hyperedges of Z.

Then

L∗ ≥ min
I
{max{lI(n − 1), lI(g), lI(h)}}.

The number of c-paths in embedding I for the hyperedges in W that contain link n − 1 is

|W | − w̄I(n− 1). The number of c-paths in I for the hyperedges in X that contain link n− 1

is xI(n − 1). For a hyperedge in Y , if the c-path for the hyperedge does not contain link g

then the c-path must contain links n − 1 and h. From this, the number of c-paths in I that

contain link n − 1 for hyperedges in Y is |Y | − yI(g). Similarly, the number of c-paths in I

that contain link n − 1 for hyperedges in Z is |Z| − zI(h). Summarizing the above,

lI(n − 1) ≥ (|W | − w̄I(n − 1)) + xI(n − 1) + (|Y | − yI(g)) + (|Z| − zI(h)).

By a similar argument, we have

lI(g) ≥ (|W | − w̄I(g)) + (|X| − xI(n − 1)) + yI(g) + (|Z| − zI(h))

and

lI(h) ≥ (|W | − w̄I(h)) + (|X| − xI(n − 1)) + (|Y | − yI(g)) + zI(h).

Then

lI(n − 1) + lI(g) + lI(h) ≥ 3|W | − (w̄I(n − 1) + w̄I(g) + w̄I(h))

+2(|X| + |Y | + |Z|) − (xI(n − 1) + yI(g) + zI(h)).

Obviously, xI(n−1) ≤ |X|, yI(g) ≤ |Y |, and zI(h) ≤ |Z|. For any hyperedge in W , the c-path

for the hyperedge contains at least two of the three links n − 1, g, and h. Therefore,

(w̄I(n − 1) + w̄I(g) + w̄I(h)) ≤ |W |.

10

Thus, we have

lI(n − 1) + lI(g) + lI(h) ≥ 2|W | + |X| + |Y | + |Z|. (1)

To prove the lemma by contradiction, assume that

lI(n − 1) <
2

3
|W | + 1

3
(|X| + |Y | + |Z|),

lI(g) <
2

3
|W | + 1

3
(|X| + |Y | + |Z|),

and

lI(h) <
2

3
|W | + 1

3
(|X| + |Y | + |Z|).

Then

lI(n − 1) + lI(g) + lI(h) < 2|W | + |X| + |Y | + |Z|,

a contradiction to inequality (1). Thus, for any embedding I,

max{lI(n − 1), lI(g), lI(h)}} ≥ 2

3
|W | + 1

3
(|X| + |Y | + |Z|).

From this, the lemma is proved.

Notice that there are hypergraphs with L∗ tight to the lower bound in Lemma 2. An

example of such hypergraphs is as follows: Let g and h be two arbitrary links with 0 ≤ g <

h < n − 1 in the cycle. We construct a hypergraph H(V, Eh) with Eh = W ∪ X ∪ Y ∪ Z.

Each hyperedge in set X (resp. Y , Z) has nodes only in segment 〈h + 1, 0〉 (resp. 〈0, g + 1〉,
〈g +1, h+1〉). The hyperedges in W consist of the hyperedges in three disjoint subsets Wn−1,

Wg, and Wh. Each hyperedge in Wn−1 (resp. Wg, Wh) does not contain any node in segment

〈h + 2, n − 1〉 (resp. 〈1, g〉, 〈g + 2, h〉). The cardinalities of Wn−1, Wg, and Wh are defined by

|Wn−1| =
|W | + 2|X| − |Y | − |Z|

3
,

|Wg| =
|W | − |X| + 2|Y | − |Z|

3
, and

|Wh| =
|W | − |X| − |Y | + 2|Z|

3
.

Let I be an embedding for H(V, Eh) such that the c-path for a hyperedge in Wi does not

contain link i for i = n−1, g, h, the c-path for a hyperedge in X (resp. Y , Z) does not contain

11

g or h (resp. h or n − 1, n − 1 or g). Then for any link i with h + 1 ≤ i ≤ n − 1,

lI(i) ≤ |W | − |Wn−1| + |X| =
2

3
|W | + 1

3
(|X| + |Y | + |Z|).

Similarly, for any link i with 0 ≤ i ≤ g,

lI(i) ≤ |W | − |Wg| + |Y | =
2

3
|W | + 1

3
(|X| + |Y | + |Z|),

and for any link i with g + 1 ≤ i ≤ h,

lI(i) ≤ |W | − |Wh| + |Z| =
2

3
|W | + 1

3
(|X| + |Y | + |Z|).

Now, we use the lower bound given in Lemma 2 to derive the approximation ratio for our

algorithm for small k.

Theorem 3 The approximation ratio of Algorithm R Embedding is bounded by 1.8.

Proof: Assume that Algorithm R Embedding terminates with the maximum congestion Lk.

From Lemma 2,

L∗ ≥ 2

3
|W | + 1

3
(|X| + |Y | + |Z|)

for any links g and h with 0 ≤ g < h < n − 1. Since |Y | = l(g) − |W | − |X| and |Z| =

l(h) − |W | − |X|, we have

2

3
|W | + 1

3
(|X| + |Y | + |Z|) =

1

3
(l(g) + l(h) − |X|). (2)

Notice that for links gk and hk, if gk = hk then gk is the unique link with the maximum

congestion L. From the definition of xk, we have xk = L for gk = hk. The rest of the proof is

divided into two cases.

Case 1: Lk = L − k − 1.

Taking g = gk+1 and h = hk+1 in inequality (2), we have |X| = xk+1. Since the algorithm

terminates with maximum congestion Lk, we have xk+1 ≤ k. This implies gk+1 < hk+1. Since

l(gk+1) ≥ L − 2(k + 1) + 1 and l(hk+1) ≥ L − 2(k + 1) + 1,

L∗ ≥ 1

3
{l(gk+1) + l(hk+1) − xk+1}

≥ 1

3
{2(L − 2(k + 1) + 1) − k}

=
1

3
(2L − 5k − 2).

12

From this, an upper bound on the approximation ratio of the algorithm is

Lk

L∗ ≤ 3(L − k − 1)

2L− 5k − 2
.

Since �L/2� is also a lower bound on L∗,

Lk

L∗ ≤ L − k − 1

�L/2� .

Therefore, the approximation ratio of the algorithm is bounded by

min{L − k − 1

�L/2� ,
3(L − k − 1)

2L − 5k − 2
}.

Function (L − k − 1)/�L/2� is decreasing in k and function 3(L − k − 1)/(2L − 5k − 2)

is increasing in k. For k ≥ �L/10�, (L − k − 1)/�L/2� ≤ 1.8, and for k ≤ �L/10� − 1,

3(L − k − 1)/(2L− 5k − 2) ≤ 1.8.

Case 2: Lk = L − k.

In this case, either xk = k or xk+1 = 0. Assume that xk = k. Taking g = gk and h = hk in

inequality (2), then |X| = xk = k and gk < hk. Since l(gk) ≥ L−2k+1 and l(hk) ≥ L−2k+1,

L∗ ≥ 1

3
{l(gk) + l(hk) − xk}

≥ 1

3
{2(L − 2k + 1) − k}

=
1

3
(2L − 5k + 2).

From this, L∗ ≥ �L/2�, and Lk = L− k, the approximation ratio of the algorithm is bounded

by

min{L − k

�L/2� ,
3(L − k)

2L − 5k + 2
}.

For k ≥ �L/10�, (L− k)/�L/2� ≤ 1.8, and for k ≤ �L/10� − 1, 3(L− k)/(2L− 5k + 2) ≤ 1.8.

Assume that xk+1 = 0. Then

L∗ ≥ 1

3
{l(gk+1) + l(hk+1) − xk+1}

≥ 1

3
{2(L − 2(k + 1) + 1)}

=
1

3
(2L − 4k − 2).

13

The approximation ratio of the algorithm is bounded by

min{L − k

�L/2� ,
3(L − k)

2L − 4k − 2
}.

For k ≥ �L/10�, (L− k)/�L/2� ≤ 1.8, and for k ≤ �L/10� − 1, 3(L− k)/(2L− 4k − 2) ≤ 1.8,

except for the following cases:

〈1〉L = 2 and k = 0,

〈2〉L = 4 and k = 0, and

〈3〉L = 12 and k = 1.

To complete the proof of the theorem, we need to show that Lk/L
∗ ≤ 1.8 for 〈1〉, 〈2〉, and

〈3〉. We only show the most complex case of 〈3〉 here due to the space limit. The proofs for

the other cases are similar and will be given in the full version of the paper.

Recall that s is the link with the maximum congestion L = 12 in the clockwise embedding,

E is the set of hyperedges whose c-paths contain link s in the clockwise embedding, and pi is

the c-path for ei ∈ E that does not contain link s. There are two cases for L = 12 and k = 1.

Case (1) is that re-embedding some ei, ej ∈ E by pi, pj reduces the maximum congestion by

two. In this case, from L = 12 we have Lk = 10, implying Lk/�L/2� = 10/6 ≤ 1.8.

Case (2) is that re-embedding any two hyperedges of E does not reduce the maximum

congestion by two. In this case, one candidate w.r.t. k = 1 is re-embedded in Subroutine

Special Cases and Lk = 11. Let I be an embedding with the optimal maximum congestion

L∗. We prove that L∗ ≥ 7 which implies Lk/L
∗ ≤ 11/7 ≤ 1.8. The proof is partitioned in

several subcases.

Notice that every hyperedge in E is separated by the cut of links s and n − 1. So, the

c-path in any embedding for ei ∈ E must contain at least one of the links s and n − 1. If the

c-path in I for one hyperedge in E contains both links s and n − 1, then from |E| = 12 the

sum of the congestions of s and n − 1 is at least 13 which implies L∗ ≥ 7. Assume that the

c-path in I for a hyperedge in E contains exactly one of the links s and n − 1. If more than

six c-paths for the hyperedges of E contain link s (or link n − 1) then L∗ ≥ 7.

We assume that six c-paths contains link s and the other six c-paths contains link n − 1.

Notice that for any hyperedge e �∈ E, the c-path p(e) for e in the clockwise embedding contains

neither s nor n− 1 and any c-path for e other than p(e) contains both s and n− 1. So, in the

14

embedding I, if any hyperedge e �∈ E is embedded with a c-path other than p(e) then L∗ ≥ 7.

So, we can assume that every hyperedge e �∈ E is embedded by clockwise embedding in I. By

this assumption, embedding I is obtained from re-embedding six e′is ∈ E by p′is. Let E ′ ⊂ E

be the set of those six hyperedges. To show L∗ ≥ 7 by contradiction, assume that L∗ = 6.

Then, re-embedding any k of the six hyperedges e′is ∈ E ′ by p′is will reduce the maximum

congestion by k. This is true especially for k = 2, a contradiction to the condition for Case

(2). Thus, L∗ ≥ 7.

Step 1 of Algorithm R Embedding takes O(mn) time for the hypergraph with m hyperedges

and n nodes. Since L = O(m), Steps 2 and 4 can be done in O(mn) time and Step 3 can

be done in O(m) time. Subroutine Special Cases takes O(n) time. So, the time complexity

of Algorithm R Embedding is O(mn) which is optimal since the total number of links in the

c-paths for any embedding for the hypergraph can be Ω(mn).

4 Concluding remarks

A 1.8-approximation algorithm is given for the MCHEC problem. This improves the previous

2-approximation results. The improvement is based on the following observations: If some

hyperedges can be re-embedded such that the maximum congestion of the clockwise embedding

can be reduced then we have a better embedding. Otherwise, a better lower bound on L∗ can

be obtained to guarantee the approximation ratio. Whether the 1.8-approximation ratio can

be improved further is open. A possible approach is to find a better lower bound on L∗ by

looking at four links of the cycle (the lower bound of this paper is obtained by considering

three links). Find better approximation algorithms for specific classes of hypergraphs may be

worth further investigation as well.

Acknowledgment

This work was partially supported by the NSERC research grant (RGPIN250304), Presi-

dent Research Grant and Endowed Research Fellowship of Simon Fraser University.

15

References

[1] T. Carpenter, S. Cosares, J.L. Ganley, and I. Saniee. A simple approximation algorithm for two
problems in circuit design. IEEE Trans. on Computers, 47(11):1310–1312, 1998.

[2] A. Frank, T. Nishizeki, N. Saito, and H. Suzuki E. Tardos. Algorithms for routing around a
rectangle. Discrete Applied Mathematics, 40:363–378, 1992.

[3] J.L. Ganley and J.P. Cohoon. Minimum-congestion hypergraph embedding on a cycle. IEEE
Trans. on Computers, 46(5):600–602, 1997.

[4] T. Gonzalez. Improved approximation algorithms for embedding hyperedges in a cycle. Infor-
mation Processing Letters, 67:267–271, 1998.

[5] T. Gonzalez and S.L. Lee. A 1.6 approximation algorithm for routing multiterminal nets. SIAM
J. on Computing, 16:669–704, 1987.

[6] T. Gonzalez and S.L. Lee. A linear time algorithm for optimal routing around a rectangle. Journal
of ACM, 35(4):810–832, 1988.

[7] A.S. LaPaugh. A polynomial time algorithm for optimal routing around a rectangle. In Proc. of
the 21st Symposium on Foundations of Computer Science (FOCS80), pages 282–293, 1980.

[8] S.L. Lee and H.J. Ho. Algorithms and complexity for weighted hypergraph embedding in a cycle.
In Proc. of the 1st International Symposium on Cyber World (CW2002), page To Appear, 2002.

[9] M. Sarrafzadeh and F.P. Preparata. A bottom-up layout technique based on two-rectangle rout-
ing. Integration: The VLSI Journal, 5:231–246, 1987.

16

