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ABSTRACT 
In this paper, we present a method to decompose visual mo- 
tion represented by computed optical flow using an over- 
complete dictionary of space frequency atoms. This is ac- 
complished by a modified matching pursuit procedure which 
successively selects space and frequency localized atoms 
from this dictionary. In effect, this decomposition reveals 
the structure of optical flow field such that areas with mo- 
tion at different spatial location and scale are identified. In 
addition, our method maintains the original resolution of the 
image when performing the decomposition at each scale. 
This minimizes the amount of the information lost in the 
decomposition process. We perform experiments using both 
synthetic and real image data sets to demonstrate the effec- 
tiveness of the proposed method. 

1. INTRODUCTION 

One fundamental problem in computer vision is the com- 
putation of approximations to the 2D motion field which 
is usually referred to as the optical flow. Since the semi- 
nal work of Horn and Schunck [ 5 ] ,  various other methods 
for this purpose have been proposed by a countless num- 
ber of researchers such as Lucas and Kanade [6,7], Aubert 
[I]. and Alvarez et al. [2 ] .  A nice summary and compari- 
son of the different methods is given by Barron, Fleet and 
Beauchemin [3]. A relatively recent method using wavelet 
motion model is proposed by Wu et al. in [IO].  This method 
has the advantage of working from large to small in full res- 
olution and thus making it robust to regions containing flat 
textures. However, having computed the optical flow using 
any one of the previously mentioned methods, algorithms 
are needed to analyze the computed results and make sound 
inferences from them. In this paper, we propose a method to 
decompose the computed optical flow into a set of space and 
frequency localized atoms. Such decomposition enables us 
to analyze motion in frequency layers while still localized 
in space. In addition, our algorithm has the advantage of 
operating in full resolution at any given scale so that the lost 
of detailed information is kept to a minimum. 
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2. THE PROPOSED METHOD 

Pixels from two consecutive frames, Io and I,, of a video 
sequence are related by horizontal and vertical displace- 
ments. Under the iritensiry corisrancy constraint, we can 
express this relationship mathematically as 

L ( ~ + + , Y ) , Y  ++,Y)) = Io(z,Y). (1) 

The functions u ( z , y )  and U(., y)  is the optical flow from 
the first frame to the second frame. To aid in the analysis of 
the computed optical flow, we propose to decompose both 
U and U using space frequency localized atoms. To achieve 
such a decomposition, we employ a modified form of the 
matching pursuit algorithm introduced by Mallat and Zhang 
181. 

2.1. Modified Matching Pursuit 

Let H 2 ( I )  be a Hilbert space of complex square integrable 
functions with the inner product ( f ,  g) = J f ( t )g( t , )d t  where 
g(t) is the complex conjugate of g(t), and let 

D = {Go,Gi,. . . , G M }  

he an overcomplete basis for H such that span(D) = H Z  ( I ) .  
The original matching pursuit procedure tries to find a lin- 
ear expansion of some function f E H 2 ( I )  by projecting it 
onto the basis vectors. In the first iteration, the basis vector 
Gko with the largest inner product (f ,  Gn,) is selected as an 
approximation: 

(2) 

where RI f is the residual in the first iteration. In the next 
iteration, the residual RI f is projected onto the basis func- 
tions in a similar manner to select another basis function 
with maximum inner product. This process continues until 
some convergence condition is satisfied. Defining Ro f = 
f ,  the resulting expansion of f becomes 

f = (f, Gn,)Gk, + RI f ,  

M-I 

f = 1 (Rnf,Gk,)Gn, + Rmf.  ( 3 )  
"=O 
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A direct implementation of the matching pursuit algo- 
rithm would require that the entire dictionary be searched 
for the best basis function during each iteration. This would 
be  impractical as the dictionary D can potentially contain a 
large number or even an infinite number of basis functions. 
To reduce the computational burden, we use a greedy form 
of matching pursuit in which an initial guess is made to se- 
lect one basis function from D and perform local search 
around a neighborhood of the selected function. 

2.2. The  Space Frequency Atoms 

The dictionary D consists of a set of 2D space frequency 
atoms that is an overcomplete basis for the space H ( I ) .  Any 
set of basis function of H z ( I )  can potentially be used. How- 
ever, in our implementation, we chose the B-spline wavelets 
introduced by Cai and Wang [4] since it has been demon- 
strated by Wu et al. [ IO] that these wavelet functions can be 
used effectively as motion models. The ID scaling function 
is defined as 

where z; = z" if z 2 0 and 0 otherwise. The correspond- 
ing wavelet function can then be derived as: 

The support of g(z) and $(z) are [0,4] and [0,3] respec- 
tively. The dilation and translation of these functions are 
defined as 

The 2D basis functions can be obtained from the above 
ID functions using tensor products. The four resulting 2D 
basis functions are: 

@ s t , 8 2 , k t , k ~  (z, Y) = 4e1,k i  ( z ) # s ~ , h  (3') (8) 
*sl,sz,kl,kz(5,Y) = # s , , k l ( ~ ) d " s ~ , k z ( y )  (9) 
*):l,sz,k,,kz(Z,y) = $st,kl (z)4az,k2(Y) (lo) 

1 

3 
*S*.d* ,k, .k*  (z, Y) = $ O , k I  (5)+'a&(Y). ( 1  1) 

These four classes of basis functions makes up the dictio- 
nary D. Also, we see that each 2D atom in the dictionary D 
can be represented by four parameters A; = {SI(, sa,, hi, kz, } 

2.3. The  Decomposition Algorithm 

The decomposition problem is equivalent to finding a set of 
parameters { A l ,  A2, . . . , A,} representing the selected atoms 

and a set of corresponding coefficients {cl, cz, . . . , c,} such 
that the original 2D function is sufficiently well approxi- 
mated. 

In order to perform greedy matching pursuit on the 2D 
input signal f(x, y), we need to find an initial estimate of 
the scale and shift of the most suitable basis function for 
the approximation a t  each iteration. To produce this initial 
estimate at iteration k, we search for a location P k  = (z, y) 
such that 

2++ !I+$ 

PA. = argmax(,,,) f ~ j ) ' .  (12) 
i==:-q 

The window size N can either be fixed or  changing accord- 
ing to the local statistics. The size N is then used as an 
estimate to the scale and p k  = (z, y) is used as an initial es- 
timate to the shift. It is easy to see that we penalize bound- 
ary pixels since some of its N x N neighborhood is outside 
the domain of the function f(x, y) and thus will not be in- 
cluded in the summation. Even though p k  may not be the 
optimal estimate for a full matching pursuit decomposition, 
it will always find a location in which f contains substantial 
energy around its neighborhood. Since our greedy method 
aims at reducing as much energy as it could with as little 
computation as possible in each iteration, this initial esti- 
mate provides a good starting point for the refinement step 
that will be described next. 

After obtaining the initial estimates A;, we perform a lo- 
cal search for the best basis function about the initial values. 
This is done by minimizing the objective function 

En- = x(f(z,Y) - (f(.,Y),Gr(X;))Gn-(X;))'. (13) 

This minimization problem is solved using the Levenberg- 
Marquardt algorithm [9]. In addition, we need to consider 
eachof @(z,y), *'(z,y), @(z,y) ,and +'(z,y) aspossi- 
ble candidates for Gk. Therefore, the minimization is per- 
formed four times and the best function is selected with re- 
spect to the error function Eh. Since each 2D basis function 
is separable (i.e. G~(z,y)  = gz(z)g,(y)), we can compute 
the inner product very efficiently. Mathematically, we can 
write it as 

M-1 N-1 

( f , G k )  = G k ( i l j ) f ( i l d  (14) 
e o  j=o 

M-1 N-1 

= &(i) g , ( d f ( G j ) .  (15) 
i=O j=0 

After the optimal basis function is found, we compute 
the residual function Rk+lf and use it as the new function 
to be approximated. This process is repeated until some 
stopping criteria is met. Some possible stopping conditions 
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Fig. 1. Synthetic optical flow data: (a) optical flow shown 
asvectors,(h)Ir(z,y),and(c)o(z,y) 

include that the total energy in the residual function at the 
kth iteration is less than some threshold T or that the pre- 
determined maximum number of iteration has been reached. 
From the description of the algorithm, it is clear that only 
the support of the hasis function is changed at each itera- 
tion. Therefore, we are able maintain the full resolution of 
the function to be approximated. This implies that no re- 
sampling of the 2D function that we are trying to approxi- 
mate is necessary. As a result, small details are not likely to 
he lost because of resampling. 

3. EXPERIMENTAL RESULTS 

In this section, we present experiments to illustrate the per- 
formance of the proposed algorithm. The experiments are 
done on both synthetic data and real video data. The syn- 
thetic data has a resolution of 64 x 64 and is made up of a 
2Dsinesurfaceatlocations(21,21)and (24 ,24) forv(x ,y)  
and T J ( Z , ~ ) ,  respectively. They are shown in Figure I .  The 
real video data is shown in Figure 2(a) and the 2, and 71 com- 
ponents of the optical flow are shown in 2(b). The opti- 
cal flow is computed using the method given by Horn and 
Schunck. This video is approximately three seconds long 
with a frame rate of 30 fps. We selected the middle 15 
frames to be temporally smoothed for the optical flow com- 
putation. It is evident that both foreground and background 
motion exist in both the synthetic data and the real video. 
In the video, the foreground motion consists of movements 
from the two people in the foreground (the man is walking 
to the left and the woman is tilting to the left). The back- 

(b) (C) 

Fig. 2. Real video data: (a) video sequence, (b) u(z, 9 ) .  and 

ground movement is caused by camera motion. The camera 
is panning to the right. From Figure 2, we see that the func- 
tions ~ ( z ,  y) and I I (X ,  U) contain different shades of gray 
regions. These are layers corresponding to motions of dif- 
ferent location and scale. At the lowest level (the lightest 
shade of gray) is the dominant motion of the scene caused 
by camera motion. The white regions indicate either these 
regions are textureless in which optical flow cannot he re- 
liably computed or that they are motionless in which the 
optical flow is zero. 

The decomposition algorithm is then performed on both 
data sets. The first 32 basis functions are computed for the 
synthetic data while the first 128 basis functions are com- 
puted for the video data. In Figure 3, we show how these ba- 
sis functions are localized in space. From the figure, we see 
that the locations of the selected basis functions are concen- 
trated in proximity to the motion of the foreground object. 
Because of the noisy input from the optical flow module that 
processed the real video data, exact localization of motion 
is not achieved. Notice that the location of the selected hasis 
functions are clustered. This is because one basis function 
normally cannot adequately approximate the input signal at 
that location. Therefore, a group of basis functions in close 
proximity are needed. 

Next, we divide the decomposition into a fine layer and 
a coarse layer. All basis functions in the fine layer have 
support less less than 64 pixels for both data sets while the 
support is larger than 64 pixels in the coarse layer. Fore- 
ground motion appears in the finer layer while background 
motion appears in the coarser layer. These results as well as 
the residual are shown in Figure 4. There are only two strips 
in the coarse level decomposition of the synthetic data. This 
is because only 32 terms have heen computed. With more 
terms, it will gradually contain more and more background 
motion. However, since the background motion is a flat sur- 
face in 2D, i t  is difficult to approximate using the wavelet 
basis functions. Therefore, we can use this decomposition 

(c)  +,Y) 
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Fig. 3. Localization of the decomposition for u(z, y) and 
u(z,  y) in columns: (a) synthetic data, and (b) real video 
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Fig. 4. Decomposed layers in the order of fine, coarse, 
and residual from top to bottom: (a) synthetic data, (b) real 
video data 

method to decompose foreground motions and use the resid- 
ual as an approximation to the background motion. 

4. CONCLUSION 

We have presented an algorithm to decompose the com- 
puted optical flow field into atoms that are localized in both 
space and frequency. The advantage of this decomposition 
is that it allows the analysis of optical flow data in different 
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scales as well as different locations. Furthermore, we have 
performed every stage of the decomposition using full res- 
olution of the input data. This ensures no details are lost 
in the residual. This algorithm can be readily incorporated 
into systems which make inferences about object motion 
and background motion. In addition, it can also be applied 
to segment the foreground moving objects from the back- 
ground. We are currently investigating the effectiveness of 
this method in solving these problems. In addition, we are 
exploring the use of alternative basis dictionaries and the 
possibility of applying statistical filters to reduce the effect 
of noise in the optical flow input so that batter localization 
in frequency and space can be achieved. 
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