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In a constraint satisfaction problem (CSP) the aim is to find an assignment of values to a given
set of variables, subject to specified constraints. The CSP is known to be NP-complete in general.
However, certain restrictions on the form of the allowed constraints can lead to problems solvable

in polynomial time. Such restrictions are usually imposed by specifying a constraint language,
that is, a set of relations that are allowed to be used as constraints. A principal research direction
aims to distinguish those constraint languages that give rise to tractable CSPs from those that do
not.

We achieve this goal for the important version of the CSP, in which the set of values for
each individual variable can be restricted arbitrarily. Restrictions of this type can be studied
by considering those constraint languages which contain all possible unary constraints; we call

such languages conservative. We completely characterize conservative constraint languages that
give rise to polynomial time solvable CSP classes. In particular, this result allows us to obtain
a complete description of those (directed) graphs H for which the List H-Colouring problem
is solvable in polynomial time. The result, the solving algorithm and the proofs heavily use the

algebraic approach to CSP developed in [Jeavons et al. 1997; Jeavons 1998; Bulatov et al. 2005;
Bulatov and Jeavons 2003; 2001b].

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Logic and constraint programming; G.2.1 [Discrete Mathematics]: Com-

binatorics—Combinatorial algorithms; F.1.3 [Computation by Abstract Devices]: Complex-
ity Measures and Classes—Reducibility and completeness

General Terms: Algorithms, Theory

Additional Key Words and Phrases: complexity, Constraint Satisfaction Problem, dichotomy
theorem, homomorphism problem

1. INTRODUCTION

In a Constraint Satisfaction Problem (CSP) the aim is to find an assignment of
values to a given set of variables, subject to constraints on the values that can be
assigned simultaneously to certain specified subsets of variables. A CSP can also
be expressed as the problem of deciding whether a given conjunctive formula has a
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model, or as the problem of deciding whether there exists a homomorphism between
two relational structures.

The general CSP is NP-complete [Montanari 1974]. However, many practical
and theoretical problems can be expressed in terms of CSP using constraints of a
certain restricted form. Such restricted CSPs often are tractable (i.e., decidable in
polynomial time). Constraints are usually specified by relations, and the constraint
satisfaction problem can therefore be restricted by specifying a constraint language,
that is, a set of relations that are allowed to be used as constraints. In the homo-
morphism form of the CSP this is equivalent to restricting the possible form of the
target structure (or the template). The research problem of distinguishing those
constraint languages that give rise to tractable problems from those which do not
is acknowledged to be very important and has attracted much attention (see e.g.,
[Feder and Vardi 1998; Creignou et al. 2001; Bulatov 2002a]). We shall call this
problem the complexity classification problem.

Boolean constraint satisfaction problem, in which two values are available, is
equivalent to the propositional Generalized Satisfiability problem, and pro-
vides one of the most important particular cases of the CSP. In this case the com-
plexity classification problem mentioned above is completely solved for the standard
CSP [Schaefer 1978; Kolaitis and Vardi 2000a], and for various related problems
(see [Creignou et al. 2001; Bulatov et al. 2003] for a survey and further references).
In [Bulatov 2002a; 2006b], this problem was solved for CSPs over a 3-element set
of values.

The analogous problem in the case of a bigger domain is believed to be very
hard and to require more advanced approaches. Several such approaches based on
logic, algebra, graph theory and databases have been developed [Hell and Nešetřil
1990; Jeavons et al. 1997; Feder and Vardi 1998; Jeavons 1998; Gottlob et al. 1999;
Bulatov et al. 2005; Kolaitis and Vardi 2000a; Bulatov and Jeavons 2003; 2001b;
Bulatov 2002a; 2006b; Dalmau 2002]. In spite of substantial progress achieved
during the last decade, the problem has withstood all attacks.

Remarkably, all studied CSP classes turn out to be either tractable or NP-
complete. Dichotomy results of this type are of particular interest in the study
of CSP, because, on the one hand, they determine the precise complexity of a prob-
lem, and on the other hand, the a priori existence of a dichotomy result cannot be
taken for granted. In [Feder and Vardi 1998], it was conjectured that a dichotomy
theorem holds for the complexity of an arbitrary restricted CSP, and in [Bulatov
et al. 2005], a possible criteria for tractable problems has been suggested.

In this paper we study the complexity classification problem for the important
and widely used variant of the CSP, in which the set of values for each individual
variable can be restricted arbitrarily. As is easily seen, the availability of this type of
restrictions is equivalent to including into a constraint language all possible unary
relations, or including into the target structure all possible unary predicates. A
constraint language or a relational structure satisfying this condition is said to be
conservative.

Constraint satisfaction problems related to some particular types of conservative
constraint languages have already been studied. In [Cohen et al. 1994], a dichotomy
theorem has been proved for such languages containing all permutation relations;

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.



Complexity of Conservative Constraint Satisfaction Problems · 3

and in [Bulatov and Jeavons 2000], conservative constraint languages related to
binary operations have been studied. In [Dalmau 2000], the result of [Cohen et al.
1994] was generalized to the class of constraint languages containing all permutation
relations without assumptions on the unary relations. In this paper we generalize
the results of [Cohen et al. 1994; Bulatov and Jeavons 2000].

We completely characterize conservative constraint languages that give rise to
tractable constraint satisfaction problems, and provide a polynomial time algorithm
(which appears to be quite non-trivial) solving the problem in the tractable cases.
In particular, this algorithm allows one to solve numerous problems that cannot be
solved by known algorithms. We also prove that in all other cases the constraint
satisfaction problem is NP-complete.

It is somewhat unexpected that, despite the fact that our result is applicable to
CSPs over sets of arbitrary size, the form of the criterion stated is quite similar to
that found by Schaefer (see [Schaefer 1978]) for the Generalized Satisfiability
problem.

We apply the main result to the H-Colouring problem, an intensively studied
combinatorial problem that can be naturally formulated as a CSP (see e.g. [Hell
and Nešetřil 1990; Dyer and Greenhill 2000; Galuccio et al. 2000]. In the H-
Colouring problem the question is whether there exists a homomorphism of a
given graph G to the fixed graph H. This problem is equivalent to the CSP for a
constraint language consisting of one binary relation. The conservative version of
H-Colouring problem is called List H-Colouring [Kratochvil and Tuza 1994;
Feder and Hell 1998; Feder et al. 1999; 2003]. In this problem the homomorphism
sought is subject to restrictions on possible images of vertices of the input graph.
Therefore, List H-Colouring is a particular case of the conservative CSP, and
we obtain a complete description of those directed graphs H for which List H-
Colouring is solvable in polynomial time as a direct consequence of our result.
However, we were unable to reformulate this description in graph theoretic terms.

Our result, the solving algorithm and proofs heavily use the algebraic approach
to the CSP developed in [Jeavons et al. 1997; Jeavons 1998; Bulatov et al. 2005;
Bulatov and Jeavons 2001b; 2003]. This method relies upon the fact that one can
extract much information about the complexity of a restricted constraint satisfac-
tion problem from knowing certain operations, called polymorphisms, related to
the constraint language.

The paper is organized as follows. In Section 2.1, we give basic definitions and
examples, and also pose the research problems we solve. Section 2.2 contains a
short introduction to invariance properties of constraints. In Sections 2.3 and 2.4,
we formulate the main result and apply it to the List H-Colouring problem.
Then, in Section 2.5, we recall a more general framework for CSP, multi-sorted
CSP, and algebraic methods of studying CSPs of this form. This provides the
technique used in this paper and also allows us to state our results in a more
general form. In Section 2.6, we recall the notion of problems of bounded width
and of bounded relational width and characterize those conservative CSPs that have
bounded relational width and those conservative homomorphism problems that
have bounded width. We outline the proof in Section 2.7. Sections 3–6 are devoted
to considering particular types of conservative CSPs (for details, see Section 2.7)
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and auxiliary results. Finally, in Section 7 we describe a solving algorithm for
tractable cases of the conservative CSP.
Due to space restrictions, several proofs are moved to the Electronic Appendix.

2. DEFINITIONS AND THE RESULT

2.1 Constraint Satisfaction Problem

Let A be a finite set. An n-ary relation on A is a set of n-tuples of elements from A;
we use RA to denote the set of all finitary relations on A. The components of an
n-tuple a are denoted by a[1], . . . ,a[n]. A constraint language is a subset of RA,
and may be finite or infinite.

Definition 2.1 (Constraint Satisfaction Problem). The constraint satisfaction prob-
lem over a constraint language Γ ⊆ RA, denoted CSP(Γ), is defined to be the
decision problem with instance P = (V ;A; C), where

• V is a finite set of variables,

• A is a set of values (sometimes called a domain), and

• C is a set of constraints, in which each constraint C ∈ C is a pair ⟨s,R⟩ with s
a list of variables of length mC , called the constraint scope, and R an mC-ary
relation on A, belonging to Γ, called the constraint relation.

The question is whether there exists a solution to P, that is, a mapping φ:V →
A such that, for each constraint ⟨s,R⟩, s = (v1, . . . , vn), in C, the image of the
constraint scope (φ(v1), . . . , φ(vn)) is a member of the constraint relation.

The size of a problem instance is defined to be the length of a reasonable encoding
of a list of variables, and, for each constraint, of the constraint scope and of all the
tuples in the constraint relation.
It was observed in [Feder and Vardi 1998] that the constraint satisfaction prob-

lem can be equivalently reformulated in the form of the homomorphism problem.
Let H be a class of relational structures. In the uniform homomorphism problem
(HOM(H)) associated with H, the question is, given a structure H ∈ H and a struc-
ture G over the same vocabulary as H, whether there exists a homomorphism from
G to H. If H consists of a single structure H, then we write HOM(H) instead of
HOM({H}). We refer to such a problem as a non-uniform homomorphism problem,
because the inputs are just source structures.
The intuition behind the mentioned equivalence between the constraint satisfac-

tion problem and the homomorphism problem is that the source structure in the
latter represents the variables and the constraint scopes, while the target structure
represents the domain of values and the constraint relations. Moreover, the ho-
momorphisms between the structures are precisely the solutions to the constraint
satisfaction problem.
If a constraint language Γ = {R1, . . . , Rn} on a set H is finite, then CSP(Γ) can

be identified with the non-uniform problem HOM(H), where H = (H;R1, . . . , Rn).
If Γ is infinite, then CSP(Γ) is equivalent to the uniform problem HOM(H), where
H is the class of structures H = (H;RH

1 , . . . , R
H
n ), RH

1 , . . . , R
H
n ∈ Γ. (Since from

now on we use the homomorphism setting of the CSP mostly in the non-uniform
case, it will not cause a confusion to use the same notation for relation symbols

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.



Complexity of Conservative Constraint Satisfaction Problems · 5

and particular relations.) Non-uniform problems have been widely studied, see,
e.g. [Feder and Vardi 1998; Jeavons et al. 1998; Jeavons 1998; Kolaitis and Vardi
2000b; 2000a; Kolaitis 2003]. Since the technique we use in this paper makes it more
natural to deal with infinite constrain languages, we state our main results within
the framework of the constraint satisfaction problem and, correspondingly, uniform
homomorphism problems. However, some results can be stated in a stronger form
for non-uniform homomorphism problems. We therefore use this formalism as well.

Example 2.2 (H-Colouring). Let H be a (directed) graph. In the H-Colou-
ring problem we are asked whether there is a homomorphism from a given graph
G to H. So, the H-Colouring problem is just the problem HOM(H).
Every (directed) graph H = (V (H), E(H)) corresponds to a binary relation

RH : (a, b) ∈ RH if and only if (a, b) is an edge of H. Thus every instance G =
(V (G);E(G)) of the H-Colouring problem corresponds to the instance

(
V (G);

V (H); {⟨(a, b), RH⟩ | (a, b) ∈ E(G)}
)
of CSP({RH}).

We shall be concerned with distinguishing between those constraint languages that
give rise to tractable problems, and those which do not.
A relational structure H is said to be tractable if HOM(H) is tractable. It is

said to be NP-complete if HOM(H) is NP-complete. A class of finite structures H
is said to be tractable if every H ∈ H is tractable. It is said to be NP-complete if
there is an NP-complete H ∈ H. Analogously, a constraint language Γ is said to
be tractable, if CSP(Γ′) is tractable for each finite subset Γ′ ⊆ Γ. It is said to be
NP-complete, if CSP(Γ′) is NP-complete for some finite subset Γ′ ⊆ Γ.
Note that algorithms solving CSP(Γ′) for different finite subsets of a tractable

constraint language Γ can be quite different. If there exists a uniform polynomial
time algorithm for CSP(Γ), then we say that Γ is globally tractable. Clearly, every
finite tractable constraint language is globally tractable. For classes of relational
structures, global tractability is equivalent to the tractability of the corresponding
uniform problem. In all known cases every tractable constraint language is also
globally tractable.
Several different definitions of the CSP have appeared in literature; some of them

are equivalent to that given above, and some are not. In this paper we concentrate
on one of the standard variants of the CSP (see, e.g., [Dechter 2003]) which we will
call the conservative CSP.
The conservative constraint satisfaction problem over a constraint language Γ ⊆

RA, denoted c-CSP(Γ), is defined to be the decision problem with instance P =
(V ;A;L; C), where V,A, C are defined as for the usual CSP, and L is a list of subsets
Lv (v ∈ V ) from A. The question is whether there exists a solution φ to P defined
as in Definition 2.1 and such that φ(v) ∈ Lv for v ∈ V . For a relational structure
H, the List Homomorphism problem LHOM(H) is defined in a similar way.

Example 2.3 (List-H-Colouring). Let H be a (directed) graph. In the List
H-Coloring problem we are given a graph G and, for each vertex v of G, a set
Lv of vertices of H. The question is whether there is a homomorphism φ from G
to H such that φ(v) ∈ Lv for every vertex v of G. Clearly, List H-Colouring
can be represented in the form of the conservative CSP in a way similar to that in
Example 2.2.
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Notice that, for any constraint language Γ ⊆ RA, the problem c-CSP(Γ) is equiva-
lent to CSP(Γ ∪ 2A), where 2A denotes the set of all subsets from A. A constraint
language Γ with 2A ⊆ Γ will be called conservative. Analogously, the List Homo-
morphism problem LHOM(H) is equivalent to HOM(H+), where H+ is obtained
from H by adding unary relations RB, for all B ⊆ H (where H is the universe of

H) such that RH+

B = B. A relational structure that contains all possible unary
relations will also be called conservative. Therefore, we may get rid of conserva-
tive constraint satisfaction problems, and, instead, consider problems of the form
CSP(Γ) [HOM(H)] for conservative constraint languages Γ [conservative relational
structures H].
The main research problem studied in this paper is.

Problem 2.4 (Complexity Classification problem). Characterize tracta-
ble [globally tractable] and NP-complete conservative constraint languages.

In the important particular case of Boolean CSP (i.e., Generalized Satisfiabil-
ity problem), and in the case of the CSP over a 3-element domain, this problem has
been completely solved [Schaefer 1978; Kolaitis and Vardi 2000a; Bulatov 2002a] for
arbitrary constraint languages, not only conservative. Remarkably, in both cases a
dichotomy has been proved: every problem of the form CSP(Γ) [HOM(H)] is either
tractable or NP-complete. In [Feder and Vardi 1998], it was conjectured that this
is the case for arbitrary constraint languages [relational structures].

Problem 2.5 (Dichotomy problem). Is it true that every conservative con-
straint language is either tractable or NP-complete?

2.2 Polymorphisms and tractability

The algebraic approach to the study of CSP uses, in addition to relations, arbitrary
operations on the set of values. The set of all finitary operations on A (that is
mappings f :An → A, n ∈ N) will be denoted by OA.
Any operation on A can be extended in a standard way to an operation on tuples

over A, as follows. For any n-ary operation f ∈ OA, and any collection of tuples
a1, . . . ,an ∈ Am, set

f(a1, . . . ,an) = (f(a1[1], . . . ,an[1]), . . . , f(a1[m], . . . ,an[m])).

For any m-ary relation R ∈ RA, and any n-ary operation f ∈ OA, if f(a1, . . . ,
an) ∈ R for all choices of a1, . . . ,an ∈ R, then R is said to be invariant un-
der f , and f is called a polymorphism of R. We will often use the fact that a
superposition of polymorphisms is a polymorphism, that is if f(x1, . . . , xn) and
g1(x1, . . . , xk), . . . , gn(x1, . . . , x) are polymorphisms then

h(x1, . . . , xk) = f(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk))

is also a polymorphism, and that if f(x1, . . . , xn) is a polymorphism of R then so is
f(xi1 , . . . , xin), where xi1 , . . . , xin ∈ {x1, . . . , xn} (see, e.g. [Denecke and Wismath
2002]).
The set of all relations which are invariant under each operation from some set

C ⊆ OA is denoted by Inv(C). The set of all operations that are polymorphisms
of every relation from some set Γ ⊆ RA is denoted by Pol(Γ). Analogously, for
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a relational structure H, an n-ary operation on the same universe is said to be a
polymorphism of H if it is a polymorphism of every relation of H. The set of all
polymorphisms of H is denoted by Pol(H).
The operators Inv and Pol form a Galois correspondence between RA and OA

(see Proposition 1.1.14 of [Pöschel and Kalužnin 1979]). A basic introduction to
this correspondence can be found in [Pippenger 1997], and a comprehensive study
in [Pöschel and Kalužnin 1979] and [Denecke and Wismath 2002]. The following
result describes a connection between polymorphisms and the complexity of CSP.

Proposition 2.6 [Jeavons 1998]. Let Γ1 and Γ2 be constraint languages over
a finite set such that Γ2 is finite. If Pol(Γ1) ⊆ Pol(Γ2) then CSP(Γ2) is polynomial
time reducible to CSP(Γ1).

The proposition amounts to say that the complexity of CSP(Γ), for Γ finite, is
completely determined by the polymorphisms of Γ. Moreover, this is true for all
infinite constraint languages that have been studied.
A number of results on the complexity of constraint satisfaction problems have

been obtained using this approach (e.g., [Jeavons et al. 1997; Jeavons 1998; Bulatov
et al. 2005; Bulatov and Jeavons 2000; 2001b; Bulatov et al. 2001; Bulatov 2002a;
2002b; Dalmau 2002]. In particular, it was proved that certain types of operations
yield tractability.

Proposition 2.7. If one of the following operations is a polymorphism of a
constraint language Γ over a finite set A, then CSP(Γ) is tractable:

• a semilattice operation, that is a binary operation f satisfying the conditions:
(a) f(a, a) = a (idempotency); (b) f(a, b) = f(b, a) (commutativity);
(c) f(f(a, b), c) = f(a, f(b, c)) (associativity), for all a, b, c ∈ A;

• a conservative commutative operation, that is a binary operation f such that
f(a, b) = f(b, a) and f(a, b) ∈ {a, b};

• a majority operation, that is a ternary operation g such that g(a, a, b) =
g(a, b, a) = g(b, a, a) = a, for all a, b ∈ A.

• a Mal’tsev operation, that is a ternary operation h such that h(a, a, b) =
h(b, a, a) = b, for all a, b ∈ A.

Moreover, Schaefer’s Dichotomy Theorem [Schaefer 1978], when appropriately re-
stated, easily follows from Proposition 2.6, 2.7 and well known algebraic results
[Post 1941] (see [Jeavons 1998]).

Proposition 2.8 (Schaefer’s Dichotomy Theorem). For any Γ ⊆ R{0,1},
CSP(Γ) is tractable if Pol(Γ) contains one of the following:

– the constant 0 or constant 1 operations;

– the conjunction or disjunction operations (which are semilattice);

– the majority operation (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x);
– the Mal’tsev operation x− y + z (mod 2) (it is also called the affine or minority
operation).

In all other cases CSP(Γ) is NP-complete.

Schaefer’s Dichotomy Theorem completely solves Problems 2.4, 2.5 for Boolean
constraint languages.
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2.3 A dichotomy theorem for conservative constraint languages

First, we show that the NP-completeness part of our dichotomy theorem can be
easily deduced from the existing results.
It has been observed [Jeavons et al. 1997; Jeavons et al. 1998; Bulatov et al.

2005] that there are two benchmark NP-complete problems that explain the NP-
completeness of all known NP-complete CSPs. These are the problem CSP({R}),

R =

 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

 ,

in the Boolean case (the tuples are written vertically), which is equivalent to the
Not-All-Equal SAT [Schaefer 1978], and CSP({≠A}), which is equivalent to
the |A|-Colourability problem, in the non-Boolean case, where ̸=A denotes the
disequality relation {(a, b) ∈ A2 | a ̸= b}.
An operation f is a polymorphism of one of those relations if and only if f is

an essentially unary surjective operation, that is f(x1, . . . , xn) = g(xi) where g is a
bijection [Jeavons et al. 1997; Jeavons et al. 1998]. Therefore, by Proposition 2.6,
if every polymorphism of a constraint language Γ is an essentially unary surjective
operation, then CSP(Γ) is NP-complete.
Note that every (n-ary) polymorphism f of a conservative constraint language

satisfies the condition: f(a1, . . . , an) ∈ {a1, . . . , an}, for all a1, . . . , an ∈ A. Such
an operation is said to be conservative. For example, the operations listed in
Proposition 2.8, excluding the constant ones, are conservative. By fB we denote
the restriction of an operation f onto a set B. The following result from [Bulatov
et al. 2005] provides a necessary condition for the tractability of CSP(Γ).

Proposition 2.9. Let Γ be a constraint language on a finite set A, and suppose
that B ⊆ A, |B| ≥ 2, is a subset which, when treated as a unary relation, belongs
to Γ. If for all f ∈ Pol(Γ), fB is an essentially unary surjective operation, then
CSP(Γ) is NP-complete.

If Γ is a conservative language, then every B ⊆ A belongs to Γ. Therefore, if CSP(Γ)
is tractable then, for any 2-element subset B ⊆ A (we assume B = {0, 1}), there
exists a polymorphism fB of Γ such that fBB is not an essentially unary surjective
operation. Well-known properties of Boolean operations [Post 1941], imply that
fB can be chosen such that fBB is either a semilattice (that is conjunction or
disjunction) operation, or the majority operation (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x), or the
Mal’tsev operation x − y + z (mod 2). Note that the constant operations are not
in this list since Γ is conservative. The main result of this paper states that this
property is also sufficient for the tractability of CSP(Γ).

Theorem 2.10. A conservative constraint language Γ is tractable if and only if,
for any 2-element subset B ⊆ A (we assume B = {0, 1}), there exists an operation
f ∈ Pol(Γ) such that fB is either a semilattice operation x ∨ y or x ∧ y, or the
majority operation (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x), or the Mal’tsev operation x − y + z
(mod 2). In this case Γ is also globally tractable. Otherwise Γ is NP-complete.

In [Bulatov et al. 2005; Bulatov and Jeavons 2001b] a possible criterion has been
conjectured characterizing tractable constraint language over a finite set. It can be
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shown that, the criterion stated in Theorem 2.10 is equivalent to that from [Bula-
tov et al. 2005; Bulatov and Jeavons 2001b] in the particular case of conservative
constraint languages.
Theorem 2.10 completely solves the complexity classification problem (Prob-

lem 2.4), and gives a positive solution to the dichotomy problem (Problem 2.5).
It also provides a polynomial time algorithm to recognize tractable conservative
constraint satisfaction problems. Indeed, to verify the condition stated in the the-
orem for a finite conservative constraint language Γ [a relational structure H], one
just has to calculate all binary and ternary polymorphisms of Γ [respectively H].
Their number is bounded by a constant when the size of A is fixed; and then, for
each 2-element subset B ⊆ A, check all the computed polymorphisms, looking for
an operation f such that fB is of the specified type. In Section 7 we provide a poly-
nomial time algorithm solving CSP(Γ) for a conservative Γ whenever it is globally
tractable. For the homomorphism problem this implies the following

Corollary 2.11. The uniform problem HOM(TA), where TA denotes the class
of all conservative relational structures that have universe A and satisfy the condi-
tions of Theorem 2.10, is polynomial time solvable.

In fact, Theorem 2.10 can be stated for a wider class of constraint languages than
conservative languages. Suppose that Γ is a constraint language on A containing all
2- and 3-element unary relations (subsets of A). If the conditions of Theorem 2.10
do not hold then CSP({R}) is reducible to CSP(Γ) and, hence, the latter prob-
lem is NP-complete. Otherwise, let C denote the set of all binary and ternary
polymorphisms of Γ. Then the conditions of Theorem 2.10 hold for the language
Inv(C) ⊇ Γ. However, if a binary or ternary operation is a polymorphism of all
3-element unary relations then it is also a polymorphisms of all unary relations.
Therefore, Inv(C) is conservative and, by Theorem 2.10, is tractable.
A constraint language [relational structures] containing all at most k-element

unary relations will be called k-conservative.

Corollary 2.12. If Γ is a 3-conservative constraint language then Γ is globally
tractable if and only if the conditions of Theorem 2.10 holds. Otherwise it is NP-
complete.

Corollary 2.12 has been observed independently in [Feder and Hell 2003].

2.4 List H-Colouring problem

We apply Theorem 2.10 to characterize those digraphs H for which the List H-
Colouring problem is tractable. Such a characterization has been obtained in
[Feder et al. 1999; 2003] for undirected graphs. For an undirected graph H, the
List H-Colouring is tractable if and only if H is bi-arc. Remarkably, bi-arc
graphs can be described in terms of polymorphisms: a graph H is bi-arc if and only
if RH is symmetric and has a majority polymorphism [Feder et al. 2003; Brewster
et al. 2008]. To our best knowledge, no progress has been made so far in studying
the List H-Colouring for directed graphs. Theorem 2.10 allows us to obtain
a complete classification of the complexity of the List H-Colouring problem in
this case.
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Figure 2.1

Corollary 2.13. The List H-Colouring problem for a digraph H is tractable
if and only if RH satisfies the conditions of Theorem 2.10. Otherwise it is NP-
complete.

Example 2.14. Consider the List H-Colouring problems for the graphs shown
in Fig. 2.1. It is not hard to see that Pol({RH1}) contains the operation of dual
discriminator

g(x, y, z) =

{
x, if x = y,
z, otherwise

(it follows, for example, from results of [Szendrei 1986] and the fact that RH1

is the graph of a mapping), which is a majority operation on on all pairs. By
Corollary 2.13, the List H1-Colouring is tractable. Observe that Pol({RH1})
also contains a binary operation f , such that the restriction of f onto 2-element
sets {a, b}, {b, c}, {c, d}, {d, a} is a semilattice operation. For example, one can
define f by the equalities: f(a, b) = b, f(b, c) = c, f(c, d) = d, f(d, a) = a, and
f(b, d) = b, f(d, b) = d, f(a, c) = a, f(c, a) = c. As we shall see later, this yields a
certain ‘type’ of those 2-element sets.
In Section 3.1 we show that the List H2-Colouring is NP-complete.

The problem of describing the class of digraphs specified in Corollary 2.13 in graph-
theoretic terms remains open.

2.5 Multi-sorted constraints satisfaction problem

We prove our results in a form more general than that in Theorem 2.10, namely,
for the multi-sorted constraint satisfaction problem. In this generalized form, every
variable is allowed to have its own domain. We follow the approach developed in
[Bulatov and Jeavons 2001a; 2003].
In multi-sorted constraint satisfaction problems we allow multi-sorted relations.

For any collection of sets A = {Ai | i ∈ I}, and any list of indices (i1, i2, . . . , im) ∈
Im, a subset R of Ai1 ×Ai2 × · · · ×Aim , together with the list (i1, i2, . . . , im), will
be called a multi-sorted relation over A with arity m and signature (i1, i2, . . . , im).
For any such relation R, the signature of R will be denoted σ(R). Any set of
multi-sorted relations over A is called a multi-sorted constraint language over A.

Definition 2.15 (Multi-sorted CSP). Let Γ be a multi-sorted constraint language
over a collection of sets A = {Ai | i ∈ I}. The multi-sorted constraint satisfaction
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problem MCSP(Γ) is defined to be the decision problem with instance (V ;A; δ; C),
where V is a set of variables; δ is a mapping from V to I, called the domain
function; C is a set of constraints where each constraint C ∈ C is a pair ⟨s,R⟩,
such that s = (v1, . . . , vm) is a tuple of variables of length m, called the constraint
scope; R is an m-ary relation over A with signature (δ(v1), . . . , δ(vm)), called the
constraint relation.

The question is whether there exists a solution, i.e. a function φ, from V to
∪

A∈AA,
such that, for each variable v ∈ V , φ(v) ∈ Aδ(v), and for each constraint ⟨s,R⟩ ∈ C,
with s = (v1, . . . , vm), the tuple (φ(v1), . . . , φ(vm)) belongs to R.

Tractable and NP-complete multi-sorted constraint languages are defined in the
same way as usual ones.
To extend the algebraic approach to the multi-sorted case, we need to define

a suitable extension of the notion of a polymorphism. It is not hard to see that
we cannot simply separate out different domains and consider polymorphisms on
each domain separately; we must ensure that all of the domains are treated in a
co-ordinated way. In the following definition, this is achieved by defining different
interpretations for the same operation applied to different sets.
Let A be a collection of sets. An n-ary multi-sorted operation t on A is defined

by a collection of interpretations {tA | A ∈ A}, where each tA is an n-ary operation
on the corresponding set A.
The multi-sorted operation t is said to be a polymorphism of an m-ary multi-

sorted relation R over A with signature (δ(1), . . . , δ(m)) or R is said to be invariant
with respect to t if, for any (a11, . . . , am1), . . . , (a1n, . . . , amn) ∈ R, we have

t


a11

...
am1

 , . . . ,

a1n
...

amn


 =

 tAδ(1)(a11, . . . , a1n)
...

tAδ(m)(am1, . . . , amn)

 ∈ R.

For a multi-sorted constraint language Γ, the set of all those multi-sorted operations
which are polymorphisms of every relation in Γ is denoted MPol(Γ).
A multi-sorted constraint language Γ overA is said to be conservative [k-conserva-

tive] if for any A ∈ A and any B ⊆ A [any B ⊆ A with |B| ≤ k], B ∈ Γ (as a
relation over A). By technical reasons we shall also assume that B ∈ A. In Sec-
tions 3–7 we prove the following theorem. Note that Theorem 2.10 is a particular
case of this theorem when A is the collection of all subsets of a finite set.

Theorem 2.16. A multi-sorted 3-conservative constraint language Γ over a col-
lection of sets A is tractable if and only if for any A ∈ A and any 2-element subset
B ⊆ A (we assume B = {0, 1}), there exists a multi-sorted operation f ∈ MPol(Γ)
such that fAB is either a semilattice operation x ∨ y or x ∧ y, or the majority op-
eration (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x), or the Mal’tsev operation x − y + z (mod 2).
Otherwise CSP(Γ) is NP-complete. Moreover, if the size of the members of A is
bounded, then Γ is tractable if and only if it is globally tractable.

A weaker version of Theorem 2.16 (involving only finite constraint languages and
providing no criterion for tractable cases) has been independently derived from
Theorem 2.10 in [Feder and Hell 2003].
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2.6 Partial solutions and bounded relational width

We recall a property of a subclass of the CSP that provides a polynomial time
solving algorithm.
We use n to denote the set {1, . . . , n}. For an n-ary (multi-sorted) relation R,

a ∈ R, and J = {i1, . . . , ik} ⊆ n, by prJa we denote the tuple (a[i1], . . . ,a[ik]), and
by prJR the set {prJb | b ∈ R}. We sometimes will also write pri1,...,ikR instead
of prJR. Clearly, R ⊆ pr1R × . . . × prnR; we say that R is a subdirect product of
A1, . . . , An if priR = Ai for any i.
It will often be convenient for us to consider relations whose coordinate positions

are indexed by elements of a certain arbitrary set, not necessarily by natural num-
bers. For example, the coordinate positions of constraint relations will be supposed
to be indexed by variables. Note that this might cause troubles as in general a
variable may occur in a constraint scope more than once. However, it is not hard
to see that any CSP can be transformed to an equivalent one without repetitions
of variables in constraint scope. Indeed, to remove such a repetition from a con-
straint C = ⟨s = (v, v, . . .), R⟩ we throw out from R all tuples a with a[1] ̸= a[2]
obtaining a relation R′ and replace C with ⟨s′ = (v, . . .), prs′R

′⟩. For CSPs without
repetitions of variables it is safe to index coordinate positions with variables.
Let P = (V ;A; δ; C) be an instance of the multi-sorted CSP, and W ⊆ V . By

PW we denote the problem restricted on W , that is, the problem instance defined
as (W ;A; δW ; C′) where, for every ⟨s,R⟩ ∈ C, there is ⟨s′, R′⟩ ∈ C′ with s′ = s∩W 1,
and R′ = prs′R. Every solution to PW is said to be a partial solution to P on W .
Let us denote the set of all partial solutions on W by SW . Notice that SW can be
viewed as a |W |-ary relation.
The problem P is said to be k-consistent if, for any subsets W ⊆ V containing

k − 1 elements and any subset U with W ⊆ U ⊆ V containing k elements, every
partial solution on W can be extended to a partial solution on U . The problem is
called k-minimal if, for any k-element subsetW of V , there is a constraint ⟨s,R⟩ ∈ C
such that W ⊆ s, and for any ⟨s,R⟩ ∈ C, we have prs∩WR = prs∩WSW .
Any problem instance P can be transformed to an equivalent k-consistent or

k-minimal instance P ′. To do this we employ one of the standard constraint prop-
agation algorithms in the former case and, in the latter case, the algorithm k-
minimality, see Fig. 2.2. A class K of constraint satisfaction problems is said
to be of width k if any problem instance P from K has a solution if and only if
the k-consistent problem associated with P contains no constraint with empty con-
straint relation. If K is of width k for a certain k, then K is said to be of bounded
width. Analogously, a class K of constraint satisfaction problems is said to be of
relational width k if any problem instance P from K has a solution if and only if
the k-minimal problem associated with P contains no constraint with empty con-
straint relation. If K is of relational width k for a certain k, then K is said to be of
bounded relational width. Any class of bounded width or bounded relational width
is tractable, because, assuming k fixed, establishing k-consistency and k-minimality
takes polynomial time.

1This is a slight abuse of notation; formally speaking, the tuple s′ is obtained from s by omitting
those entries that are not contained in W .
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Input. A problem instance P = (V ;A; δ; C).
Output. A k-minimal problem instance P ′ = (V ;A; δ; C′) equivalent to P.

Step 1 set P ′ := (V ;A; δ; C′) where C′ = C ∪ {⟨W,
∏
v∈W

Aδ(v)⟩ |W ⊆ V, |W | = k}; and P ′′ := P ′

Step 2 do
Step 3 set P ′ := P ′′

Step 4 for each W ⊆ V with |W | = k do
Step 5 solve the restricted problem P ′′

W ; let S′′
W be the set of its solutions

Step 6 for each constraint C = ⟨s,R⟩ ∈ C′′, replace C with
⟨s,R′⟩ where R′ = {a ∈ R | prs∩W a ∈ prs∩WS′′

W }
Step 7 until P ′′ = P ′

Step 8 output P ′

Fig. 2.2. Algorithm k-minimality

It is not hard to see that every k-minimal problem is also k-consistent. Therefore,
every problem of width k has also relational width k; hence, every problem of
bounded width is of bounded relational width. The converse, that is that every
problem of bounded relational width has bounded width, is true in the important
case of problems of the form CSP(Γ), where Γ is finite, or, equivalently, problems
of the form HOM(H).
In the case of conservative constraint languages it is possible to characterize those

languages that give rise to a problem of bounded relational width. We prove such
a characterization only in the case when the number of allowed domains is finite
(although a constraint language can be infinite). In spite of this, we believe that
this result still holds in the general case. However, proving it in the general case
would require a Galois theory for multi-sorted relations and operations, which is
beyond the scope of the present paper.

Theorem 2.17. Let Γ be a multi-sorted 3-conservative constraint language over
a finite collection of sets A. Then MCSP(Γ) has relational width 3 if and only
if for any 2-element subset B ⊆ A ∈ A (we assume B = {0, 1}), there exists
an operation f ∈ MPol(Γ) such that fAB is either a semilattice operation, or the
majority operation (x∨y)∧ (y∨ z)∧ (z∨x). Otherwise MCSP(Γ) is not of bounded
relational width.

Proof. If Γ satisfies the conditions specified in the theorem then MCSP(Γ) is
of relational width 3 by Lemma 7.2 (see Section 7).
Conversely, as MCSP(Γ) is tractable, it satisfies the conditions of Theorem 2.16.

Suppose that there exists a 2-element B ⊆ A ∈ A (we denote the elements of B
by 0,1) such that fAB is a semilattice or majority operation for no f ∈ MPol(Γ).
It was shown in [Bulatov and Jeavons 2003] that if A is finite then MCSP(Γ) is
polynomial time equivalent to CSP(χ(Γ)) where χ(Γ) is a one-sorted constraint
language on C = A1 × · · · × An, where {A1, . . . , An} = A (we assume A = A1).
Moreover, it easily follows from the proof of Proposition 1 [Bulatov and Jeavons
2003] that MCSP(Γ) has relational width k for some k if and only if CSP(χ(Γ)) does.
Let us fix some elements ai ∈ Ai, i ∈ {2, . . . , n}, and set 0′ = (0, a2, . . . , an), 1

′ =
(1, a2, . . . , an) ∈ C. Then by the construction of χ(Γ), and the results of [Post 1941]
and Proposition 2.6 (see also [Jeavons 1998]) the 4-ary relation R on {0′, 1′} defined
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by R = {(a, b, c, d) ∈ {0′, 1′}4 | a+ b = c+ d}, where + denotes addition modulo 2,
belongs to InvPol(χ(Γ)). The problem of solving systems of linear equations over the
2-element field is equivalent to CSP(R). However, this problem is not of bounded
relational width; hence, by Lemma 3.1 of [Larose and Zadori 2007] the same holds
for CSP(R) and therefore for CSP(χ(Γ)) and MCSP(Γ).2

Corollary 2.18. Let H be a finite 3-conservative relational structure. Then
HOM(H) has bounded width if and only if for any 2-element subset B ⊆ H (we
assume B = {0, 1}), there exists an operation f ∈ Pol(H) such that fB is either a
semilattice operation, or the majority operation (x∨y)∧ (y∨z)∧ (z∨x). Otherwise
HOM(H) is not of bounded width.

2.7 Outline of the proof of Theorem 2.16

In this section we explain the main ideas behind the algorithm solving conservative
CSPs and outline the auxiliary results needed to justify the algorithm.

Graph of a relational structure. First of all we associate with every 3-conservative
relational structureH a complete graph whose vertices are the elements of the struc-
ture and the edges are coloured in 3 colours. The colour of an edge (a, b) reflects the
local structure of H, namely, the existence of polymorphisms whose action on {a, b}
is of some particular type. Thus, a red edge indicates that there is a polymorphism
acting on {a, b} as a semilattice operation, a yellow edge corresponds to majority
polymorphism, and a blue edge corresponds to affine or minority polymorphisms.
(For precise definitions see Section 3.1.)
Then we define several concepts of connectedness and strong connectedness in

such graphs, based on the existence of paths consisting of edges of some particular
colours. The most important types of connectedness will be red-connectedness (two
vertices are red-connected if there is a “red” path connecting then), red-yellow-
connectedness (there is a path consisting of red and yellow edges), and red-blue-
connectedness. We also define, in the usual way, partial orders on the strongly
red-, red-yellow-, and red-blue-connected components of the graph. Vertices from
the maximal components in the sense of these orders we call maximal, ry-maximal,
and rb-maximal elements, respectively.

Outline of the algorithm. The main idea of the algorithm is to decompose a CSP
into several smaller problems depending on the graph structure of the domains
involved in the problem. Usually, the smaller problems will be obtained by restrict-
ing domains to connected components of certain kind or to the sets of maximal
elements, and also by restricting the set of variables included into the subproblem.
The choice of variables to include is usually based on the interplay between possible
values of the variables. Roughly speaking, we include variable w along with variable
v only if we can conclude that, for any two solutions of the original CSP, the values
of v in these solutions belong to the same connected component if and only if the
values of w belong to the same connected component.

2Note that Lemma 4.1 of [Larose and Zadori 2007] allows one to conclude that CSP(χ(Γ)) has

not bounded width without using relation R. However, that lemma uses non-trivial algebraic
terminology that we would like to avoid here.
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The key parts of the proof will be, first, the Tightening Proposition 7.1, claiming
that if some of the smaller problems have no solutions then the original problem can
be tightened by removing some elements from the domains, and then the algorithm
is to be applied to the new smaller problem; and second, the results showing that
if all the smaller problems have solutions then a solution to the entire problem can
be constructed from solutions of the restricted problems. In order to prove these
two results we will need a long series of auxiliary results that helps to understand
the relationship between the properties of relations of conservative structures and
the edge-coloured graphs of those structures.
The mentioned two key results look differently in different cases. We distinguish

the following four cases.

Single coloured and double connected graphs. The base case of our algorithm,
when no further iterations required, includes the case when the edges of the graphs
of all structures involved coloured the same colour. In this case the problem can
be solved by the existing algorithms from previous papers (see the Single Colour
Proposition 3.3). Another case in which no further recursion is needed is the case
when the graphs of all structures are both strongly red-blue- and strongly red-
yellow-connected (Section 4). In this case, we use an algorithm similar to that
from [Bulatov 2006a]. Note although that there may be a complication in this case
when some further preparations are required. This possibility will be considered in
Section 5.5 (the Double Connected Tightening Lemma 5.16).

Multiple red-blue-components. If some domains of the problem are not red-blue-
connected, then we use red-blue-connected components to split it into subproblems.
Suppose that domain Av for some variable v is not red-blue-connected. Then,
for any red-blue-connected component B of Av, we define J(rb, v, B) to be the
set of variables w such that it can be concluded that, for any solutions φ,ψ, we
have φ(v), ψ(v) ∈ B if and only if φ(w), ψ(w) are in the same red-blue-connected
component of Aw. The restricted problem for v and B has the set of variables
J(rb, v, B) and red-blue-connected components of Aw, w ∈ J(rb, v, B), as domains.
Finally, we use the Rectangularity Proposition 5.4(2) that claims that if the original
problem has a solution assembled from some solutions of the restricted problems
then any solutions of those restricted problems can be used to build a solution to
the entire problem, and the Red-Blue Decomposition Proposition 5.7 that states
that the CSP in this case can be solved as if it had a majority polymorphism, that
is by considering the restrictions of the problem onto 2-element sets of variables.

Strongly red-blue connected domains. Due to the previous case we may assume
that all the domains are red-blue-connected. Since the case when every domain is
both red-blue- and red-yellow-connected is already considered, in the next case to
consider, every red-connected component of every domain is strongly red-connected,
but some domains are not red-yellow-connected. Using this property, we define,
similar to the previous case, sets of the form J(ry, v, B) and the corresponding
restricted problems, and we use the Rectangularity Proposition 5.4(1) to show
that if the original problem has a solution assembled from some solutions of the
restricted problems then any solutions of those restricted problems can be used to
build a solution to the entire problem. Then we construct the skeleton problem
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leaving in the constraint relations only those tuples that are parts of some chosen
solutions of the restricted problems. The key property of this new problem is that
the domains of each variable in this problem has only blue edges and therefore can
be solved by one the existing algorithms.

Isolating maximal components. As we shall see, red edges is the only type of
edges that can be directed. This is why we consider the situation when there are
vertices that are red-connected but not strongly red-connected as a separate case.
And this is the most difficult part of the proof. The overall idea is again to restrict
the problem using sets of variables of the form similar to J(rb, v, B), J(ry, v, B), if
one of such restricted problems has no solution then using the Tightening Propo-
sition 7.1 we show that the domains of some variables can be reduced. Otherwise
we distinguish the case when the set Amax

v of elements belonging to the maximal
red-connected components of each domain Av is red-yellow-connected. The All
Minimal Lemma 6.20 shows that in this case the problem can be solved in the same
way as in the case of multiple red-blue-components. Finally, if there are sets of the
form Amax

v that are not red-yellow-connected, then the Maximal Rectangularity
Proposition 6.11 shows that a property similar to that established in the Rectan-
gularity Proposition 5.4(1) holds for max(Av), and therefore the problem can be
solved in a manner similar to that in the case of strongly connected domains.

Complexity and Soundness. We complete the proof by an analysis of the algo-
rithm showing that it is correct (Proposition 7.3) and polynomial time (Proposi-
tion 7.4).

3. STRUCTURE OF RELATIONS FROM A CONSERVATIVE LANGUAGE

This section is mostly devoted to basic definitions and their properties. In Sec-
tion 3.1, we formally introduce the edge-coloured graph associated with a relational
structure that has already been mentioned in Section 2.7, prove that the colours
of edges of this graph can be defined using only 3 polymorphisms of the struc-
ture (the Three Operations Proposition 3.1), and use this fact to show that the
List H2-Colouring problem, where H2 is a digraph defined in Example 2.14, is
NP-complete. Section 3.2 introduces various notions of connectedness in graphs
of relational structures and also in graphs associated with multi-sorted relations.
Finally, in Section 3.3, we study connected and strongly connected components
of several types, partial orders on the sets of such components, and also the rela-
tionship between maximal components of the graph of a multi-sorted relation and
maximal components of graphs of its components.

3.1 Red, yellow, and blue

Let Γ be a conservative constraint language on a collection of sets A, satisfying the
conditions of Theorem 2.16. Recall that, as Γ is conservative, we assume that along
with every A ∈ A the collection A contains also every non-empty subset of A. For
every A ∈ A, we consider the graph GΓ(A), an edge-coloured digraph with vertex
set A. An edge (a, b) is present and is coloured red if there is fa,b ∈ MPol(Γ) such
that fAa,b{a,b} is a semilattice operation with fAa,b(a, b) = fAa,b(b, a) = fAa,b(b, b) = b,

fAa,b(a, a) = a. Edges (a, b), (b, a) are present and are coloured yellow if neither (a, b)
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nor (b, a) can be coloured red and there is fAa,b ∈ MPol(Γ) such that fAa,b{a,b} is a

majority operation. Edges (a, b), (b, a) exist and are coloured blue if none of them
can be coloured red or yellow, and there is fa,b ∈ MPol(Γ) such that fAa,b{a,b} is

an affine operation. Thus, for each pair a, b ∈ A, either (a, b) or (b, a) is an edge
of GΓ(A); if (a, b) is a yellow or blue edge then (b, a) is also an edge of the same
colour; while if (a, b) is red then the edge (b, a) may not exist. Since Γ is usually
fixed, we shall use G(A) instead of GΓ(A). First we show that all operations of the
form fa,b can be considerably unified. Recall that an operation f on A is called a
projection if there is i ∈ n such that f(x1, . . . , xn) = xi for any x1, . . . , xn ∈ A. It
is called idempotent if f(x, . . . , x) = x for any x ∈ A.

Proposition 3.1 (Three Operations Proposition). There are polymorph-
isms f(x, y), g(x, y, z), h(x, y, z) ∈ MPol(Γ) such that, for every A ∈ A and every
two-element subset B ⊆ A,

—fAB is a semilattice operation whenever B is red, and fAB(x, y) = x otherwise;

—gAB is a majority operation if B is yellow, gAB(x, y, z) = x if B is blue, and

gAB(x, y, z) = fAB(f
A
B(x, y), z) if B is red;

—hAB is the affine operation if B is blue, hAB(x, y, z) = x if B is yellow, and

hAB(x, y, z) = fAB(f
A
B(x, y), z) if B is red.

There is also a polymorphism p(x, y) such that pAB = fAB if B is red, pAB(x, y) =

y if B is yellow, and pAB(x, y) = x if B is blue.

Proof. The required operations are constructed from polymorphisms that are
semilattice, majority, or affine operations on pairs of elements of sets fromA. Specif-
ically, we first construct operation f by a chain of substitutions of polymorphisms
whose restriction on some 2-element subset is a semilattice operation. Then g and
h are constructed in a similar way.

Example 3.2. We are now able to show that the problem List H2-Colouring,
where H2 is the graph from Fig. 2.1, is NP-complete. If this problem were tractable
then there would exist polymorphisms f, g, h of R = RH2 specified in the Three
Operations Proposition 3.1. We show that the restrictions of these operations onto
B = {b, d} cannot be a semilattice, majority, or affine operation.
Notice first that if fB is a semilattice operation with f(b, d) = f(d, b) = d

[f(b, d) = f(d, b) = b] then so is f {a,c} and f(a, c) = f(c, a) = c [f(a, c) = f(c, a) =

a]. Indeed, since f is a polymorphism of R and f(b, d) = f(d, b) = d, both

f

((
a
b

)
,

(
c
d

))
and f

((
c
d

)
,

(
a
b

))
must be equal to (c, d), which means f(a, c) = f(c, a) = c. On the other hand,
under the same assumption we must have

f

((
b
c

)
,

(
d
a

))
= f

((
d
a

)
,

(
b
c

))
=

(
d
a

)
,

and f(a, c) = f(c, a) = a, a contradiction.
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Analogously, if gB is a majority operation then so are g{b,c}, g{c,d}. Indeed, if

gB is a majority operation then g

((
b
c

)
,

(
d
b

)
,

(
d
b

))
=

(
d

g(c, b, b)

)
∈ RH2 , which

implies g(c, b, b) ∈ {a, b}. As g is conservative, g(c, b, b) = b. In a similar way
one can check the remaining equalities required to show that g{b,c} is a majority
operation. A proof for the other restriction is similar.

Let us determine the possible values for g(a, c, b). Since g

((
d
a

)
,

(
b
c

)
,

(
d
b

))
=(

d
g(a, c, b)

)
∈ RH2 , we have g(a, c, b) ∈ {a, b}. If g(a, c, b) = a then from

g

((
a
b

)
,

(
c
d

)
,

(
b
c

))
=

(
a

g(b, d, c)

)
∈ RH2 we get g(b, d, c) = b,

from g

((
b
c

)
,

(
d
a

)
,

(
c
d

))
=

(
b

g(c, a, d)

)
∈ RH2 that g(c, a, d) = c,

from g

((
c
d

)
,

(
a
b

)
,

(
d
a

))
=

(
c

g(d, b, a)

)
∈ RH2 that g(d, b, a) = d, and from

g

((
c
d

)
,

(
d
b

)
,

(
d
a

))
=

(
g(c, d, d)

d

)
∈ RH2

that g(c, d, d) = c. The last equality

gives a contradiction with the fact that g{c,d} is a majority operation. The case

g(a, c, b) = b is similar, except that we use values g(b, d, c), g(c, b, d), g(d, c, b), and
g(d, d, c). Thus an operation g with the required properties cannot exist.
Finally, in a similar way one can show that a polymorphism h such that hB is a

minority operation is also impossible.

Clearly, the constraint language MInv({f, g, h, p}) ⊇ Γ satisfies the conditions
of Theorem 2.16. Hence, the tractability of Γ will be proved if we show that
MInv({f, g, h, p}) is tractable. So, we replace Γ with MInv({f, g, h, p}). Notice that
GMInv({f,g,h,p})(A), A ∈ A, has no pair of mutually inverse red edges, because f
uniquely determines the direction of a red edge.
To conclude this section we survey several particular cases when the colouring of

G(A) is restricted.

Proposition 3.3 (Single Colour Proposition). Let Γ be a conservative con-
straint language on a collection of sets A. If one of the following conditions holds
then Γ is tractable.

(1 ) All edges of G(A) for every A ∈ A are blue.

(2 ) All edges of G(A) for every A ∈ A are yellow.

(3 ) All edges of G(A) for every A ∈ A are red.

In the first case, operation h from the Three Operations Proposition 3.1 is an affine
operation on every two-element subset of each set from A; hence it satisfies the
conditions h(x, y, y) = h(y, y, x) = x. This means that h is a Mal’tsev operation.
The tractability of Γ follows from [Bulatov 2002b; Bulatov and Dalmau 2006].
In the second case, g is a majority operation on every two-element subset of each

set from A; hence it satisfies the conditions g(x, x, y) = g(x, y, x) = g(y, x, x) = x.
This means that g is a majority operation. Then the tractability of Γ follows from
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the results of [Jeavons et al. 1997; Jeavons et al. 1998; Bulatov and Jeavons 2003;
2001a].
Finally, in the third case, operation f is commutative and satisfies the condition

f(a, b) ∈ {a, b}. Therefore, f is a commutative conservative binary operation. As
is proved in [Bulatov and Jeavons 2000; Bulatov 2006a], Γ is tractable.

3.2 Connectedness

For an integer n, a partition I1, I2 of n, and tuples a,b whose components are
indexed by elements of sets I1, I2 correspondingly, we use (a,b) to denote the n-
ary tuple c such that c[i] = a[i] if i ∈ I1 and c[i] = b[i] if i ∈ I2. By ⟨c,d⟩ we
denote the pair of tuples c,d of the same arity.
We use several forms of connectedness in G(A), A ∈ A, defined as the existence

of a path (directed or not) consisting of edges of colours from some restricted set.
Vertices a, b are said to be (strongly) r- [ry-, rb-]connected if there is a (directed) path
from a to b consisting of red [red and yellow, red and blue] edges. We then define
r- [ry-, rb-] connected components, and strongly r- [ry-, rb-]connected components
in a natural way.
By a strongly ry/rb-connected component of G(A) we mean a maximal set of ver-

tices that is both strongly ry- and strongly rb-connected. Observe that a strongly
ry/rb-connected component is not necessarily a ry- (or rb-) connected compo-
nent. Indeed, although such a component is strongly ry-connected, it may be
not maximal strongly ry-connected set, as it is required for a strongly ry-connected
component. Since any strongly ry/rb-connected component is a subset of some
strongly ry- and some strongly rb-connected component, such a set can be defined
as the first set, which is both strongly ry- and strongly rb-connected, in a sequence
B1, C1, B2, C2, . . .. Set B1 to be a strongly ry-connected component of G(A) if G(A)
is not strongly ry-connected, and A otherwise; set C1 to be a strongly rb-connected
component of G(A) if G(A) is strongly ry-connected, but not strongly rb-connected.
Then set Bi to be a strongly ry-connected component of G(Ci−1), and Ci to be a
strongly rb-connected component of G(Bi).
It will be convenient for us to use 3 binary relations on each A ∈ A. Let α, β, γ

be reflexive binary relations defined as follows: α consists of red edges (and pairs of
the form (a, a)), β consists of yellow edges (and the pairs (a, a)), and γ consists of
blue ones (and the pairs (a, a)). These relations will mostly be used in the technical
parts of the paper.
Every relation invariant with respect to f, g, h, that is from Γ, can be treated

as an edge-coloured graph. Let R be a subdirect product of A1, . . . , An ∈ A. The
vertex set of the graph G(R) is R; a pair ⟨a,b⟩, a,b ∈ R and a ̸= b, is a red [yellow,
blue] edge of G(R) if and only if, for each i ∈ n, (a[i],b[i]) is a red [yellow, blue]
edge of G(Ai) or a[i] = b[i]. (Strongly) connectedness in G(R) is defined in the
same way as for G(A). We also introduce relations analogous to α, β, γ as follows:
for a,b ∈ R, ⟨a,b⟩ ∈ α [β, γ] iff (a[i],b[i]) ∈ α [β, γ], for all i ∈ n. To simplify the
notation we do not specify the set on which the relations α, β, γ are defined. Since
this set is always clear from the context, this does not lead to a confusion.
If (a, b) is a red edge and f(a, b) = b, or if a = b then we write a ≤ b. For relations

from Γ we use the same notation. We also use ≺ for the transitive closure of ≤.
We complete this section with several easy properties of operations f and p.
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Lemma 3.4 (P-Lemma). Let R ∈ Γ. Then for any x,y ∈ R
(1) x ≤ f(x,y);
(2) x is strongly rb-connected to p(y,x);
(3) x is strongly ry-connected to p(x,y).

Proof. (1) is straightforward.
(2) Let R be a subdirect product of A1, . . . , An ∈ A. We set a = f(x,y) and

b = p(y,a). By (1), x ≤ a, moreover, a[i] = x[i] for all i ∈ n such that x[i] ̸≤
y[i]. Therefore, b[i] = a[i] whenever y[i] ≤ x[i] = a[i], or x[i] ≤ y[i] = a[i], or
⟨y[i],x[i]⟩ ∈ β. Hence ⟨a,b⟩ ∈ γ, and x is strongly rb-connected to b. Finally,
noticing that b = p(y,x) we get the result.
The proof of (3) is quite similar.

A relation R ⊆ R1 × . . .×Rn, where for every i ∈ n the relation Ri is mi-ary, such
that prIiR = Ri, where Ii = {m1 + . . . +mi−1 + 1, . . . ,m1 + . . . +mi}, is said to
be a subdirect product of R1, . . . , Rn.

Lemma 3.5. Let R be a subdirect product of strongly rb-connected relations R1, R2.
If there exists an element a ∈ R1 such that {a} ×R2 ⊆ R, then R = R1 ×R2.

Proof. We prove that {c}×R2 ⊆ R for every c ∈ R1. Let C ⊆ R1 be the set of
all d ∈ R1, for which the property holds. Since {a} × R2 ⊆ R, C ̸= ∅. To derive
a contradiction, suppose that C ̸= R1. Since G(R1) is strongly rb-connected, there
are d ∈ C, c ∈ R1−C such that d ≤ c or ⟨d, c⟩ ∈ γ. Set B = {b ∈ R2 | (c,b) ∈ R}.
Again by the strongly rb-connectedness of G(R2), there are b ∈ B, a ∈ R2−B such
that b ≤ a or ⟨a,b⟩ ∈ γ. If d ≤ c or b ≤ a then we get a contradiction, because(

c
a

)
= f

((
d
a

)
,

(
c
b

))
∈ R if d ≤ c,

(
c
a

)
= f

((
c
b

)
,

(
d
a

))
∈ R if b ≤ a.

If ⟨d,c⟩,⟨b,a⟩ ∈ γ then

(
c
a

)
= h

((
c
b

)
,

(
d
b

)
,

(
d
a

))
∈ R, a contradiction again.

3.3 Orders, paths and maximal elements

In this subsection we introduce several concepts related to the natural partial order
on the set of strongly connected components of a graph. We study basic properties
of these concepts for graphs G(A), G(R), where A,R are the universe of a conser-
vative relational structure and a subdirect product of such universes, respectively,
which will be intensively used throughout the rest of the proof. Our main concern
is the relationship between various maximality conditions for the graph G(R) and
those for the graphs of factors of R.
Let R ∈ Γ. For strongly r- [ry-, rb] connected components B,C of G(R) we write

A ≤ B [A ≤ry B, A ≤rb B] if there are b ∈ B, c ∈ C such that b ≤ c [b ≤ c
or ⟨b, c⟩ ∈ β, and b ≤ c or ⟨b, c⟩ ∈ α]. Clearly, the family of strongly r- [ry-,
rb-] connected component endowed with the transitive closure ≺ [≺ry, ≺rb] of ≤
[≤ry, ≤rb] is a poset. We use ≤ and ≺ instead of ≤r and ≺r, because in what
follows ≤ry,≤rb,≺ry,≺rb are scarcely used, and we can simplify notation. The
maximal elements of this poset will be called r-maximal [ry-maximal, rb-maximal]
components. For every a ∈ R there is a r-maximal [ry-, rb-maximal] component C
such that if a belongs to a strongly r- [ry-, rb-] connected component B then B ≺ C
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[respectively, B ≺y C, B ≺b C]. For B ⊆ R we denote the filter {b ∈ R | there is
a ∈ B with a ≺ b} by F(B). Ry/rb-maximal components of G(R) are defined in a
similar way as strongly ry/rb-connected components of G(A), but instead of just any
strongly ry- or rb-connected component to obtain the next member of the sequence
we choose a maximal one. Formally, an ry/rb-maximal component of G(R) is the
first set in a sequence B1, C1, B2, C2, . . . which is both strongly ry- and strongly rb-
connected. Set B1 to be an ry-maximal component of G(R) if G(R) is not strongly
ry-connected and R1 otherwise; set C1 to be an rb-maximal component of G(R) if
G(R) is strongly ry-connected, but not strongly rb-connected. Then set Bi to be
an ry-maximal component of G(Ci−1), and Ci to be an rb-maximal component of
G(Bi).
Elements from an r-maximal [rb-maximal, ry-maximal] component of G(A), A ∈

A, are called r-maximal [rb-maximal, ry-maximal] elements. An element a of R ∈ Γ
is called r-maximal [rb-maximal, ry-maximal] if it belongs to an r- [rb-, ry-]maximal
component of G(R). In Section 5 we show that every element of R such that every
its component is r-maximal [rb-maximal] is also r-maximal [rb-maximal].
A sequence a1, . . . ,ak ∈ R is called an r-path if ai ≤ ai+1 for every i. It is called

an rb-path if, for any i, either ai ≤ ai+1 or ⟨ai,ai+1⟩ ∈ γ, and it is called an ry-path
if, for any i, either ai ≤ ai+1 or ⟨ai,ai+1⟩ ∈ β. First of all we show that if there is
a path in a factor of a subdirect product, then it can be expanded to a path in the
product.

Lemma 3.6 (Path Expansion Lemma). Let R be a subdirect product of rela-
tions R1 and R2, R1 m-ary, and (a,b) ∈ R.
(1) If a = a1,a2, , . . . ,ak ∈ R1 is an r-path, then there are b = b1,b2, . . . ,bk ∈ R2

such that (a1,b1), . . . , (ak,bk) is an r-path in R. Moreover, if b is r-maximal, then
the bi are also r-maximal and belong to the same r-maximal component.
(2) If a = a1,a2, , . . . ,ak ∈ R1 is an rb-path [ry-path], then there are b = b1,b2, . . . ,
b2k ∈ R2 such that (a1,b1), (a1,b2), (a2,b3), . . . , (ak,b2k) is an rb-path [ry-path]
in R. Moreover, if b is rb- [ry-] maximal, then the bi are also rb- [ry-] maximal
and belong to the same rb- [ry-]maximal component.

Proof. (1) Let c1, . . . , ck ∈ R2 be such that (a1, c1), . . . , (ak, ck) ∈ R, and c1 =

b. Then set b1 = c1, and

(
ai
bi

)
= f

((
ai−1

bi−1

)
,

(
ai
ci

))
. By the P-Lemma 3.4(1),

(ai−1,bi−1) ≤ (ai,bi). Finally, if b is r-maximal, then, as b1, . . . ,bk ∈ F(b), they
all belong to the same r-maximal component.
(2) Let c1, . . . , ck ∈ R2 be such that (a1, c1), . . . , (ak, ck) ∈ R, and c1 = b.

Then set b1 = c1. If ai ≤ ai+1 then we set

(
ai
b2i

)
=

(
ai

b2i−1

)
and

(
ai

b2i+1

)
=

f

((
ai

b2i−1

)
,

(
ai+1

ci+1

))
. If ⟨ai,ai+1⟩ ∈ γ, then set

(
ai
b2i

)
= f

((
ai

bi−1

)
,

(
ai+1

ci+1

))
and

(
ai

b2i+1

)
= f

((
ai
b2i

)
,

(
ai+1

ci+1

))
. Making use of the P-Lemma 3.4(2), it is

straightforward that the obtained tuples form an rb-path. Finally, if b is rb-
maximal, then, as b1, . . . ,b2k are strongly rb-connected with b, they all belong
to the same rb-maximal component.
For ry-paths the proof is quite similar.
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Our next goal is to prove that the components of an r-maximal tuple from a sub-
direct product are r-maximal elements. This goal will be achieved in the next two
lemmas and a corollary. For a subdirect product R1, . . . , Rn we will use Ii to denote
the set of coordinate positions of relation Ri.

Lemma 3.7 (Maximality Lemma). Let R be a subdirect product of R1, . . . , Rn.
(1) For any a ∈ R, there is b ∈ R such that a ≺ b, tuple b is r-maximal in R, and,
therefore, for any j ∈ n, prIjb is r-maximal. Moreover, for any maximal c ∈ R1

with prI1a ≺ c b can be chosen such that prI1b = prI1c.
(2) For any a ∈ R, there is b ∈ R such that a ≺rb b [a ≺ry b] tuple b is rb- [ry-
]maximal in R, and, therefore, for any j ∈ n, prIjb is rb- [ry-] maximal. Moreover,
for any rb- [ry-] maximal c ∈ R1 with prI1a ≺rb c [prI1a ≺ry c]b can be chosen
such that prI1b = prI1c.

Proof. (1) We prove by induction on j ≤ n that there is bj such that a ≺ bj

and prI1bj , . . . , prIjbj are r-maximal. In the base case for induction, j = 0, one
may set b0 = a.
Suppose that the claim is proved for j−1. Then there is a path prIjbj−1 = c1 ≤

c2 ≤ . . . ≤ ck such that ck is r-maximal. By the Path Expansion Lemma 3.6(1),
this path can be expanded to a path bj−1 = c′1 ≤ c′2 ≤ . . . ≤ c′k ∈ R. Since, for
any i ≤ j− 1, the element prIibj−1 is r-maximal and prIibj−1 = prIic

′
1 ≤ prIic

′
2 ≤

. . . ≤ prIic
′
k, the element prIic

′
k is also r-maximal, and bj can be chosen to be c′k.

Finally, bn is the required tuple.
If prI1a is maximal then prI1a and prI1b are in the same r-maximal component

and therefore connected with an r-path prI1b = b1,b2, . . . ,bk = prI1a. Let b =
b′
1 ≤ b′

2 ≤ . . . ≤ b′
l be its expansion. Since prIjc is r-maximal and c ≺ b′

1, . . . ,b
′
l,

the tuple b′
l is as required.

The proof for (2) is quite similar; we just use the Path Expansion Lemma 3.6(2)
instead of part (1) of the same lemma.

The next lemma shows that any r-maximal element of a factor of a subdirect prod-
uct can be expanded by r-maximal elements of the other factors.

Lemma 3.8 (Maximal Expansion Lemma). Let R be a subdirect product of
R1, . . . , Rn.

(1) For any r-maximal element d from R1, there is a such that prI1a = d and, for
any j ∈ n, prIjb is an r-maximal element from Rj.
(2) For any rb- [ry-] maximal element d from R1, there is an rb- [ry-] maximal a
such that prI1a = d and, for any j ∈ n, prIjb is an rb- [ry-] maximal element of
G(Rj).
(3) For any ry/rb-maximal element d from R1 there exists a ∈ R such that prI1a =
d and, for any j ∈ n, prIja is ry/rb-maximal element of Rj.

Proof. (1) and (2) follow straightforwardly from the Maximality Lemma 3.7(1),(2).
(3) To prove the result we construct a series of relations R = R0 ⊇ R1 ⊇ . . . ⊇

Rs such that prIjR
i is an ry-maximal component of G(prIjR

i−1) if i is odd, and

prIjR
i is an rb-maximal component of G(prIjR

i−1) if i is even. The relations will

also be chosen such that d ∈ prI1R
i. As R0 = R satisfies the conditions, let us
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suppose that Ri−1 is already defined. Then, if i is odd then, by the Maximality
Lemma 3.7(2), there is a ∈ Ri−1 such that prI1a = d and prIja belongs to an ry-

maximal component Bj of G(prIjR
i−1). Analogously, if i is even then, by the same

result, there is a ∈ Ri−1 such that prI1a = d and prIja belongs to an rb-maximal

component Cj of G(prIjR
i−1). We set

Ri =

{
{b ∈ Ri−1 | prIjb ∈ Bj , 2 ≤ j ≤ k}, if i is odd,
{b ∈ Ri−1 | prIjb ∈ Cj , 2 ≤ j ≤ k}, if i is even

By what was proved above prIjR
i = Bj if i is odd and prIjR

i = Cj if i is even.

For a certain s we get Rs = Rs+1. This means that, for any j ≥ 2, G(prIjR
s) is

both strongly ry- and strongly rb-connected. Moreover, prIjR
s is an ry/rb-maximal

component of G(prIjR). Since d ∈ prI1R
s, the lemma is proved.

It is an easy exercise combining the Maximality Lemma 3.7 and the Maximal Ex-
pansion Lemma 3.8 to show that every maximal component of a subdirect product
is a subdirect product of maximal components of the factors.

Corollary 3.9. If R is a subdirect product of R1, . . . , Rn, then every r- [rb-,
ry-, ry/rb-] maximal component of G(R) is a subdirect product of r- [rb-, ry-, ry/rb-]
maximal components of G(R1), . . . ,G(Rn).

Indeed, if, say, a tuple a is r-maximal, but prI1a is not, then there exists b ∈ R1

such that a ≺ b and prI1b is r-maximal. Clearly, b ̸≺ a; a contradiction.
Unfortunately, Corollary 3.9 does not guarantee that any tuple of elements from

maximal components also belongs to a maximal component of the subdirect prod-
uct.
The last result of this section amounts to say that if one of the factors of a

subdirect product is strongly connected, then any element from this factor can be
expanded by an element from any maximal component of the second factor.

Lemma 3.10. Let R be a subdirect product of relations R1 and R2.
(1) If G(R2) is strongly r-connected, then, for any r-maximal component B of G(R1)
and any a ∈ R2, there is a′ ∈ B such that (a′,a) ∈ R.
(2) If G(R2) is strongly rb-connected, then, for any rb-maximal component B of
G(R1) and any a ∈ R2, there is a′ ∈ B such that (a′,a) ∈ R.
(3) If G(R2) is strongly ry-connected, then, for any ry-maximal component B of
G(R1) and any a ∈ R2, there is a′ ∈ B such that (a′,a) ∈ R.
(4) If G(R2) is strongly ry/rb-connected, then, for any ry/rb-maximal component
B of G(R1) and any a ∈ R2, there is a′ ∈ B such that (a′,a) ∈ R.

Proof. (1) Let B ⊆ R1 be an r-maximal component and DB = {a ∈ R2 |
(a′,a) ∈ R for a certain a′ ∈ B}. Suppose the contrary, DB ̸= R2. Since G(R2)
is strongly r-connected, there are a ∈ DB and b ∈ R2 − DB such that a ≤ b.
There also exist d, c ∈ R1 with (c,b), (d,a) ∈ R and d ∈ B, c ∈ R1 − B. By the

P-Lemma 3.4(1), we get

(
d′

b

)
= f

((
d
a

)
,

(
c
b

))
∈ R and d′ ∈ B. Hence b ∈ DB ,

a contradiction.
(2) Let B ⊆ R1 be an rb-maximal component. Suppose that DB ̸= R2. Since

G(R2) is strongly rb-connected, there are a ∈ DB and b ∈ R2 − DB such that
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a ≤ b or ⟨a,b⟩ ∈ γ. There also exist d, c ∈ R1 with (c,b), (d,a) ∈ R and

d ∈ B, c ∈ R1 − B. If a ≤ b, then we get

(
d′

b

)
= f

((
d
a

)
,

(
c
b

))
∈ R,

where d′ = f(d, c) ∈ B. Hence b ∈ DB , a contradiction. If ⟨a,b⟩ ∈ γ then(
d′

b

)
= p

((
c
b

)
,

(
d
a

))
∈ R, and, by the P-Lemma 3.4(2), d′ = p(c,d) ∈ B, a

contradiction again.
For (3) the proof is quite similar.
(4) Let B be a strongly ry/rb-connected component resulted from the sequence

C0 = B0 = R1, B1, C1, . . . , Bk, Ck = B where Bi is an ry-maximal component
of G(Ci−1), and Ci is a rb-maximal component of G(Bi). We prove by induction
that for any j ∈ k, DBj = DCj = R2, where DC for C ⊆ R1 denotes the set
{a ∈ R′ | (a′,a) ∈ R for a certain a′ ∈ C}. The base case for induction, j = 0,
is obvious. Suppose that the required condition is proved for j − 1. Applying
Lemma 3.10(2),(3) to R ∩ (Cj−1 ×DCj−1) and R ∩ (Bj ×DBj ), we get DBj = R′

and DCj = R′, as required.

4. DOUBLE-CONNECTED RELATIONS

In this section we consider subdirect products of sets from A that are both strongly
ry-connected and strongly rb-connected. We show that such products satisfy some
properties that can be used when solving corresponding constraint satisfaction prob-
lems. The main result of this section, the Hereditarily Double Connected Proposi-
tion 4.11, allows one to solve problems over hereditarily ry/rb-connected domains
(for a definition see Section 4.3), and together with the Single Colour Proposi-
tion 3.3 constitutes the base case for our recursive algorithm. In some statements
we will use weaker types of connectedness.
Some parts of this section are very close to certain parts of [Bulatov and Jeavons

2000; Bulatov 2006a]. A subalgebra of a relation R is any subset of R, which belongs
to Γ = MInv({f, g, h}). If R is a unary relation, that is a set from A, then every its
subset is a subalgebra.
A congruence of an n-ary relation R is an equivalence relation on R invariant

under f, g, h. Note that when talking about invariance properties we consider a
congruence as a 2n-ary relation. A congruence divides R up into subsets that are
called congruence classes. It is also not hard to see that, since f, g, h are idempotent,
every congruence class is a subalgebra. Indeed, if θ is a congruence of R and a,b
belong to the same class of θ then

f

((
a
a

)
,

(
a
b

))
=

(
a

f(a,b)

)
∈ θ,

that shows that f(a,b) belongs to the same class. In a similar way one can check
that this class is also invariant under g and h. The following lemma is an easy
observation.

Lemma 4.1. Let θ be a congruence of domain A.

(1) If G(A) is (strongly) r- [ry-, rb-, ry/rb-] connected then so is G(A/θ).
(2) If B,C are different classes of θ and b1, b2 ∈ B, c1, c2 ∈ C and b1 ≤ c1 [c1 ≤ b1,
⟨b1, c1⟩ ∈ β, ⟨b1, c1⟩ ∈ γ], then b2 ≤ c2 [c2 ≤ b2, ⟨b2, c2⟩ ∈ β, ⟨b2, c2⟩ ∈ γ].
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Relation R is said to be simple if the equality relation and the total relation are the
only congruences of R. The congruence class containing element a will be denoted
by aθ. A proper congruence of R maximal with respect to inclusion is called a
maximal congruence of R. Notice that if R is a subdirect product of A1, . . . , An,
then a congruence can always be chosen in the following way. Take a congruence η
of A1 (if A1 is simple then η is the equality relation) and set ⟨a,b⟩ ∈ θ for a,b ∈ R
if and only if ⟨a[1],b[1]⟩ ∈ η. Such a congruence is called a projection congruence.
If η is chosen to be a maximal congruence of A1, then θ is a maximal congruence
of R called a maximal projection congruence. For a maximal projection congruence
θ every θ-class corresponds to a class of η, and, thus, the set R/θ of θ-classes can
be viewed as the set R1/η of classes of η. Therefore we may think of R/θ as of a

unary relation. We shall assume that such a relation belongs to A.
Section 4.1, studies the structure of subdirect products of simple strongly rb-

connected relations. The main result of that section, the Almost Trivial Propo-
sition 4.7, claims that such products are almost trivial relations, that is direct
products of graphs of bijective mappings. In order to prove this result we show
that if such a subdirect product has no binary projections which are graphs of
mappings then it is a direct product of its factors (the Simple Double Connected
Lemma 4.2 for products of two relations, Lemma 4.5 for products of 3 relations,
and Lemma 4.6 for the general case). In Section 4.2, we prove a similar result for a
subdirect product, in which only one of the factors is a simple relation: Lemma 4.8
shows that such a relation is a direct product of its simple factor to the rest of
the relation. This result is used in Section 4.3 to prove that CSPs over hered-
itarily ry/rb-connected domains (for a definition see Section 4.3) have relational
width 3 (the Hereditarily Double Connected Proposition 4.11). Finally, in Sec-
tion 5.5, we show these results help to handle CSPs whose domains are strongly
ry/rb-connected, but not hereditarily ry/rb-connected.

4.1 Simple red-blue-connected relations

Our first goal is to show that a subdirect product of simple strongly r- [rb-, ry/rb-]
connected relations is of a very restricted form. The graph of a mapping π:A→ B
is the binary relation {(a, π(a)) | a ∈ A}.
Let R be a subdirect product of A1, . . . , An ∈ A and θ its projection congruence

onto the first coordinate. If R is simple then θ is the equality relation, which means
that there are πi:A1 → Ai, i ∈ {2, . . . , n}, such that R = {(a, π2(a), . . . , πn(a)) |
a ∈ A1}. Therefore in a simple relation if, say, a[1] ≤ b[1] then a[i] ≤ b[i] for all
coordinate positions i. Clearly the similar property holds for all other relations
=, β, γ. Therefore, we always can treat a simple relation as a unary relation.

Lemma 4.2 (Simple Double Connected Lemma). Let R be a subdirect prod-
uct of simple domains R1, R2 such that G(R1),G(R2) are strongly rb-connected.
Then R is either the graph of a bijective mapping from R1 to R2, or R1 ×R2.

Proof. Notice first, that if R is the graph of a mapping π : R1 → R2, then the
relation θ: (a,b) ∈ θ ⇐⇒ π(a) = π(b) is a congruence of R1 and, since R1 is
simple, π is a bijection. The same holds if R is the graph of a mapping from R2

onto R1.
Suppose that R is neither R1 × R2 nor the graph of a bijective mapping, and

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.



26 · Andrei Bulatov

that |R1|+ |R2| is the smallest number such that there exists a subdirect product
of simple strongly rb-connected relations with this property. We show that there is
b ∈ R1 [or b ∈ R2] such that {b} ×R2 ⊆ R [respectively, R1 × {b} ⊆ R].

Claim 1. For any D ⊂ R1 [D ⊂ R2], there is a ∈ R2 [respectively, a ∈ R1] and
b ∈ D, c ∈ R1 −D [respectively, b ∈ D, c ∈ R2 −D] such that (b,a), (c,a) ∈ R
[respectively, (a,b), (a, c) ∈ R].

We consider the relation η on R1 defined as follows: (a1,a2) ∈ η if and only if
there is b such that (a1,b), (a2,b) ∈ R. Obviously, η belongs to Γ and it is reflexive
and symmetric. Since R is not the graph of a mapping, there are (d1, e), (d2, e) ∈ R
with d1 ̸= d2, and η is not the equality relation. The transitive closure θ of η is
an equivalence relation, and therefore it is a congruence of R1. Since R1 is simple,
θ = R1 ×R1.
Now, for any D ⊂ R1 and any a ∈ R1 − D, c ∈ D, we have ⟨a, c⟩ ∈ θ. Hence,

there exists a sequence a = b0,b1, . . . ,bk = c such that ⟨bi,bi+1⟩ ∈ η. For some
i, bi ∈ D and bi+1 ∈ R1 −D, and this pair satisfies the conditions of the claim.

For a ∈ R1,b ∈ R2 by Ba, Cb we denote the sets {c | (a, c) ∈ R}, {c | (c,b) ∈ R}
respectively.
Take an arbitrary a ∈ R1, set E1 = {a}, and, for each i > 0, set

Ei+1 =

{ ∪
b∈Ei

Bb if i is odd∪
b∈Ei

Cb if i is even.

By Claim 1, for each i > 0, Ei ⊂ Ei+2 unless Ei = R1 or Ei = R2. Therefore,
for some l > 1, El = R1 or El = R2. Without loss of generality let El = R2, and
El−1 ̸= R1, El−2 ̸= R2.
By the mentioned property of simple relations, for each i ∈ l, Ei is a subalgebra

of R1 or R2.
Thus, El−1 is a proper subalgebra of R1 such that

∪
b∈El−1

Bb = R2.
Define a sequence S0, . . . , Sk of sets and a sequence of congruences θ0, . . . , θk

where θi is a congruence of Si through the following rules.
1) S0 is a certain rb-maximal component of G(El−1).
2) Suppose that Si is already defined. Let θi be a maximal congruence of Si or the
identity relation if Si is simple.
3) If Si is a singleton, then k = i and the process stops. Otherwise set Si+1 to be
an rb-maximal component of a class of θi containing an element b with |Bb| > 1
(as we shall prove later, such an element exists).
Further, set S′

i = Si/θi
and

R(i) = {(a,b) | a = cθi where c ∈ Si, (c,b) ∈ R} ⊆ S′
i ×R2.

We prove that, for every i, (i) for any b ∈ R2 there exists a ∈ Si such that
(a,b) ∈ R, (ii) there exists c ∈ Si such that |Bc| > 1, and (iii) R(i) = S′

i ×R2.
If i = 0, then (i) holds by the choice of El−1, and Lemma 3.10. Furthermore,

there is a ∈ El−1 such that |Ba| > 1. If a belongs to an rb-maximal component
of G(El−1) then (ii) can be satisfied. Otherwise let us suppose R ∩ (S0 × R2) is
the graph of a mapping π:S0 → R2. Take a ∈ El−1 − S0 and b, c ∈ R2 such
that (a,b), (a, c) ∈ R. Since R2 is strongly rb-connected we may assume that b, c
are such that c ≤ b or ⟨b, c⟩ ∈ γ. Indeed, if c ̸= f(c,b) then c ≤ f(c,b) and b

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.



Complexity of Conservative Constraint Satisfaction Problems · 27

can be chosen to be f(c,b). If b ̸= f(b, c) then b, c can be chosen to be f(b, c)
and b, respectively. In the remaining cases if ⟨b, c⟩ ̸∈ γ then ⟨b, p(c,b)⟩ ∈ γ,
and again we can obtain a required pair choosing c to be p(c,b). Let also π−1(c)
denote any preimages of c; then (π−1(c), c) ∈ R. By the P-Lemma 3.4(2) the tuple
d = p(a, π−1(c)) belongs to the same rb-maximal component as π−1(c). Hence,(

d
c

)
= p

((
a
c

)
,

(
π−1(c)

c

))
∈ R, and

(
d
b

)
= p

((
a
b

)
,

(
π−1(c)

c

))
∈ R.

Therefore, R(0) is not the graph of a mapping, and, since S′
0 is a simple relation

and |S′
0|+ |R2| < |R1|+ |R2|, we get R(0) = S′

0 ×R2.
Suppose that for i− 1 the properties (i), (ii), (iii) hold. Then, for any a′ ∈ S′

i−1

we have {a′} × R2 ⊆ R(i−1), that is, by Lemma 3.10(2), for every b ∈ R2 there
exists a ∈ Si such that (a,b) ∈ R, that proves (i) for i. By (ii) for i − 1 the
θi−1-class D containing Si contains an element b such that |Bb| > 1. Arguing as
in the previous paragraph b can be chosen to be in Si. Finally, as S′

i is simple we
have R(i) = S′

i ×R2.
We have proved R(k) = S′

k × R2. Since Sk is a singleton, say, Sk = {b} this
implies Sk = S′

k, that is {b} ×R2 ⊆ R.
To complete the proof we just apply Lemma 3.5.

Observing that any strongly r- and ry/rb-connected graph is also strongly rb-
connected we get the following

Corollary 4.3. Let R be a subdirect product of simple relations R1, R2 such
that G(R1),G(R2) are strongly r-connected [strongly ry/rb-connected]. Then R is
either the graph of a bijective mapping from R1 to R2, or R1 ×R2.

In fact, the conditions of the Simple Double Connected Lemma 4.2 can be relaxed.

Corollary 4.4 (Semi-Simple Double Connected Corollary). Let R be
a subdirect product of relations R1, R2 where R2 is simple and G(R2) is strongly
rb-connected [strongly r-, strongly ry/rb-connected] and R is not the graph of any
mapping π:R1 → R2. Then there exists a ∈ R1 such that {a} ×R2 ⊆ R.

Proof. If R1 is simple then we apply the Simple Double Connected Lemma 4.2.
Otherwise the second part of the proof of Lemma 4.2 can be easily transformed.
We use the same notation, Si, θi, S

′
i and R(i), but this time S0 is an rb-maximal

component of R1. Note that we do not need the first part of the proof of Lemma 4.2.
The only place to be changed is the proof of (ii). Again, suppose that R∩ (S0×R2)
is the graph of a mapping π:S0 → R2. Let a ∈ R1 be such that |Ba| > 1 and
b, c ∈ Ba. Let also b′ = π−1(b), c′ = π−1(c), and let d ∈ R2 be such that

d ≤ b or ⟨b,d⟩ ∈ γ, and d′ = π−1(d). If d ̸= c we consider the tuple

(
e′

b

)
=

p

((
a
b

)
,

(
d′

d

))
∈ R. By the P-Lemma 3.4(2), d′ is strongly rb-connected with

e′, therefore, e′ belongs to the same rb-maximal component as d′, and, hence,

π(e′) = b. Then

(
e′

e

)
= p

((
a
c

)
,

(
d′

d

))
∈ R. As R2 is simple, e ∈ {c,d}.

However, e = π(e′) = b, a contradiction.
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If d = c, and so c ≤ b or ⟨c,b⟩ ∈ γ, then(
p(a, π−1(c)

c

)
= p

((
a
c

)
,

(
π−1(c)

c

))
,

(
p(a, π−1(c))

b

)
= p

((
a
b

)
,

(
π−1(c)

c

))
∈ R,

a contradiction again.

Our next step is to prove a similar property of ternary relations (subdirect prod-
ucts of three simple relations). As we shall use the results of this subsection in
Section 5, we prove them in a slightly stronger form than it is necessary for the
case of ry/rb-connected domains.

Lemma 4.5. Let R be a subdirect product of simple relations R1, R2, R3 such that
their graphs are strongly rb-connected and each of them contains a red or yellow
edge. If Ri ×Rj ⊆ pri,jR for every i, j ∈ {1, 2, 3}, then R = R1 ×R2 ×R3.

Proof. As all the relations are simple, we may assume them to be unary.
Suppose without lost of generality that |R1| ≤ |R2| ≤ |R3|. For a ∈ R1 set
Ra = {(b2,b3) | (a,b2,b3) ∈ R}. Notice that, for every a ∈ R1, Ra is a sub-
algebra of pr2,3R, and, since pr1,2R = R1 ×R2, pr1,3R = R1 ×R3, the relation Ra

is a subdirect product of R2, R3. By the Simple Double Connected Lemma 4.2, Ra

is either the graph of a bijective mapping or R2 ×R3.
Let us assume Ra = R2 × R3 for a certain a ∈ R1. Since R2 × R3 and R1 are

strongly rb-connected, by Lemma 3.5, R = R1 ×R2 ×R3.
Now suppose that, for every a ∈ R1, the set Ra is the graph of a bijective mapping

πa:R2 → R3. This immediately implies |R2| = |R3|, let us denote this number by
k, and as pr2,3R = R2 ×R3, there are at least k different relations of the form Ra.
Therefore, |R1| = k and |Ra| = k for any a ∈ R1. Moreover, |pr2,3R| = k2, which
means Ra ∩ Ra′ = ∅ whenever a ̸= a′, a,a′ ∈ R1. The equivalence relation ∼ on
pr2,3R where (a,b) ∼ (c,d) iff (a,b), (c,d) ∈ Re for some e ∈ R1, is a congruence
of pr2,3R = R2 ×R3.
Since there is a bijective mapping between R2 and R3, R2 × R3 can be treated

as a subalgebra of R2 ×R2. An element a of a relation S is said to be absorbing if
whenever t(x, y1, . . . , yn) is an (n+ 1)-ary polymorphism of Γ such that t depends
on x and (b1, . . . ,bn) ∈ Sn, then t(a,b1, . . . ,bn) = a. A congruence θ of S2

is said to be skew if it is not a projection congruence, that is the kernel of no
projection mapping of S2 onto its factors. R2 is a simple and all polymorphisms
of Γ are idempotent, therefore, the results of [Kearnes 1996] can be rephrased in
such a way that one of the following holds: (a) there is a finite ring K and an
operation + of an Abelian group on R2 such that every polymorphism of Γ on
R2 can be represented as an operation of a module with group operation + and
ring K; (b) R2 has an absorbing element; or (c) R2

2 has no skew congruence. Case
(a) is impossible, because R2 contains a red or yellow edge and therefore has a
2-element subalgebra with a semilattice or majority term operation, but no module
has such a subalgebra. If in case (b) a is an absorbing element, then f(a,b) = a
for any b ∈ R2 that contradicts strongly rb-connectedness. Finally, case (c) is also
impossible, because ∼ is a skew congruence.

Lemma 4.6. Let R be a subdirect product of simple relations R1, . . . , Rn such that
their graphs are strongly rb-connected and each of them contains a red or yellow
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edge. If Ri ×Rj ⊆ pri,jR for every i, j ∈ n, then R = R1 × . . .×Rn.

Proof. We prove the lemma by induction. The induction base n = 2, 3 is proved
in Lemmas 4.2 and 4.5. Suppose that the lemma holds for each number less than n.
Take a ∈ R1 and denote by Ra the set {(b2, . . . ,bn) | (a,b2, . . . ,bn) ∈ R}. By
Lemma 4.5, R1×Ri×Rj ⊆ pr1,i,jR for every 2 ≤ i, j ≤ n. Then Ri×Rj ⊆ pri,jRa

and by induction hypothesis Ra = R2× . . .×Rn. As this holds for any a ∈ R1, the
lemma is proved.

A relation R ⊆ R1× . . .×Rn is said to be almost trivial if there exists a partition of
the set {1, . . . , n} with classes I1, . . . , Ik, such that R = prI1R× . . .× prIkR where
prIjR = {(ai1 , πi2(ai1), . . . , πil(ai1)) | ai1 ∈ Ri1}, Ij = {i1, . . . , il}, for certain
bijective mappings πi2 :Ri1 → Ri2 , . . . , πil :Ri1 → Ril .

Proposition 4.7 (Almost Trivial Proposition). A subdirect product of sim-
ple relations such that their graphs are strongly rb-connected and each of them con-
tains a red or yellow edge is an almost trivial relation.

Proof. Let R be a subdirect product of simple strongly rb-connected relations
R1, . . . , Rn. We prove the proposition by induction on n. For n = 1 the result holds
trivially.
We now prove the induction step. By Lemma 4.2, for any pair i, j ∈ n the

projection pri,jR is either Ri × Rj , or the graph of a bijective mapping. Assume
that there exist i, j such that pri,jR is the graph of a mapping π:Ri → Rj . By
induction hypothesis prn−{j}R is almost trivial, and therefore can be represented
in the form prn−{j}R = prI1R× . . .×prIkR where I1∪ . . .∪ Ik = n−{j}. Suppose,
for simplicity, that i is the coordinate position in I1, that is,

prI1R = {(ai1 , . . . ,aik ,ai) | ai1 ∈ Ri1 , ais = πs1(ai1) for s ∈ {2, . . . , k}, ai = πi(ai1)}.

Then

prI1∪{j}R = {(ai1 , . . . , aik , ai, aj) | ai1 ∈ Ri1 , ais = πs1(ai1)

for s ∈ {2, . . . , k}, ai = πi(ai1), aj = ππi(ai1)},

and we have R = prI1∪{j}R× . . .× prIkR, as required.
Finally, if pri,jR = Ri×Rj for all i, j ∈ n, then the result follows by Lemma 4.6.

4.2 General double-connected relations

In this section we partially generalize Proposition 4.7 by showing that a subdirect
product in which only one of the factors is a simple relation is a direct product of
its simple factor to the rest of the relation.

Lemma 4.8 (Double Connected Rectangularity Lemma). Let R be a sub-
direct product of strongly ry/rb-connected relations R1, . . . , Rn where R1 is simple,
G(pr2,...,nR) is strongly ry/rb-connected, and pr1,iR = R1 × Ri for i ∈ {2, . . . , n},
Then R = R1 × pr2,...,nR.

Proof. The case n = 2 is trivial. Consider the case n = 3. We proceed by
induction on |R1| + |R2| + |R3|. The trivial case |R1| + |R2| + |R3| = 3 and the
case, in which R1, R2, R3 are simple, give the base case for induction. Note that
in the latter case the result follows from Lemma 4.5. Take a maximal projection
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congruence θ of R3, and a θ-class C = dθ. Then set R′
3 = R3/θ, and consider

R′ ⊆ R1 ×R2 ×R3/θ, R
′′ ⊆ R such that

R′ = {(a[1],a[2],a[3]/θ) | (a[1],a[2],a[3]) ∈ R}
R′′ = {(a[1],a[2],a[3]) | (a[1],a[2],a[3]) ∈ R,a[3] ∈ C}.

Set also R′′′ to be an ry/rb-maximal component of G(R′′), and C = pr3R
′′′. In-

duction hypothesis implies that R′ = R1×pr2,3R
′. Note that R′

3 is strongly ry/rb-
connected. By Corollary 4.4 and Lemma 3.5, two cases are possible: pr2,3R

′ = R2×
R3/θ, or there is a mapping π : R2 → R′

3 such that pr2,3R
′ = {(a, π(a)) | a ∈ R2}.

Case 1. pr2,3R
′ is the graph of a mapping π:R2 → R3/θ.

By Corollary 3.9, B = pr2R
′′′ is an ry/rb-maximal component of G(B), B =

π−1(dθ). Since for each (a,b) ∈ R1 ×B ⊆ pr1,2R there is c ∈ C with (a,b, c) ∈ R,

we have pr1,2R
′′ = R1 ×B. Since R1 ×B is a strongly ry/rb-connected component

of G(R1 ×B), by Lemma 3.10(4), pr1,2R
′′′ = R1 ×B.

Since |R1| + |B| + |C| < |R1| + |R2| + |R3|, and G(pr2,3R′′′) is strongly ry/rb-
connected, inductive hypothesis implies R1 × pr2,3R

′′′ ⊆ R′′′. In particular, there
is (a,b) ∈ pr2,3R

′′′ ⊆ pr2,3R such that R1 × {(a,b)} ⊆ R. To finish the proof we
just apply Lemma 3.5.

Case 2. pr2,3R
′ = R2 ×R3/θ.

Since |R1|+ |R2|+ |R3/θ| < |R1|+ |R2|+ |R3|, R3/θ is simple, and pr1,2R = R1×
R2, by inductive hypothesis, R′ = R1 ×R2 ×R3/θ. Therefore, pr1,2R

′′ = R1 ×R2.
By Lemma 3.10(4), since G(R1 ×R2) is strongly ry/rb-connected, pr1,2R

′′′ = R1 ×
R2. Then we argue as in Case 1.

Let now n > 3. Then pr1R × pr3,...,nR ⊆ pr1,3,...,nR. Denoting pr3,...,nR by R′

we have R ⊆ R1×R2×R′, and the conditions of the lemma hold for this subdirect
product. Thus R = R1 × pr2,...,nR as required.

The Double Connected Rectangularity Lemma 4.8 allows us to prove that a
subdirect product of strongly ry/rb-connected domains is strongly ry/rb-connected.

Proposition 4.9 (Double Connectedness Proposition). Let R be a sub-
direct product of A1, . . . , An ∈ A and G(Ai) is strongly ry/rb-connected for every i.
Then G(R) is strongly ry/rb-connected.

Proof. We proceed by induction on n. The base case for induction, n = 1, is
obvious, so suppose that the result is true for n−1, that is G(R′), R′ = pr{1,...,n−1}R,
is strongly ry/rb-connected. Let us assume first that An is simple. Let us also
denote

W = {i ∈ {1, . . . , n− 1} | pri,nR is the graph of a mapping}.

If W = ∅ then the result follows from the Double Connected Rectangularity
Lemma 4.8, so suppose that W ̸= ∅. In this case, every tuple a ∈ R′ has a
unique extension a ∈ An to a tuple (a, a) ∈ R. If a,b ∈ R′ are such that a ≤ b [or
⟨a,b⟩ ∈ β, or ⟨a,b⟩ ∈ γ] then so are their extensions a, b ∈ An. Indeed, if a ≤ b

and a ̸≤ b then

(
b
a

)
= f

((
a
a

)
,

(
b
b

))
∈ R, a contradiction. This implies the

strongly ry/rb-connectedness of G(R).
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Let us assume now that An is not simple, θ is a maximal congruence of An,
and R̃ denotes the relation {(a1, . . . , an−1, a

θ
n) | (a1, . . . , an−1, a) ∈ R}. Also let W

denote the set {i ∈ {1, . . . , n− 1} | pri,nR̃ is the graph of a mapping πi}. Consider

the relation
˜̃
R = {(aθ11 , . . . , a

θn−1

n−1 , a
θ
n) | (a1, . . . , an−1, an) ∈ R}, where θi denotes

the equality relation on Ai if i ̸∈ W and θi = kerπi otherwise. Since for any

i, j ∈ W ∪ {n} the ith and jth components of any tuple from
˜̃
R are related with

a bijective mapping, G( ˜̃R) is strongly ry/rb-connected if and only if G(prn−W
˜̃
R) is

strongly ry/rb-connected. IfW ̸= ∅ then the graph of the latter relation is strongly
ry/rb-connected by induction hypothesis, and if W = ∅ then it is so by what was
proved in the case when An is simple. Without loss of generality let us assume that
W = {k+1, . . . , n− 1}. The Double Connected Rectangularity Lemma 4.8 implies

that
˜̃
R = prkR× prW∪{n}

˜̃
R.

Thus, for any a,b ∈ R, there is an rb-path [an ry-path] from aθ = (a[1], . . . ,a[k],
(a[k+1])θk+1 , . . . , (a[n− 1])θn−1 , (a[n])θ) to bθ = (b[1], . . . ,b[k], (b[k+1])θk+1 , . . . ,
(b[n− 1])θn−1 , (b[n])θ). Note that since |An/θ| > 1 we may assume that (a[n])θ ̸=
(b[n])θ. Indeed, if (a[n])θ = (b[n])θ then choose c ∈ R such that (a[n])θ = (b[n])θ ̸=
(c[n])θ and prove that there is an rb-path [an ry-path] from a to c and from c to
b. Let prka = c0, c1, . . . , cl = prkb be an ry-path [an rb-path]. The equality˜̃
R = prkR×prW∪{n}

˜̃
R and the Path Expansion Lemma 3.6(2) imply that this path

can be expanded to an ry-path [an rb-path] a = c′0, c
′
1, . . . , c

′
2l such that (c′0[i])

θi =
. . . = (c′2l[i])

θi for all i ∈ W (and therefore (c′0[n])
θ = . . . = (c′2l[n])

θ). Now,
let prW∪{n}c

′
2l = d0,d1, . . . ,dm = prW∪{n}b be a sequence of tuples such that

dθ
0, . . . ,d

θ
m is an ry-path [an rb-path] in G(prW∪{n}

˜̃
R), elements (di[n])

θ, (di+1[n])
θ

are different for any i ∈ {0, . . . ,m − 1}. Since
˜̃
R = prk × prW∪{n}

˜̃
R, we have

(prkb,d
θ
i ) ∈ ˜̃

R for all i ∈ m. Therefore, these tuples can be chosen such that
d′
i = (prkb,di) = (c2l,di) ∈ R for i ∈ {0, . . . ,m}. It is not hard to see that,

as prj,nR̃ is the graph of a mapping for any j ∈ W and (di[n])
θ ̸= (di+1[n])

θ, if

(di[n])
θ ≤ (di+1[n])

θ [⟨(di[n])
θ, (di+1[n])

θ⟩ ∈ β, ⟨(di[n])
θ, (di+1[n])

θ⟩ ∈ γ], then
di[j] ≤ di+1[j] [⟨di[j],di+1[j]⟩ ∈ β, ⟨di[j],di+1[j]⟩ ∈ γ] and di[n] ≤ di+1[n]
[⟨di[n],di+1[n]⟩ ∈ β, ⟨di[n],di+1[n]⟩ ∈ γ]. Thus, d0, . . . ,dm is an ry-path [an
rb-path], and thus c′0, c

′
1, . . . , c

′
2l,d

′
0,d

′
1, . . . ,d

′
m is an ry-path [an rb-path] from a

to b. The proposition is proved.

4.3 Finding a solution to problems of bounded relational width

In this section we use the Double Connected Rectangularity Lemma 4.8 to show
that a wide class of constraint satisfaction problems over strongly ry/rb-connected
domains has relational width 3.
We say that A ∈ A is hereditarily ry/rb-connected if G(A) is strongly ry/rb-

connected and either A is simple, or for any maximal congruence θ of A and any
class B of θ, the set of r-maximal elements of G(B) is hereditarily ry/rb-connected.
Let P = (V ;A; δ; C) be a problem instance from MCSP(Γ) such that Aδ(w) = Sw

is hereditarily ry/rb-connected for all w ∈ V (recall that Sw denotes the set of all
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partial solutions on w). Let also v ∈ V and ξ be a maximal congruence of Sv.
For each w ∈ V − {v}, consider the sets Sv/ξ = {aξ | a ∈ Sv} and Sv,w/ξ =

{(aξ, b) | (a, b) ∈ Sv,w}. By the Semi-Simple Double Connected Corollary 4.4
and Lemma 3.5, Sv,w/ξ is either the graph of a mapping πw : Sw → Sv/ξ or

Sv,w/ξ = Sv/ξ × Sw. A variable w that satisfies the former condition will be

called connected to v, ξ. Sometimes we shall use this term even if G(Sv),G(Sw)
are not strongly ry/rb-connected. In this case this simply means that Sv,w/ξ is

the graph of a mapping from Sw to Sv/ξ. For a class D of ξ and the set B of r-

maximal elements of G(D), we define the problem Pv,ξ,B to be (V ;A; δ′; C′), where
Aδ′(w) is Sw if Sξ

v,w = Sξ
v ×Sw or it is the set of r-maximal elements of G(π−1

w (D))
otherwise and, for every C = ⟨s,R⟩ ∈ C, there is C ′ = ⟨s,R′⟩ ∈ C′ such that
R′ = {a | a ∈ R,a[w] ∈ Aδ′(w) for w ∈ s}.

Lemma 4.10. If P is 3-minimal then Pv,ξ,B is also 3-minimal, and the set of its
partial solutions S ′

v on {v} equals Aδ′(v) for any v ∈ V .

Proof. For any constraint C ′ ∈ ⟨s,R′⟩ ∈ C′, we have prwR
′ = Aδ′(w) for all

w ∈ s. Indeed, if w is connected to v, ξ and a ∈ Aδ′(w), then for any a ∈ R
with a[w] = a we have a[u] ∈ π−1

u (D) due to 3-minimality of P. By the Maximal
Expansion Lemma 3.8(1), there is b ∈ R such that b[w] = a and b[u] ∈ Aδ′(u) for
variables u connected to v, ξ. If w is not connected to v, ξ and a ∈ Aδ′(w) = Aδ(w),
then there is a ∈ R with a[w] = a and a[u] ∈ π−1

u (D) for variables u connected
to v, ξ. Then we again use the Maximal Expansion Lemma 3.8(1). Therefore,
S ′
w = Aδ′(w).
For U = {u1, u2, u3} ⊆ V , set TU = SU ∩ (S ′

1 × S ′
2 × S ′

3), where SU is the
set of partial solutions of P on U and Si = Aδ′(ui). By the Maximal Expansion
Lemma 3.8(3), TU is non-empty. Clearly, for any C ′ = ⟨s,R′⟩ ∈ C′, we have
prs∩UR

′ ⊆ prs∩UTU . Therefore, if we prove the reverse inclusion then we get both,
the equality prs∩UR

′ = prs∩UTU , and the 3-minimality of P ′.
Let W denote the set consisting of v and all w ∈ V such that Sv,w/ξ is the graph

of a mapping. Let S ′′
w, for w ∈ W , denote the set π−1

w (B), and, for w ̸∈ W , the
set Sw. Note that, for any w1, w2 ∈ W and any a ∈ Sw1,w2 , if a[w1] ∈ S ′′

w1
then

a[w2] ∈ S ′′
w2

. Indeed, let us consider b ∈ Sv,w1,w2 such that b[w1] = a[w1] and
b[w2] = a[w2] (such b exists by the 3-minimality of P). As a[w1] ∈ S ′′

w1
, we have

a[v] ∈ S ′′
v and therefore a[w2] ∈ S ′′

w2
.

We start with a weaker claim. Take b = (a[u1],a[u2],a[u3]) ∈ TU , ⟨s,R⟩ ∈ C,
and a ∈ R such that prs∩Ua = prs∩Ub. We show first that a can be chosen such
that b[w] ∈ S ′′

w for every w ∈ s. If U ∩W ∩ s ̸= ∅ then, for any w ∈ s ∩ W ,
a[w] ∈ S ′′

w, and we are done. If s ∩W = ∅ then R′ = R. Otherwise, notice that,
for any w ∈W , the kernel kerπw is a maximal congruence of Aδ(w). Let us consider
the relation

R̃ = {c′ | c ∈ R, c′[w] = c[w] for w ∈ s−W and c′[w] = (c[w])kerπw for w ∈ s ∩W}.

Choose w ∈ s ∩ W and set R′′ = pr(s−W )∪{w}R̃. Since prwR
′′ = Aδ(w)/kerπw

is simple and G(prs−W R̃) is strongly ry/rb-connected, by the Double Connected

Rectangularity Lemma 4.8, R′′ = prwR
′′ × prs−W R̃. This means that there is
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c ∈ R such that prs−WR = prs−Wa and c[w] ∈ S ′′
w. Therefore, c[u] ∈ S ′′

u for any
u ∈ s ∩W . Since s ∩ U ⊆ s−W , we have prs∩Uc = prs∩Ub, as required.
Finally, we show that a can be chosen such that a ∈ R′. Note that, by the

Double Connectedness Proposition 4.9, R′ is the set of r-maximal elements of the
graph of the relation R′′′ = R ∩ (S ′′

w1
× . . . × S ′′

wk
), where s = (w1, . . . , wk), and

prs∩Ub ∈ prs∩UR
′. Since a ∈ R′′′, by the Maximal Expansion Lemma 3.8(3), there

is a′ ∈ R′ such that prs∩Ub = prs∩Ua
′

Proposition 4.11 (Hereditarily Double Connected Proposition). Let
K be a class of 3-minimal constraint satisfaction problems from MCSP(Γ) in which
all the domains are hereditarily ry/rb-connected. Then K is of relational width 3.

Proof. Let P = (V ;A; δ; C) be a 3-minimal problem instance without empty
constraints. We prove by induction on the number of elements in Sv, v ∈ V , that
P has a solution.
The base case for induction. If all v ∈ V , |Sv| = 1, then every variable

can be assigned the only element in its domain. If every Sv is simple, then by
Proposition 4.7, every constraint relation is almost trivial. This means that, for
any v, w ∈ V , the relation Sv,w is either the graph of a bijection, or Sv × Sw.
By the 3-minimality of P, there is a partition V1, . . . , Vk of V , a collection of
representatives vi ∈ Vi, i ∈ {1, . . . , k}, and a collection of bijections πw : Svi → Sw,
w ∈ Vi, such that an assignment φ is a solution of P if and only if, for any w ∈ V ,
φ(w) = πw(φ(vi)), where i is such that w ∈ Vi.
Induction step. Suppose that the theorem holds for all problem instances

P ′ = (V ;A; δ′; C′) where |Aδ′(v)| ≤ |Sv| for v ∈ V and at least one inequality is
strict.
Let us assume that, for a certain v ∈ V , Sv is not simple and ξ is a maximal

congruence of Sv, which is not the equality relation. Take a class of ξ and the set
B of r-maximal elements from this class. By Lemma 4.10, the problem Pv,ξ,B is
3-minimal. Since all the domains of P are hereditarily strongly ry/rb-connected, so
are the domains of Pv,ξ,B . Finally, |S ′

v| < |Sv|, where S ′
v is the set of partial solu-

tions of Pv,ξ,B on {v}; therefore Pv,ξ,B has a solution by induction hypothesis.

For our main algorithm we also need to be able to find a solution to a problem
instance from a class of relational width 3 (provided there exists one). As is easily
seen, this can be done by employing algorithm 3-Width (see Fig. 4.1).

5. CONNECTEDNESS, RECTANGULARITY AND DECOMPOSITION

In this section we study problems such that the graphs of all their domains are
strongly ry-connected or strongly rb-connected. First of all we concentrate on
individual relations over such domains. In Section 5.1, we show that strong ry-
[rb-] connectedness can be extended from domains to relations. The Connected-
ness Proposition 5.1 claims that a subdirect product of domains whose graphs are
strongly connected is strongly connected. Then the main result of Section 5.2, the
Rectangularity Proposition 5.4, shows that relations with strongly ry-connected but
not strongly rb-connected graphs (as well as relations with strongly rb-connected
but not strongly ry-connected graphs) have a representation close to direct product
decomposition. This representation allows us to reduce problems over domains with
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Input: Problem instance P = (V ;A; δ; C).
Output: A solution to P if it has one, ∅ otherwise.

Step 1. invoke 3-Minimality(P)
Step 2. if the constraint relations of P are empty, then output ∅ and stop

Step 3. if, for all v ∈ V , |Sv | = 1, then output(φ), where φ(v) = a, Sv = {a}
Step 4. if, for all v ∈ V , Sv is simple, then do
Step 4.1. let V1, . . . , Vk be the partition of V , v1, . . . , vk a collection of representatives of its

classes, and πw:Svi → Sw bijections, where w ∈ Vi, such that (a, b) ∈ Sv,w if and

only if a ∈ Sv , b ∈ Sw and v, w are from different classes of the partition, or
a = πv(c), b = πw(c) for some c ∈ Svi , v, w ∈ Vi

Step 4.2. for i = 1 to k do

Step 4.2.1. set φ(vi) = a, a ∈ Svi is any
Step 4.2.2. for each w ∈ Vi − {vi} set φ(w) = πw(a)

endfor
Step 4.3. output φ

Step 5. else choose a variable v ∈ V such that |Sv| > 1, a maximal congruence ξ of Sv and
a class B of ξ; return 3-Width(Pv,ξ,B)

Fig. 4.1. Algorithm 3-Width

strongly connected graphs to smaller problems corresponding to the factors of the
mentioned decomposition, and to various types of ‘skeleton’ problems (Sections 5.3
and 5.4).

5.1 Connectedness for relations

The main result of this section is the following

Proposition 5.1 (Connectedness Proposition). Let R be a subdirect prod-
uct of A1, . . . , An ∈ A.
(1) If every G(Ai) is strongly r-connected, then G(R) is strongly r-connected.
(2) If every G(Ai) is strongly rb-connected, then G(R) is strongly rb-connected.
(3) If every G(Ai) is strongly ry-connected and such that every r-connected compo-
nent of G(Ai) is strongly r-connected, then G(R) is strongly ry-connected.

Proof. We prove the proposition by induction in the sizes of A1, . . . , An. If
all of them are simple, we use the Almost Trivial Proposition 4.7. Otherwise we
choose Ai which is not simple, factorize by its maximal congruence, and apply the
induction hypothesis.

Lemma 5.2 (Generalized Connectedness Lemma). Let R be a subdirect pro-
duct of A1, . . . , An ∈ A and Amax

i denote the set of r-maximal elements of Ai.
(1) Let Ci be a strongly r-connected component of G(Amax

i ), i ∈ n. Then if
R′ = R ∩ (C1 × . . .× Cn) is non-empty then it is a subdirect product of C1, . . . , Cn

and G(R′) is strongly r-connected.
(2) Let Ci be a strongly ry-connected component of G(Amax

i ), i ∈ n. Then if
R′ = R ∩ (C1 × . . .× Cn) is non-empty then it is a subdirect product of C1, . . . , Cn

and G(R′) is strongly ry-connected.
(3) Let Ci be an rb-maximal component of G(Ai) (not Amax

i !), i ∈ n. Then if
R′ = R ∩ (C1 × . . .× Cn) is non-empty then it is a subdirect product of C1, . . . , Cn

and G(R′) is strongly rb-connected.
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Remark. In Lemma 5.2(3) the sets Ci are in general larger than strongly rb-
connected components of Amax

i . Indeed, rb-maximal components can contain ele-
ments that are connected to the r-maximal elements with blue edges, but that are
not r-maximal themselves and therefore do not belong to Amax

i .

Proof. (2) Since Amax
i is the set of r-maximal elements from Ai, every its r-

connected component is strongly r-connected. Take i ∈ n; without loss of generality
we may assume i = 1. Suppose that C = pr1R

′ ̸= C1. Since G(C1) is strongly
ry-connected, there are a ∈ C and b ∈ C1 − C such that a ≤ b or ⟨a, b⟩ ∈ β.
Let a = a[1], b = b[1] for some a ∈ R′ and b ∈ R. By the Maximal Expansion
Lemma 3.8(1), we may assume b to be r-maximal. This means that if ⟨a[i],b[i]⟩ ∈ β
or a[i] ≤ b[i] then b[i] ∈ Ci. For c = p(a,b) we have

c[i] =

{
a[i], if ⟨a[i],b[i]⟩ ∈ γ or b[i] ≤ a[i],
b[i], if ⟨a[i],b[i]⟩ ∈ β or a[i] ≤ b[i];

in particular, c[1] = b[1] = b. As is easily seen, c ∈ R′, a contradiction with b ̸∈ C.
Thus, R′ is a subdirect product of C1, . . . , Cn.
Since every G(Ci) is strongly ry-connected and, by the definition of Amax

i , every
its r-connected component is strongly r-connected, R′ satisfies the conditions of the
Connectedness Proposition 5.1(3). Thus it is strongly ry-connected.

For (1) the proof is quite similar; one just needs to assign c = f(a,b) rather than
c = p(a,b).
(3) Take i ∈ n; without loss of generality we may assume i = 1. Suppose that

B = pr1R
′ ̸= C1. Since C1 is strongly rb-connected, there are a ∈ B and b ∈ C1−B

such that a ≤ b or ⟨a, b⟩ ∈ γ. Let a = a[1], b = b[1] for some a ∈ R′ and b ∈ R.
For c = p(b,a) we have

c[i] =

{
a[i], if ⟨a[i],b[i]⟩ ∈ β or b[i] ≤ a[i],
b[i], if ⟨a[i],b[i]⟩ ∈ γ or a[i] ≤ b[i];

in particular, c[1] = b[1] = b. As is easily seen, c ∈ R′. Thus, R′ is a subdirect
product of C1, . . . , Cn.
Since every Ci is strongly rb-connected, R′ satisfies the conditions of the Con-

nectedness Proposition 5.1(2). Thus G(R′) is strongly rb-connected.

5.2 Rectangularity

In the rest of Section 5, R ∈ Γ is a subdirect product of A1, . . . , An ∈ A, unless
otherwise is explicitly stated. Let x be one of the symbols ry, rb, j ∈ n, and
let B ⊆ Aj be a strongly x-connected component of G(Aj). We define the set
JR(x, j, B) ⊆ n (usually we will omit R) as follows:

JR(x, j, B) = {i ∈ n | for any a,b ∈ R such that a[j] ∈ B, the element b[j]

belongs to B if and only if a[i],b[i] are strongly x-connected in G(Ai)}

Let j ∈ n, and B be a strongly x-connected component of G(Aj). The definition
of JR(x, j, B) implies that for each i ∈ JR(x, j, B) there is a strongly x-connected
component Bi of G(Ai) such that, for any a ∈ R, a[i] ∈ Bi whenever a[j] ∈ B; in
particular, Bj = B (see Fig. 5.1(1)). Note that, for another strongly x-connected
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v,B

J(x,v,B)

J(x,v,B’)

(1)
(2)

Fig. 5.1. Sets J(x, v, B). Solid vertical lines represent tuples or their chunks; dotted lines indicate

that two solid lines show pieces of the same tuple

component B′ of the graph G(Aj) of the same domain, the set JR(x, j, B
′) can be

quite different from JR(x, j, B).

Lemma 5.3. If B is an x-maximal component of G(Aj) then, for any i ∈
JR(x, j, B), Bi is an x-maximal component of G(Ai).

Proof. If, say Bi, is not x-maximal, then take a ∈ R such that a[j] ∈ Bj . By
the Maximal Expansion Lemma 3.8(2), there is b ∈ R such that b[j] = a[j], but
b[i] belongs to an x-maximal component, i.e. b[i] ̸∈ Bi.

Now we define a restricted version of a direct product decomposition of a re-
lation. This type of decomposition proposes that if we choose i1, . . . , ik ∈ n and
B1, . . . , Bk, where Bj is an x-maximal component of G(Aij ), in such a way that the
sets J(x, ij , Bj) constitute a partition of n, then the restriction of R to the tuples
with entries in the Bj is a direct product with projections onto the J(x, ij , Bj) as
factors (see Fig. 5.1(2)). More formally, the relation R is said to be x-rectangular
if for any x-maximal a ∈ R, any j ∈ n, and any b ∈ prJR(x,j,B)R, where B is the
x-maximal component containing a[j], and b[j] ∈ B, the tuple c belongs to R:

c[i] =

{
b[i], if i ∈ JR(x, j, B),
a[i], otherwise.

It may seem that all these conditions are very hard to satisfy. However, if a ∈ R is an
x-maximal tuple of G(R) then the collection of different sets of the form J(x, i, Bi),
Bi is the strongly x-connected component of G(Ai) containing a[i], satisfies the
conditions. So, such a restricted direct product decomposition can be built around
every x-maximal tuple from R.
In this section we prove two rectangularity results which allow us to isolate ry-

and rb-connected components.

Proposition 5.4 (Rectangularity Proposition). (1) If for any i ∈ n, ev-
ery r-connected component of G(Ai) is strongly r-connected then R is ry-rectangular.
(2) R is rb-rectangular.
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Proof. (1) First, observe that, as every r-connected component from G(Ai),
i ∈ n, is strongly r-connected, every element of G(Ai) is r-maximal. Take an ry-
maximal tuple a ∈ R, q ∈ n, set I = J(ry, q, B), where B is the ry-connected
component of G(Aq) containing a[q], and take b ∈ prIR such that b[i],a[i] are
strongly ry-connected for i ∈ I. Since all elements of R are r-maximal, by the
Generalized Connectedness Lemma 5.2(2), prIa and b are strongly ry-connected.
We prove the proposition by induction on n. If I = n, in particular, if n = 1, then
the result follows trivially. So, suppose that I ̸= n.
As I = J(ry, q, B) ̸= n, there are c ∈ R and t ∈ n such that either c[q],a[q]

are strongly ry-connected while c[t],a[t] are not, or c[q],a[q] are not strongly ry-
connected while c[t],a[t] are. Without loss of generality, suppose that the for-
mer case holds. Let J1, J2 be the partition of n such that c[i],a[i] are strongly
ry-connected for i ∈ J1, c[i],a[i] are not strongly ry-connected (and therefore
⟨c[i],a[i]⟩ ∈ γ as every r-connected component of G(Ai) is strongly r-connected) for
i ∈ J2. Since I ⊆ J1, t ∈ J2, these sets are nonempty. By the Generalized Connect-
edness Lemma 5.2(2), prJ1

a and prJ1
c are strongly ry-connected, moreover, we can

assume that prJ1
a ≤ prJ1

c or ⟨prJ1
a,prJ1

c⟩ ∈ β. Indeed, note that the only prop-
erty of a we use is a[q] ∈ B. This means that we can safely replace a with any tuple
a′ ∈ R such that a′[q] ∈ B. Now suppose that a, c are such that (i) a[q], c[q] ∈ B,
(ii) a[i], c[i] are strongly ry-connected for i ∈ J1 and a[i], c[i] are not strongly ry-
connected for i ∈ J2, and there is an ry-path prJ1

a = a1,a2, . . . ,ak = prJ1
c that

is shortest possible for pairs satisfying conditions (i) and (ii). Let also b1 ∈ prJ2
R

be such that (a1,b1) ∈ R. Then the tuples p

(
a,

(
a1

b1

))
and c also satisfy condi-

tions (i) and (ii) above, but are connected with a shorter ry-path. The obtained
contradiction implies that k = 2 and therefore prJ1

a ≤ prJ1
c or ⟨prJ1

a,prJ1
c⟩ ∈ β.

Set prJ1
a = a1, prJ1

c = c1, prJ2
a = a2, prJ2

c = c2. Let Bi denote the ry-
connected component of G(Ai) containing a[i], and Ci the ry-connected component
containing c[i]. By the choice of J1, J2, we have Bi = Ci for i ∈ J1, and Bi ̸= Ci

for i ∈ J2. Let us denote

R′ = prJ1
R ∩

∏
i∈J1

Bi, R′′ = prJ2
R ∩

∏
i∈J2

Bi, R′′′ = prJ2
R ∩

∏
i∈J2

Ci.

By Lemma 5.2(2), G(R′),G(R′′),G(R′′′) are strongly ry-connected.

Claim 1. If (a′1,a
′
2), (c

′
1, c

′
2) ∈ R, where a′1, c

′
1 ∈ R′ and a′2 ∈ R′′, c′2 ∈ R′′′ (thus,

a′1, c
′
1 are strongly ry-connected while a′2, c

′
2 are not) are such that either a′1 ≤ c′1,

or c′1 ≤ a′1, or ⟨a′1, c′1⟩ ∈ β, then, for every b1 ∈ R′ we have (b1,a
′
2), (b1, c

′
2) ∈ R.

Prove first that (a′1, c
′
2) ∈ R or (c′1,a

′
2) ∈ R. If a′1 ≤ c′1 then we have

f

((
a′1
a′2

)
,

(
c′1
c′2

))
=

(
c′1
a′2

)
∈ R. If c′1 ≤ a′1 we get (a′1, c

′
2) ∈ R. If ⟨a′1, c′1⟩ ∈ β then

(
a′1
c′2

)
= p

((
c′1
c′2

)
,

(
a′1
a′2

))
,

(
c′1
a′2

)
= p

((
a′1
a′2

)
,

(
c′1
c′2

))
∈ R.

Now let B be the set of tuples b′ from R′ for which (b′,a′2), (b
′, c′2) ∈ R. If

B ̸= R′ then there is b1 ∈ B and d1 ∈ R′ − B such that b1 ≤ d1 or ⟨b1,d1⟩ ∈ β.
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There is d2 ∈ prJ2
R with (d1,d2) ∈ R. By the P-Lemma 3.4(3), in the tuple(

d1

d′
2

)
= p

((
b1

c′2

)
,

(
d1

d2

))
c′2[i] ≤ d′

2[i] or ⟨c′2[i],d′
2[i]⟩ ∈ β for any i ∈ J2, and therefore ⟨d′

2[i],a[i]⟩ ∈ γ (as
a′2[i] and c′2[i] belong to different strongly ry-connected components). Then(

d1

a′2

)
= p

((
b1

a′2

)
,

(
d1

d′
2

))
∈ R and

(
d1

c′2

)
= p

((
b1

c′2

)
,

(
d1

a′2

))
∈ R,

a contradiction. The claim is proved.

Claim 2. For any e1 ∈ R′ and any a′2 ∈ R′′ the tuple (e1,a
′
2) belongs to R.

Let C ⊆ R′′ be the set of those a′2 for which (e1,a
′
2) ∈ R. As the tuples a, c fulfill

the conditions of Claim 1, (e1,a2) ∈ R, and this set is non-empty. Since G(R′′) is
strongly ry-connected, there are a′′2 ∈ C and a′2 ∈ R′′ − C such that a′′2 ≤ a′2 or
⟨a′′2 ,a′2⟩ ∈ β. There is e′1 ∈ prJ1

R such that (e′1,a
′
2) ∈ R. Set(

e′′1
a′2

)
= p

((
e1
a′′2

)
,

(
e′1
a′2

))
where e1[i] ≤ e′′1 [i] or ⟨e1[i], e′′1 [i]⟩ ∈ β for any i ∈ J1. By Claim 1 (e′1, c2) ∈ R.
Since ⟨a′2, c2⟩ ∈ γ and (

e′′1
c2

)
= p

((
e1
c2

)
,

(
e′′1
a′2

))
∈ R,

applying Claim 1 to the pair (e′′1 ,a
′
2), (e

′′
1 , c2) and tuple e1, we get what is required.

By the induction hypothesis, there is the tuple d ∈ R′ such that

d[i] =

{
b[i], if i ∈ I,
a[i], if i ∈ J1 − I.

By Claims 1,2 (d,a2) ∈ R, and the result is proved.

(2) In this case the first part of the proof is close to that for (1). We take an
rb-maximal a ∈ R and choose c in the same way. We shall use the same notation
in this case, that is I, J1, J2, Bi, Ci, a1,a2, c1, c2, and R′, R′′, R′′′. Since a is
rb-maximal, for every i ∈ J1, the component Bi is rb-maximal. We again can
assume that either a1 ≤ c1, or c1 ≤ a1, or ⟨a1, c1⟩ ∈ γ. Note that we can exclude
the second option. Indeed, suppose that c1 ≤ a1 and c1 ̸= a1. By the Generalized
Connectedness Lemma 5.2(3), G(R∩(R′×R′′)) is strongly rb-connected. Therefore,
there is a′ ∈ R ∩ (R′ × R′′) such that prJ1

a′ ≤ c1 or ⟨prJ1
a, c1⟩ ∈ γ. Replacing a

with a′ we get what is needed. Observe that, as c is not necessarily rb-maximal,
we cannot claim that G(R′′′) is strongly rb-connected, and that ⟨a2, c2⟩ ∈ β.
Since Bi ̸= Ci for i ∈ J2, in this case c[i] ≤ a[i] or ⟨a[i], c[i]⟩ ∈ β. If neither

c2 ≤ a2 nor ⟨a2, c2⟩ ∈ β, we replace c with p(c,a) (for this tuple we would have
⟨a2, c2⟩ ∈ β). Note that this transformation results in different sets J1, J2, Bi,
and Ci. Thus we can assume that c2 ≤ a2 or ⟨a2, c2⟩ ∈ β. Finally, note that
c′ = (c1,a2) = p(c,a) ∈ R.
We prove by induction on |R′′| that R′ × R′′ ⊆ R. First, observe that by

Lemma 3.10 R = R∩ (R′×R′′) is a subdirect product of R′ and R′′. The base case
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for induction, when R′′ is a singleton, is obvious.
For induction step we assume that the result is true for all relations smaller than

R′′. Take a maximal projection congruence θ of R′′. Then R′′/θ is simple, hence,

R′′/θ can be treated as a unary relation. We show first that R = R∩ (R′×R′′/θ) is

not the graph of any mapping π:R′ → R′′/θ. Suppose that R is the graph of such a

π, and denote D = π−1(aθ2) the set of all preimages of aθ2[n]. Clearly, c1 ∈ D. Since
G(R′) is strongly rb-connected, there is d1 ∈ R′−D and d′

1 ∈ D such that d1 ≤ d′
1

or ⟨d1,d
′
1⟩ ∈ γ. As R is the graph of a mapping, π(d1) ≤ π(d′

1) or ⟨π(d1), π(d
′
1)⟩ ∈

γ, respectively. There are also d2,d
′
2 ∈ R′′ such that dθ

2 = π(d1), d
′
2
θ
= π(d′

1) and

(d1,d2), (d
′
1,d

′
2) ∈ R. For

(
e1
e2

)
= p

((
c1
a2

)
,

(
d1

d2

))
we have eθ2 = (d′

2)
θ = aθ2,

hence, e1 ∈ π−1(d′
2
θ
). Thus, in

(
e1
e′2

)
= p

((
c1
c2

)
,

(
d1

d2

))
, element e′2

θ
equals

d′
2
θ
, while, as is easily seen, e′2

θ
= dθ

1, a contradiction. Finally, by the Semi-Simple
Double Connected Corollary 4.4 and Lemma 3.5 we have R = R′ ×R′′/θ.

Take a class D of congruence θ. The equality R = R′ × R′′/θ implies that, for
any d ∈ R′, there is d′ ∈ D such that (d,d′) ∈ R. Moreover, if D′ denotes the
set of rb-maximal elements from G(D), then by Lemma 3.10(2), R ∩ (R′ ×D′) is a
subdirect product of R′ and D′. Applying induction hypothesis we get R′×D′ ⊆ R.
By Lemma 3.5, we conclude the result.

5.3 Strongly rb-connected components

In the following two sections we show how the Rectangularity Proposition 5.4 can
be used to solve problems over domains whose graphs are not rb-connected (this
section) or the graphs of the sets of r-maximal elements of which are not strongly
ry-connected (next section).
First we extend the notation J(x, i, B) from relations to problem instances. Let

P = (V,A, δ, C) ∈ MCSP(Γ) be a 3-minimal problem instance. Let also x be one
of rb, ry. Take a variable v ∈ V , an rb- [ry-] strongly connected component B
of G(Sv), and set J(x, v, B) to be the union of JR(x, v, B) where R runs over all
constraint relations whose scope contains v. Note that, since P is 3-minimal, if
for a certain w ∈ J(x, v, B), w is contained in the scopes of a constraint ⟨s,R⟩
then, for any a,b ∈ R such that a[v],b[v] ∈ B, the elements a[w],b[w] are also
strongly rb-connected [strongly ry-connected]. This allows us to define Bw for every
w ∈ J(x, v, B) in the same way as for relations. If w ∈ J(x, v, B) then, since the
instance is 3-minimal, JR(x, w,Bw) ⊆ J(x, v, B) for any constraint ⟨s,R⟩ such that
w ∈ s.
The following property follows straightforwardly from the construction of J(x, v, B).

Lemma 5.5. Using the notation above, if φ is a solution to P such that φ(v) ∈ B
then φ(w) ∈ Bw for any w ∈ J(x, v, B).

We start with the case when there is v ∈ V such that G(Sv) is not strongly
rb-connected.
We define the subproblem corresponding to J(rb, v, B). The problem Prb,v,B is

defined to be the problem instance (U ;A; δ′; C′) where U = J(rb, v, B), Aδ′(w) = Bw
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for w ∈ U and, for every C = ⟨s,R⟩ ∈ C, there is C ′ = ⟨s ∩ U ;R′⟩ ∈ C such that

R′ = {prs∩Ua | a ∈ R, a[w] ∈ Bw for any w ∈ s ∩ U}.

Since the graphs of the domains of problems of the form Prb,v,B are strongly rb-
connected, such problems belong to another type of problems and are to be solved
by methods introduced in other sections. Here we are going to prove that if all
problems of this form have solutions, then the existence of a solution to P follows
from 3-minimality. The proof is very similar to that for constraints invariant with
respect to a majority operation.
In [Baker and Pixley 1975] (see also [Jeavons et al. 1998]), it was proved that

relations invariant with respect to a so-called near-unanimity operation (a majority
operation is a ternary near-unanimity operation) are decomposable, that is they are
completely defined by their projections of bounded arity. For example if R is an
n-ary relation invariant under a majority operation, then a ∈ R if and only if, for
any i, j ∈ n, pri,ja ∈ pri,jR. We show that a similar property holds also for some
types of relations in Γ.

Lemma 5.6 (2-Decomposition Lemma). Let R ∈ Γ be a subdirect product of
A1, . . . , An ∈ A, and let a ∈ A1 × . . .×An. If, for any i, j ∈ n, (a[i],a[j]) ∈ pri,jR
and, for any i ∈ n, a[i] belongs to an rb-maximal component Bi of G(Ai) and
pr

J(rb,i,Bi)
a ∈ pr

J(rb,i,Bi)
R, then a ∈ R.

Proof. Let I1, . . . , Ik be the sets of the form J(rb, i, Bi). We use aj to denote the
tuple prIja. We prove by induction on l ≤ k that, for any choice of Ij1 , . . . , Ijl , the
tuple prIj1∪...∪Ijl

a belongs to prIj1∪...∪Ijl
R. The base case of induction is provided

by the conditions of the lemma. Indeed, if l = 1 then the required property follows
from the condition pr

J(rb,i,Bi)
a ∈ pr

J(rb,i,Bi)
R. If l = 2 then take i1 ∈ Ij1 , i2 ∈ Ij2 .

By the conditions, (a[i1],a[i2]) ∈ pr{i1,i2}R and, therefore, there is b ∈ prIj1∪Ij2
R

such that prIj1a, prIj1b and prIj2a, prIj2b are strongly rb-connected. By the

Rectangularity Proposition 5.4(2), prIj1∪Ij2
a ∈ prIj1∪Ij2

R.

Suppose that for any subset J ⊆ {1, . . . , k} containing less than l > 2 element
the tuple prIJa, IJ =

∪
j∈J Ij , belongs to prJR. Take K ⊆ k with |K| = l, and

s, t, q ∈ K. Without loss of generality we may assume K = l, s = 1, t = 2, q = 3.
We have to show that prIKa ∈ prIKR.
Since prIK−{s}

a, prIK−{t}
a, prIK−{q}

a belong to prIK−{s}
R, prIK−{t}

R, prIK−{q}
R,

respectively, the tuples (a2,a3, . . . ,al), (a1,a3,a4, . . . ,al), (a1,a2,a4, . . . ,al) belong
to prIJ−I1R, prIJ−I2R,prIJ−I3R respectively. Therefore, there are b1 ∈ prI1R,
b2 ∈ prI2R, b3 ∈ prI3R such that (b1,a2,a3,a4, . . . ,al), (a1,b2,a3,a4, . . . ,al),
(a1,a2,b3,a4, . . . ,al) ∈ prIKR. By the Maximal Expansion Lemma 3.8(2), b1,b2,b3

can be chosen from rb-maximal components of G(prI1R),G(prI2R),G(prI3R), re-
spectively. If, say, b1 is in the same strongly rb-connected component as a1, then
by the Rectangularity Proposition 5.4(2), (a1,a2, . . . ,al) ∈ prIKR, and we are done.
So, we may assume that the pairs a1,b1, a2,b2, a3,b3 lie in different strongly rb-
connected components. Therefore, for every j ∈ {1, 2, 3} and every v ∈ Ij , the pair
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(aj [v],bj [v]) is yellow or bj [v] ≤ aj [v]. Hence,

a1
a2
a3
a4
...
al


= g





b1

a2
a3
a4
...
al


,



a1
b2

a3
a4
...
al


,



a1
a2
b3

a4
...
al




∈ prKR.

Now we are in a position to prove the main result of this subsection.

Proposition 5.7 (Red-Blue Decomposition Proposition). If, for any v ∈
V , and any rb-maximal component B of G(Sv), the restricted problem Prb,v,B has
a solution, then P also has a solution.

Proof. The proof we give here is a modification of the proof of Theorem 3.5
from [Jeavons et al. 1998].
For any W ⊆ V and any v ∈ V −W , we prove that if φW is a partial solution

to PW such that, for any w ∈ W , φW (w) belongs to an rb-maximal component
Bw, and there is a solution ψI to Prb,v,Bv

such that ψIW∩I = φW W∩I where I =
J(rb, v, Bv), then φW can be extended to a solution φW∪{v} of PW∪{v} satisfying
the same conditions.
In the base case for induction we show that, for any setW of the form J(rb, w,Bw),

where Bw is an rb-maximal component of G(Sw), any solution φW of Prb,w,Bw
can

be extended to a solution on the set W ∪ J(rb, v, Bv) for any v ∈ V − W and
some rb-maximal component Bv of G(Aδ(v)). Take w ∈ W ; by the Maximal Ex-
pansion Lemma 3.8(2), there is a from an rb-maximal component of G(Sv) such
that (φW (w), a) ∈ Sw,v. There is a solution ψ to Prb,v,Bv

, where Bv is the rb-
maximal component containing a. Let I = J(rb, v, Bv). Again, by the Maximal
Expansion Lemma 3.8(2) we may assume that ψ(v) = a. We shall prove that a
tuple c ∈

∏
u∈W∪I Su such that c[u] = φW (u) if u ∈W and c[u] = ψ(u) if u ∈ I is

a solution to P
W∪J(rb,v,Bv)

extending φW . Let also C = ⟨s,R⟩ ∈ C be a constraint

such that v′ ∈ s for some v′ ∈ I, a′ = ψ(v′), and w′ ∈ s∩W . Since P is 3-minimal,
the tuple (φW (w), a′) ∈ Sw,v′ can be extended to a tuple (φW (w), a′, b) ∈ Sw,v′,w′ .
Moreover, by the Rectangularity Proposition 5.4(2) applied to Sw,v′,w′ , we may
choose b = φW (w′). Therefore, (φW (w′), a′) ∈ pr{w′,v′}R can be expanded to a tu-
ple b ∈ R. For any u ∈ s∩ I, the element b[u] is a member of the same rb-maximal
component as ψ(u), and, for any u ∈ s ∩W , the element b[u] is a member of the
same rb-maximal component as φW (u). Thus, prs∩Ib is strongly rb-connected with
ψs∩I and prs∩Wb is strongly rb-connected with φW s∩W . By the Rectangularity
Proposition 5.4(2), prs∩(W∪I)c ∈ prs∩(W∪I)R. This means that c is a solution to
PW∪J(rb,v,Bv)

extending φW .

Now suppose that the result is proved for every U ⊆ V with |U | < k. TakeW ⊆ V
with W = {w1, . . . , wk} and v ∈ V −W , and let φW be a partial solution satisfying
the conditions above. Assume for contradiction that φ cannot be extended to a
solution to PW∪{v}.
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Let the constraints of PW∪{v} be ⟨s1, R1⟩, . . . , ⟨sq, Rq⟩. To obtain the desired
contradiction we shall construct a problem P ′ which also has q constraints, with
the same constraint relations, but with different constraint scopes.
We define the set of variables of P ′ to be the union of {v′} and q disjoint copies

W1, . . . ,Wq ofW , whereWi = {wi
1, . . . , w

i
k}. The domain function is defined by the

equalities δ′(wi
j) = δ(wj), δ

′(v′) = δ(v). Now, for each i ∈ q, we define a mapping

fi:W → Wi by setting fi(wj) = wi
j , and extend each fi to v by setting fi(v) = v′.

The set of constraints of P ′ is then defined as {⟨f1(s1), R1⟩, . . . , ⟨fq(sq), Rq⟩}.
Then let the q · k-ary relation R be defined as follows

R = {(σ(f1(w1)), . . . , σ(f1(wk)), . . . , σ(fq(w1)), . . . , σ(fq(wk))) |
σ is a solution to P ′}.

Note that R is a subdirect product of Sw1 , . . . ,Swk
, . . . ,Sw1 , . . . ,Swk

. Indeed, since
P is 3-minimal, for any i and any a ∈ Swi , there is b ∈ Sv such (a, b) is a partial so-
lution of P on {w, v}. Furthermore, for any constraint ⟨sj , Rj⟩, this partial solution
can be extended to a tuple a from Rj . Then we assign values to fj(w1), . . . , fj(wk)
accordingly to a (the variables that are not in the constraint scope fj(sj) can be
assigned values arbitrarily).
The tuple a = (φW (w1), . . . , φW (wk), . . . , φW (w1), . . . , φW (wk)) does not belong

to R, since φW cannot be extended to a solution to PW∪{v}. However, we shall
show that a satisfies the conditions of the 2-Decomposition Lemma 5.6 for R, and
thus derive a contradiction.
Let Bj denote the rb-maximal component containing φW (wj). The condition

pr
JR(rb,wi

j ,Bj)
a ∈ pr

JR(rb,wi
j ,Bj)

R is satisfied automatically, because a[wi
j ] belongs

to Bj , an rb-maximal component. For any pair of indices wi1
j1
, wi2

j2
, we claim that

pr{wi1
j1

,w
i2
j2

}a ∈ pr{wi1
j1

,w
i2
j2

}R. Since P is 3-minimal the tuple (φW (wj1), φW (wj2)) ∈
Swj1 ,wj2

can be extended to a solution (φW (wj1), φW (wj2), a) ∈ Swj1 ,wj2 ,v
of Pwj1 ,wj2 ,v

.
Furthermore, for this solution, we can construct a corresponding solution, σ, to P ′,
such that σ(fi1(wj1)) = φW (wj1), σ(fi2(wj2)) = φW (wj2), by the construction of
P ′. Hence a agrees with some element of R in wi1

j1
, wi2

j2
, which establishes the claim.

Finally, let φ′ be an extension of φ to a solution of PW∪{v}. We need to show that
it can be chosen such that φ′(v) belongs to an rb-maximal component. However,
this follows straightforwardly from the Maximal Expansion Lemma 3.8(2) applied
to the relation SW∪{v} and sets I1 =W , I2 = {v}.

Moreover, if the conditions of the Red-Blue Decomposition Proposition 5.7 hold,
then a solution to P can be found in polynomial time by the algorithm Block-3-
Width (see Fig. 5.2).
Thus if all the subproblems Prb,v,B have solutions then the Red-Blue Decompo-

sition Proposition 5.7 allows one to solve the problem P. Otherwise we have the
following

Lemma 5.8. If for one of the problems Prb,v,B there is a variable w and r-
maximal element a from the domain of w such that no solution φ of Prb,v,B satisfies
φ(v) = a, then P can be tightened by removing a from the domain of w. More
precisely φ(w) = a for no solution φ of P.
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Input: Problem instance P = (V ;A; δ; C).
Output: A solution to P if it has one, ∅ otherwise.

Step 1. invoke 3-Minimality(P)
Step 2. take v ∈ V , an rb-maximal component B of G(Sv), and a solution ψ to Prb,v,B ;

set W = J(rb, v, B)
Step 3. set PW,ψ to be the problem instance (V ′;A; δ′; C′) where

• V ′ = V −W ,
• δ′ = δ

V ′,

• C′ = {C′ = ⟨s ∩ V ′, R′⟩ | ⟨s,R⟩ ∈ C} where R′ = R if W ∩ s =∅,

and R′ = {a ∈ R | a[w] = ψ(w) for all w ∈W ∩ s} otherwise.
Step 7. return Block-3-Width(PW,ψ)∪{ψ(w) | w ∈W}.

Fig. 5.2. Algorithm Block-3-Width

Proof. If G(Sv) is not strongly ry-connected for some v ∈ V and Pry,w,B has
no solution φ such that φ(w) = a for some w,B, and an r-maximal element a, then
by the definition of I = J(ry, w,B), for any u ∈ I and any a ∈ Sw,u, if a[w] ∈ B
then a[u] ∈ Bu, where Bu is the corresponding rb-maximal component. Therefore,
for any solution φ of P, if φ(w) = a then φI is a solution of Pry,w,B . The elements
a can be removed from Aδ(w).

5.4 Strongly ry-connected components

In this section we show how the Rectangularity Proposition 5.4 allows one to solve
problems such that, for any v ∈ V , G(Sv) is strongly rb-connected and every its
r-connected component is strongly r-connected. More precisely, we show how prob-
lems of this type can be reduced to problems over smaller strongly ry-connected
domains and a problem whose constraints are invariant with respect to a Mal’tsev
operation.
The Rectangularity Proposition 5.4(1) reduces the problem P to a collection of

subproblems Pry,v,B , defined analogously to those for strongly rb-connected com-
ponents, and a skeleton problem. The latter problem is defined as follows. We
may assume that each problem of the form Pry,v,B has a solution φry,v,B found by
the algorithm. Moreover, if w ∈ J(ry, v, B), then J(ry, v, B) = J(ry, w,Bw) where
Bw is the ry-connected component corresponding to B, Pry,v,B = Pry,w,Bw , and
φry,v,B = φry,w,Bw .
Then the skeleton problem is the problem Ps = (V ;A; δ; Cs) obtained by remov-

ing all tuples from the constraint relations but those consisting of the solutions
φry,v,B : for every C = ⟨s,R⟩ ∈ C there is Cs = ⟨s,Rs⟩ ∈ Cs where a ∈ Rs if and
only if a ∈ R and, for any v ∈ s, there is an ry-connected component B of G(Sv)
such that a[v] = φry,v,B(v).

Lemma 5.9. Let Ps = (V ;A; δ; Cs) be the skeleton problem of instance P. Then
every constraint relation Rs is invariant under all polymorphisms of constraint
relations of P.

Proof. Let C be the set of polymorphisms of constraint relations of P and let
R′ denote the relation generated by Rs by applying operations from C. Let also
⟨s,R⟩ be the constraint of P relation Rs is derived from. Clearly R′ ⊆ R. Therefore
if R′ ̸= Rs then for a certain variable v, an ry-connected component B of G(Sv),
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and a tuple a ∈ R′ with a[v] ∈ B we have prJ(ry,v,B)∩sa ̸∈ prJ(ry,v,B)∩sR
s, or more

precisely, since every unary projection of Rs is invariant under C, prJ(ry,v,B)∩sa ̸=
φry,v,BJ(ry,v,B)∩s. However, this means that there is w ∈ J(ry, v, B) ∩ s such that

a[w] ̸∈ Bw that contradicts the definition of the set J(ry, v, B).

Lemma 5.10 (Skeleton Decomposition Lemma). If, for any v ∈ V and any
ry-connected component B of G(Sv), the problem Pry,v,B has a solution, then the
skeleton problem has a solution if and only if P has a solution. Moreover, a solution
to P can be chosen to be a solution of the skeleton problem.

Proof. If ψ is a solution of P then, for any v ∈ V , ψJ(ry,v,Bv)
, where ψ(v) ∈ Bv,

is a solution of Pry,v,Bv
. It follows straightforwardly from the Rectangularity Propo-

sition 5.4(1) that, for any mapping φ with φry,v,Bv
= φry,v,Bv and φV−J(ry,v,Bv)

=

ψV−J(ry,v,Bv)
, and any constraint ⟨s,R⟩, the tuple φs belongs to R. Therefore φ

is a solution of P. Processing in this way for every v ∈ V we get a solution of P
composed of solutions of the form φry,v,Bv .

Note that if Ss
v denotes the partial solution to the skeleton problem on v ∈ V ,

then every edge of Ss
v is blue. Therefore the skeleton problem can be solved by the

algorithm Maltsev described in [Bulatov 2002b; Bulatov and Dalmau 2006].

Lemma 5.11. If for one of the problems Pry,v,B there is a variable w and r-
maximal element a from the domain of w such that no solution φ of Pry,v,B satisfies
φ(v) = a, then P can be tightened by removing a from the domain of w. More
precisely φ(w) = a for no solution ψ of P.

Proof. If Pry,w,B has no solution φ such that φ(w) = a for some w, B, and
an r-maximal element a, then by the definition of I = J(ry, w,B), for any u ∈ I
and any a ∈ Sw,u, if a[w] = a then a[u] ∈ Bu, where Bu is the corresponding
ry-maximal component. Therefore, for any solution φ of P, if φ(w) = a then φI is
a solution of Pry,w,B . The element a can be removed from Aδ(w).

5.5 Problems over strongly ry/rb-connected domains

In this subsection we return to problems from Section 4 and consider 3-minimal
CSPs, in which, for any w ∈ V , the graph G(Smax

w ), where Smax
w is the set of all r-

maximal elements from G(Sw) is strongly ry/rb-connected, but for some v ∈ V the
set Smax

v is not hereditarily strongly ry/rb-connected. The requirement of the set
of r-maximal elements to be ry/rb-connected rather than the domains themselves
comes from the fact that this is how problems of this type occur in the algorithm
given in Section 7.2. Although such problems cannot be solved using only results
from Sections 4 and 5, we show how these results allow one to reduce solving a
problem of this type to solving smaller problems.
We use notation introduced in Section 4.3. Since Smax

v is not hereditarily strongly
ry/rb-connected, there are sequences Smax

v × Smax
v ⊇ θ0 ⊇ θ1 ⊇ . . . ⊇ θk−1,

B′
0, B

′
1, . . . , B

′
k, and B0, B1, . . . , Bk such that B′

0 = Sv, B0 = Smax
v , θi is a maximal

congruence of Bi, the set B
′
i+1 is a class of θi, the set Bi+1 is the set of r-maximal ele-

ments of G(B′
i+1), and the graphs G(B0), . . . ,G(Bk−1) are strongly ry/rb-connected

while G(Bk) is not. For the sake of brevity, we denote these sequences by θ, B
′
and

B, respectively.
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We also define a sequence of problems P0
v,B

′
,θ
,P1

v,B
′
,θ
, . . . ,Pk

v,B
′
,θ

as follows:

P0
v,B

′
,θ

= Pmax = (V 0;A; δ0; C0) with V 0 = V , Aδ0(w) = Smax
w and, for any

⟨s,R⟩ ∈ C, there is ⟨s,R0⟩ ∈ C0, R0 = R ∩
∏

w∈V Aδ0(w). Then, we intend to

define Pi+1

v,B
′
,θ
to be (Pi

v,B
′
,θ
)v,θi,Bi+1 (recall that such problems were defined in the

beginning of Section 4.3), however, it may happen that the graphs of some domains
of Pi

v,B
′
,θ

are not strongly ry/rb-connected and these domains should be excluded.

Thus let Pi
v,B

′
,θ
= (V i;A; δi; Ci), then let P ′i = (Pi

v,B
′
,θ
)V i−W i , whereW i is the set

of those variables from V i, for which the graph of the domain in Pi is not strongly
ry/rb-connected, and Pi+1

v,B
′
,θ
= P ′i

v,θi,Bi+1
. We also denote by Ui variables w ∈ V i

connected to v, θi−1. Then for each such variable the set Si
w,v of partial solutions

of Pi
v,B

′
,θ

on w, v is the graph of a mapping πi
w:Aδi(w) → Aδi(v)/θi−1

. It is not

hard to see that kerπi−1
w is a maximal congruence of Aδi−1(w) and (πi−1

w )−1(B′
i) is

a class of this congruence. We denote this class by Aδ′i(w) (see Fig. 5.3(1)). Finally,

let Wv,B
′
,θ =W k.

Lemma 5.12. If the problems Pi
v,B

′
,θ

are as defined above then Wv,B
′
,θ ⊆ Uk ⊆

. . . ⊆ U1.

Proof. The inclusionWv,B
′
,θ ⊆ Uk follows from an easy observation that if w ∈

Ui is such that G(Aδi(w)) is not strongly ry/rb-connected then by construction w ̸∈
V i+1. In order to derive a contradiction we assume that Ui+1 ̸⊆ Ui, w ∈ Ui+1 −Ui

and a ∈ Aδi−1(w) = Aδi(w) is such that a ̸∈ C = Aδ′i+1(w) = (πi
w)

−1(B′
i+1) but, for

any b ∈ C, we have b ≤ a or ⟨a, b⟩ ∈ β. This is possible, because G(Aδi(w)/kerπi
w
)

is strongly ry/rb-connected and C is a class of a congruence. Let D be a class of
θi−1 such that, for any c ∈ B′

i and d ∈ D, we have d ≤ c or ⟨c, d⟩ ∈ γ. Such a class
exists by the same reason. Since w ̸∈ Ui, there is d ∈ D with (a, d) ∈ prw,vR, and
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there is b ∈ C and c ∈ B′
i with (b, c) ∈ prw,vR. Then(
a
c

)
= p

((
b
c

)
,

(
a
d

))
∈ prw,vR.

As a ̸∈ C while c ∈ B′
i, we get a contradiction.

We shall be interested in solutions of problems of the form (Pk
v,B

′
,θ
)W

v,B′,θ
, that

is the problem Pk
v,B

′
,θ

restricted onto set Wv,B
′
,θ. Let us denote this problem by

P∗
v,B

′
,θ
. First, we study how problems of this form change, or rather why they do

not change, if we build sequences defined above for two variables simultaneously or
sequentially. In Lemma 5.13 we look at what happens if we make one step in each
sequence; then in Lemma 5.14 one of sequences moves on one step and the other is
built to the end; finally, in Lemma 5.15 both sequence completely unfold.

Lemma 5.13. Let P = (V ;A; δ; C) be a 3-minimal problem such that the graph of
every its domain is strongly ry/rb-connected. Let v, w ∈ V , and let θ, η be maximal
congruences of Aδ(v), Aδ(w) respectively, and B,C be classes of θ, η respectively. Let
also U and W denote the sets of variables connected to v, θ and w, η in P, and let
U ′ and W ′ denote the sets of variables connected to v, θ and w, η in the problems
Pw,C,η and Pv,B,θ respectively. If v ̸∈W then
- v ̸∈W ′,
- for any u ̸∈W , we have u ∈ U if and only if u ∈ U ′,
- if u ∈ U ∩W and θ′, η′ denote the kernels of mappings π : Aδ(u) → Aδ(v)/θ and
ϱ : Aδ(u) → Aδ(w)/η such that Su,v/θ and Su,w/η are the graphs of π and ϱ, then

θ′ ̸= η′ and the graph of every class of both congruences is strongly ry/rb-connected.

Remark. Since v ̸∈W , the variable v has the same domain in the problems Pw,C,η

and P . However, w can belong to U , and thus the proper definition of W ′ should
be: the set of all variables connected to w, η′′, where η′′ = η ∩ (πw(B) × πw(B)).
Although, by what the lemma claims, this does not change the result.

Proof. Let P ′ = Pv,B,θ, let δ
′ be the domain function of this problem, and

let Sv,w,S ′
v,w be the sets of partial solutions on {v, w} of P,P ′ respectively. By

Lemma 4.10, S ′
v,w = Sv,w ∩ (Aδ′(v) × Aδ′(w)). Now as v ̸∈ W , we have Sv,w/η =

Aδ(v) ×Aδ(w)/η. Therefore S ′
v,w/η = Aδ′(v) ×Aδ(w)/η, and v ̸∈W ′.

Take u ̸∈W and consider Sv,u,w. Again by the Double Connected Rectangularity
Lemma 4.8, Sv,u,w/η = Sv,u × Aδ(w)/η. This immediately implies that u ∈ U if

and only if u ∈ U ′.
Now take u ∈ U ∩W and define π, ϱ, θ′, η′ as in the lemma. Let us consider, for

a ∈ Aδ(v), any tuple (a, b, c) ∈ Sv,u,w. Since v ̸∈ W , element c can be chosen from
any η-class, hence b can belong to any η′-class. However, b ∈ π(a), and therefore
every θ′-class intersects with any η′-class.
Let D be a θ′-class and d1, d2 ∈ D. We show that d1, d2 are both ry- and rb-

connected. In order to do this we consider the congruence η′′ = η′ ∩ D2 of D.
Recall that as G(Aδ(u)) is strongly ry/rb-connected, G(Aδ(u)/η′) is also strongly

ry/rb-connected, and, as D intersects with every η′-class, G(D/η′′) is also strongly

ry/rb-connected. Moreover, every ry- [rb-] path in G(D/η′) gives rise to an ry- [rb-]
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path for any representatives of the corresponding η′′-classes. Therefore there are an
ry-path and an rb-path from d1 to d2. Thus G(D) is strongly ry/rb-connected.

Lemma 5.14. Let P = (V ;A; δ; C) be a 3-minimal problem such that the graph of

every its domain is strongly ry/rb-connected, and v,B
′
, θ defined as in the beginning

of Section 5.5. Let w ∈ V , η be a congruence of Sw and C ′ a class of η. Let also
P ′ denote the problem Pw,C′,η and let U ′ denote the set of variables connected to
w, η. Then if v ̸∈ U ′ then P ′∗

v,B
′
,θ
= P∗

v,B
′
,θ
.

Proof. Notice first that problem P ′∗
v,B

′
,θ
is defined correctly. To see this we just

need to observe that since v ̸∈ U ′ the domain of v in P ′ equals that in P. Therefore

the congruences from θ and their classes from B
′
are the same for both problems.

We prove the lemma by induction on k. Suppose first that k = 1. Let W and
W ′ denote the sets of the form Wv,B

′
,θ defined for P and P ′ respectively. Then,

by Lemma 5.13, W ∩ U ′ = W ′ ∩ U ′ = ∅, and by Lemma 4.10, for any u ̸∈ U ′ the
domains of u in P1

v,B
′
,θ

and P ′1
v,B

′
,θ

are the same. This implies P ′∗
v,B

′
,θ
= P∗

v,B
′
,θ
.

Now suppose that the lemma is true for any problem P ′′, for which P ′′∗
v,B

′
,θ

is a

result of a sequence of problems shorter than k. Take P ′′ to be P1
v,B

′
,θ
. Obviously,

P ′′∗
v,B

′
,θ
= P∗

v,B
′
,θ
, so the only thing remaining to prove is that P ′′ satisfies the con-

ditions of the lemma. However, this straightforwardly follows from Lemma 5.13.

The following two lemmas show that we either can reduce P to smaller problems,
or we are able to tighten it.

Lemma 5.15. If, for any v ∈ V such that Aδ(v) is not hereditarily ry/rb-connected,
and any B′

1, . . . , B
′
k and θ1, . . . , θk−1 witnessing this, the problem P∗

v,B
′
,θ

has a so-

lution φ, then P has a solution.

Proof. We choose v, B′
1, . . . , B

′
k, and θ1, . . . , θk−1 such that k is minimal pos-

sible. In this case V 1 = . . . = V k = V . First, we show that, for any solution ψ of
(Pk

v,B
′
,θ
)U , where U = V −Wv,B

′
,θ, then the mapping χ on V defined by

χ(w) =

{
ψ(w), if w ∈ U,
φ(w), if w ∈Wv,B

′
,θ

is a solution of Pk
v,B

′
,θ

and therefore of P.

By Lemma 4.10, Pk
v,B

′
,θ

is 3-minimal.

Take a constraint ⟨s,R⟩ ∈ Ck; we show that prs∩W
v,B′,θ

R × prs∩UR ⊆ R. It is

not hard to see that this suffices to obtain the required result. Let W ry be the
set of variables w ⊆ Wv,B

′
,θ for which G(Aδk(w)) is strongly ry-connected (but not

rb-connected) and W rb the set of w ∈ Wv,B
′
,θ such that G(Aδk(w)) is strongly rb-

connected (but not ry-connected). By the Rectangularity Proposition 5.4(1),(2), R
is ry- and rb-rectangular. In particular, for any tuple a ∈ R and tuple b ∈ prs∩WR
such that b[w] is strongly ry-connected with a[w] for w ∈W rb and b[w] is strongly
rb-connected with a[w] for w ∈W ry, the tuple (b, prs∩Ua) belongs to R.
Then take d ∈ prs∩UR, we show that, for any U ′ ⊆ s ∩ Wv,B

′
,θ there is b ∈

prU ′R such that b[w] is strongly rb-connected with a[w] if w ∈ W ry and b[w] is
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strongly ry-connected with a[w] if w ∈ W rb, and (b,d) ∈ prU ′∪(s∩U)R. Suppose
for contradiction that, for U ′ ⊆ s ∩ Wv,B

′
,θ and for any d ∈ prs∩UR, there is

a tuple b satisfying the required conditions, but this is not true for U ′′ = U ′ ∪
{w} ⊆ s ∩Wv,B

′
,θ. We assume first that w ∈ W rb, that is, for any b ∈ prU ′′R

such that prU ′b is strongly ry/rb- connected with prU ′a, we have ⟨b[w],a[w]⟩ ∈
γ. Let B be the strongly ry/rb-connected component of prU ′′R containing prU ′′a
and C ⊆ R′ = prs∩UR the set all tuples from R′ extendible with an element
from B. Since by the Double Connectedness Proposition 4.9 R′ is strongly ry-
connected, there are c1 ∈ C, c2 ∈ R′ − C such that c1 ≤ c2 or ⟨c1, c2⟩ ∈ β. By
the assumption made there are b1,b2 ∈ prU ′′R such that b1 ∈ B, prU ′b2 ∈ prU ′B,
and (b1, c1), (b2, c2) ∈ prU ′′∪(s∩U)R. As b2 ̸∈ B, we get ⟨b1[w],b2[w]⟩ ∈ γ and(
b
c2

)
= p

((
b1

c1

)
,

(
b2

c2

))
∈ prU ′′∪(s∩U)R. For the obtained tuple we have b[u] ∈

{b1[u],b2[u]} for every u ∈ U ′, and therefore is strongly ry/rb-connected with a[u];
then, b[w] = b1[w] and is strongly ry/rb-connected with a[w] as well. By the
Double Connectedness Proposition 4.9, b is strongly ry/rb-connected with prU ′′a,
a contradiction.
For the variables from W ry, the proof is similar.
Then we prove by induction on the number of variables in P that (Pk

v,B
′
,θ
)U has

a solution of the required form. If |V | = 1 then U = ∅ and there is nothing to
prove. So, suppose that the lemma holds for any problem of the specified type with

fewer variables than P. Hence we just need to prove that P ′ = (Pk

v,B
′
,θ)U satisfies

the conditions of Lemma 5.15.
Take w ∈ U such that Aδk(w) is not hereditarily ry/rb-connected; this implies that

so is Aδ(w). Suppose first that w ̸∈ U1. Then applying Lemma 5.14 inductively to

problems P0
v,B

′
,θ
,P1

v,B
′
,θ
, . . . ,Pk

v,B
′
,θ
we get Pk∗

w,B
′
,ξ
= P∗

w,B
′
,ξ
, which has a solution

by the assumption made. If w ∈ Ui−Ui+1 then, as is easily seen, Pi
v,B

′
,θ
= Pi

w,D
′
,η
,

where D′
j = (πj

w)
−1(B′

j) and ηj = kerπj
w for j ∈ {0, . . . , i}. As before, Pi∗

w,D
′
,η

=

P∗
w,D

′
,η
. Thus applying Lemma 5.14 to the problems Pi

v,B
′
,θ
, . . . ,Pk

v,B
′
,θ

we obtain

the result.

To prove that if the conditions of Lemma 5.15 are not satisfied then the problem

can be tightened, we need another sequence of problems, P0

v,B,θ,P
1

v,B,θ, . . . ,P
k

v,B,θ,

which are defined as follows: Pi

v,B,θ = (V i;A; δ
i
; Ci

), where A
δ
0
(w)

= Aδ(w) for all

w ∈ V , and, for i > 0, A
δ
i
(w)

= A
δ
i−1

(w)
if w ∈ V i−Ui and Aδ

i
(w)

= Aδ′i(w)∪{a ∈
A

δ
i−1

(w)
−Aδi−1(w) | there is b ∈ Aδ′i(w) such that a ≺ b in A

δ
i−1

(w)
} if w ∈ Ui (see

Fig. 5.3(2)).

Lemma 5.16 (Double Connected Tightening Lemma). If a problem of the
form P∗

v,B,θ
has no solution φ such that φ(w) = a for some variable w and an r-

maximal element a, then P can be tightened by removing elements from some of
the domains. More precisely φ(w) = a for no solution of P.

Proof. First, notice that φ is a solution of P∗
v,B,θ

if and only if it is a solution

of (Pk

v,B,θ)Wv,B,θ
such that the value of every variable w belongs to the set of r-
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Input: Problem instance P = (V ;A; δ; C) such that, for all v ∈ V , G(Sv) is strongly ry/rb-

connected.

Output: A solution to P.

Step 1. if, for any v ∈ V , Sv is hereditarily ry/rb-connected, then return 3-Width(P)

Step 2. take v ∈ V of minimal depth and sequences Bv of θv , and invoke Conserv(P∗
v,Bv ,θv

);

let ψ be its solution
Step 3. set P ′ to be the problem instance (Pk

v,Bv,θv
)V−W

v,Bv,θv

Step 4. return(Ry/rb-Conn(P ′)∪{w = ψ(w) | w ∈Wv,Bv ,θv
}).

Fig. 5.4. Algorithm Ry/rb-Conn

maximal elements of G(A
δ
k
(w)

). If there are w ∈ Wv,B,θ and a ∈ Aδk(w) such that

φ(w) = a for no solution of P∗
v,B,θ

, then this also holds for Pk

v,B,θ. It is not hard

to see that without loss of generality we may assume w = v. The following claim
implies induction step.

Claim. If the problem Pi
has a solution φ such that φ(v) ∈ Bi+1, then φ is a

solution of Pi+1
.

We show that, for any constraint C = ⟨s,R⟩ ∈ Ci
and any tuple a ∈ R, if

a[v] ∈ Bi+1, then, for any u ∈ s ∩ Ui+1, a[u] ∈ A
δ
i+1

(u)
.

Suppose first that a[u] ∈ Aδi(u). Then by the construction of Pi+1
, we have

a[u] ∈ (πi
u)

−1(B′
i) = Aδ′i+1(u) ⊆ A

δ
i+1

(u)
. If a[u] ̸∈ Aδi(u), then, by the Maximality

Lemma 3.7(2), there is b ∈ R such that b[v] = a, b[u] is an r-maximal element in
G(A

δ
i
(u)

) and a[u] ≺ b[u]. If b[u] ̸∈ Aδi+1(u) then we get a contradiction with the

construction of Pi+1
. Otherwise, a[u] ∈ A

δ
i
(u)

as required.

As P = P0
, it has no solution φ with φ(v) = a.

We will use θv and Bv to denote the shortest sequences of congruences and
their classes witnessing that Sv is not hereditarily strongly ry/rb-connected. The
length k of these sequences is called the depth of v. If Sv is hereditarily strongly
ry/rb-connected, then the depth of v is defined to be ∞.
Thus if P∗

v,B,θ
has no solution for some v,B and θ, then the Double Connected

Tightening Lemma) 5.16 claims that P can be tightened. Otherwise P can be
solved using the algorithm Ry/rb-Conn (see Fig. 5.4).

6. RED/BLUE-CONNECTED RELATIONS

In this section we consider the most difficult case of conservative constraint prob-
lems. We saw in the previous sections that such a problem can be reduced to
smaller problems if either all the domains in the problem are both strongly ry- and
strongly rb-connected, or there is a domain which is not strongly rb-connected, or
all elements of all the domains are r-maximal. Thus in the remaining case we as-
sume that every domain is strongly rb-connected, and there is a domain, for which
the quasi-order ≺ is non-trivial in the sense that there are a, b such that a ≺ b,
but not b ≺ a. It is not difficult to come up with an example that shows that
ry-rectangularity does not hold in this case, even for the sets of r-maximal elements

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.



50 · Andrei Bulatov

of the domains. Our main goals in this section are: to introduce another type
of rectangularity, max-rectangularity, that uses the non-triviality of ≺; to prove
that in the case considered this type of rectangularity holds; and finally to use
max-rectangularity to solve conservative constraint problems.
In order to achieve these goals we first study certain properties of r-paths in re-

lations (Section 6.1). Then in Section 6.2 we define the filter of an element a with
respect to quasi-order ≺ as the set of elements b with a ≺ b, and the set max(a) of r-
maximal elements associated with a as the set of elements strongly ry-connected to
the r-maximal elements from the filter of a. We also introduce another quasi-order
⊑ induced by the reverse inclusion of sets max(a). We use these notions to prove
several auxiliary results that basically amount to say that under certain conditions
the set of r-maximal elements associated with some tuple can be decomposed into
the direct product of sets of r-maximal elements associated with fragments of the
tuple. The culmination of this section is the Maximal Rectangularity Proposi-
tion 6.11, which is very similar to the Rectangularity Proposition 5.4, but uses sets
max(a) for a’s that are minimal with respect to ⊑ instead of rb- (ry-) maximal
components, and sets J(m, v, B) instead of J(rb, v, B), J(ry, v, B). Finally, in Sec-
tion 6.4, we use the Maximal Rectangularity Proposition 6.11 to reduce problems
over domains of the described type to problems over strongly ry-connected domains.
We will call a strongly ry-connected component simply an ry-component.

6.1 Paths

In this section we prove an auxiliary property roughly stating that if (a1, b1), . . . , (ak, bk)
is an r-path in a subdirect product of two domains then either, for any tuple c from
the product such that c[1] = ai and c[2] ∈ {b1, . . . , bk}, we have c[2] = bi, or for
every i, j, there is a tuple c in the product such that c[1] = ai and c[2] = bj .
Let a1, . . . , ak be an r-path in G(A), A ∈ A. It is said to be irreducible if, for any

i ∈ k − 2, if ai ≤ ai+2 then ai+1 = . . . = ak. In other words, an r-path is irreducible
if none of the intermediate elements can be omitted without destroying the r-path.

Lemma 6.1. Let R be an n-ary relation and a1, . . . ,ak ∈ R an r-path. Then,
for any i, j ∈ n, there is an r-path b1, . . . ,bm such that b1 = a1, b1[l], . . . ,bm[l] ∈
{a1[l], . . . ,ak[l]}, for l ∈ n, bm[i] = ak[i],bm[j] = ak[j], and both b1[i], . . . ,bm[i]
and b1[j], . . . ,bm[j] are irreducible.

Proof. By induction on the the number of different elements in the sequences
a1[1], . . . ,ak[1] and a1[2], . . . ,ak[2].

Now we prove the main result of Section 6.1.

Lemma 6.2 (Path Alignment Lemma). Let a1, . . . ,ak ∈ R be an r-path such
that a1[1], . . . ,ak[1] and a1[2], . . . ,ak[2] are irreducible, and ak−1[1] ̸= ak[1]. If
there is b ∈ R such that b[1] = ak[1] and b[2] = ak−1[2], then
(1) there is c ∈ R such that c[1] = a1[1] and c[2] = ak−1[2];
(2) if k > 2 then, for any 1 ≤ i, j ≤ k there is cji ∈ R such that cji [1] = ai[1] and

cji [2] = aj [2].
If, in addition, for any l ∈ {3, . . . , n}, b[l] ∈ {a1[l], . . . ,ak[l]}, then the tuples c,
cji can be chosen such that c[l], cji [l] ∈ {a1[l], . . . ,ak[l]} for any l ∈ {3, . . . , n} (see
Fig. 6.1).
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a1 a2 a3 a4 a1 a2 a3 a4

b

Fig. 6.1. Skew tuples in a crossed r-path

Note that if, say, ak−1[2] = ak[2] then b can chosen to be ak.

Proof. (1) We begin with constructing a subsequence j1, . . . , jl from 1, . . . , k
such that j1 = k − 1; let p be such that ak−p−1[2] ̸= ak−p[2] = ak−p+1[2] = . . . =
ak−1[2]. Then set j2 = k − p − 2, and if ji is defined then ji+1 = ji − 2. Thus,
⟨aji+1 [2],aji [2]⟩ ∈ β ∪ γ or aji [2] ≤ aji+1 [2] for any i < l.

Claim 1. For any r ∈ l − 1, there are br
jr−1+1, . . . ,b

r
k ∈ R such that br

s[1] = as[1]
and br

s[2] = ajr [2] for any i ∈ {3, . . . , n} and any s ∈ {jr−1 + 1, . . . , k}. There
are bl

1, . . . ,b
l
k ∈ R such that bl

s[1] = as[1] and bl
s[2] = ajl [2]. Moreover, if for

any i ∈ {3, . . . , n}, b[i] ∈ {a1[i], . . . ,ak[i]}, then br
s[i] ∈ {a1[i], . . . ,ak[i]} for any

i ∈ {3, . . . , n}, r ∈ l and s ∈ {jr−1 + 1, . . . , k}.
We prove the claim by induction on r. To avoid repetitions we start with proving

induction step, and then observe that the base case for induction also follows from
our arguments. First we show the existence of br

s for s ∈ {jr, . . . , k}. Clearly, we
do not need to do this for r = 1, since in this case br

jr+1 = b1
k can be chosen to be

b, and br
jr

can be chosen to be ak−1.
The tuple br

jr
can be chosen to be ajr . Furthermore, if br

s is already obtained,

then set br
s+1 = f(br

s,b
r−1
s+1). Since br

s[1] = as[1] ≤ as+1[1] = br−1
s+1[1] and

⟨br
s[2],b

r−1
s+1[2]⟩ ∈ β ∪ γ or br−1

s+1[2] ≤ br
s[2] where br

s[2] = ajr [2], b
r−1
s+1[2] = ajr−1 [2],

the obtained tuple satisfies the required conditions.
Notice that br

jr−1 can be chosen to be f(ajr−1,b
r
jr+1). If r ̸= 1 then we are done.

In the base case of induction, if r = 1, we need to obtain b1
s for s ∈ {j1−2, . . . , j2+

1} = {k−p−1, . . . , k−3}. This can be done by setting, b1
s = f(as,b

1
s+2), for each

s = k − 3, . . . , k − p− 1.
The last statement of the claim also follows from the argument above.

Claim 2. For any t, jl ≤ t < k, there are ct1, . . . , c
t
k ∈ R such that ct1[2] = . . . =

ctk[2] = at[2] and cts[1] = as[1] for s ∈ k.

We prove the claim by induction on t. By Claim 1, there exist bl
1, . . . ,b

l
k such

that bl
1[2] = . . . = bl

k[2] = ajl [2] and bl
s[1] = as[1], which proves the base case of

induction, that is t = jl. So, suppose that ct1, . . . , c
t
k are found. Then, ct+1

t+1 = at+1

and, for j ∈ {t+2, . . . , k}, we get ct+1
j = f(ctj , c

t+1
j−1). Finally, for j ∈ {t, t−1, . . . , 1},

we set ct+1
j = f(ctj , c

t+1
j+2).

Claim 2, implies, in particular, that there is c = ck−1
1 satisfying the conditions

specified in part (1) of the lemma.
(2) If k > 2 then using Claim 2 it suffices to construct tuples c11, . . . , c

1
k and,

possibly, ck1 , . . . , c
k
k. First, we set ckk = ak, ckk−2 = f(ck−1

k−2, c
k
k), and ckk−1 =

f(ckk−2,ak−1). Then, for any j ∈ {k − 3, . . . , 1}, ckj = f(ck−1
j , ckj+2). The tuples
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a

b
max(a)=max(b)

Figure 6.2

satisfy the conditions: ckj [1] = aj [1], j ∈ k, and ck1 [2] = . . . = ckk[2] = ak[2]. As is

easily seen, c11 can be chosen to be a1, and, for any 1 < i ≤ k, c1i = f(c1i−1, c
3
i ).

6.2 Maximal elements

We use Rmax to denote the union of all r-maximal components from G(R), R ∈ Γ.
Recall that a ≺ b for a,b ∈ R indicates the fact that there is an r-path connecting
a with b. For an element a ∈ R, the filter F(a) generated by a is defined to be
the set of all b ∈ R such that a ≺ b. For any a ∈ A, A ∈ A, we define the set of
corresponding r-maximal elements as follows (see Fig. 6.2):

max(a) = {b ∈ Amax | there is c ∈ Amax ∩ F(a) such that

c, b are strongly ry-connected in G(Amax).

If R ∈ Γ is a subdirect product of A1, . . . , An, then, for any a ∈ R, we set
max(a) = {b ∈ R | b[i] ∈ max(a[i]) for any i ∈ n}.
For a,b ∈ R, we write a ⊑ b if and only if max(b) ⊆ max(a). Clearly, ≺

refines ⊑, as a ≺ b implies max(b) ⊆ max(a). If a ⊑ b and b ⊑ a, that is if
max(a) = max(b), then a,b are said to be indistinguishable. Obviously, if a,b lie
in the same strongly r-connected component, then they are indistinguishable. The
classes of the equivalence relation ⊑ ∩ ⊑−1 are called the i-components.
We first make an easy observation.

Lemma 6.3. If a, b are not indistinguishable, say a ̸⊑ b, then there is c ∈ F(b)
such that c ̸∈ F(a).

The next lemma shows that max(a) for a relation can be defined in the same way
as for a single set.

Lemma 6.4. If a,b ∈ R are such that a ∈ max(b), then there is c ∈ F(b) ∩
max(b) such that c is strongly ry-connected to a in G(Rmax).

Proof. By induction on the arity of R.

For a set B ⊆ R we denote by max(B) the set
∪

a∈B max(a). The next lemma
follows straightforwardly from the definition of max(a) and Lemma 3.7.

Lemma 6.5. Let B ⊆ R, and I ⊆ n. Then max(prIB) = prI max(B).
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Fig. 6.3. Lemma 6.6. Cylinders represent sets of tuples or their fragments. Crossed dotted lines

indicate direct products of two sets.

As we declared in the beginning of this section, our goal is to prove some kind of
rectangularity for sets of r-maximal elements. The following two lemmas provide
some weak and preliminary version of this property.

Lemma 6.6. Let R be a subdirect product of R1, R2 ∈ Γ, and A ⊆ R1, B ⊆ R2

such that max(A) × max(B) ⊆ R. If for a ∈ R1 there is b ∈ R2 with (a,b) ∈ R
and max(b) ⊆ max(B), then max(a)×max(B) ⊆ R (see Fig. 6.3).

Proof. Suppose thatR1, R2 are subdirect products ofA1, . . . , Am andAm+1, . . . ,
Am+n respectively. Take a′ ∈ max(a). We have to show that, for any c ∈ max(B),
the tuple (a′, c) ∈ R. By Lemma 6.5, max(a) = prm max(a,b), i.e. there is
b′ ∈ max(B) with (a′,b′) ∈ R.
Take d ∈ max(A) such that the set I = {i ∈ m | a′[i],d[i] are in different ry-

component} is minimal. If a′[i],d[i] ∈ Ci for i ∈ m − I, where Ci is a strongly
ry-connected component of G(max(Ai)) then by Lemma 6.5,

prm−I max(a) ∩
∏

i∈m−I

Ci = prm−I max(A) ∩
∏

i∈m−I

Ci.

Therefore, d can be chosen such that prm−Id = prm−Ia
′. Since max(A)×max(B) ⊆

R, we have (d,b′), (d, c) ∈ R.

Consider the tuple

(
d′

e

)
= h

((
d
c

)
,

(
d
b′

)
,

(
a′

b′

))
. If i ∈ m is such that

⟨a′[i],d[i]⟩ ∈ α ∪ β then a′[i] = d[i] and d′[i] = a′[i]. If ⟨a′[i],d[i]⟩ ∈ γ then d′[i] =
a′[i], because h is a Mal’tsev operation on {a′[i],d[i]}. Thus d′ = a′. Furthermore,
e[i] = c[i] whenever ⟨b′[i], c[i]⟩ ∈ β∪γ or b′[i] ≤ c[i], i ∈ {m+1, . . . ,m+n}. There-
fore c[i] ≤ e[i]; and, since both e, c are r-maximal, the Generalized Connectedness
Lemma 5.2(1) implies that e, c are in the same strongly r-connected component.
There is an r-path e = e1, e2, . . . , eq = c. We have (a′, e1) ∈ R; and since

(d, ei) ∈ R for all i ∈ q, if (a′, ei) ∈ R then

(
a′

ei+1

)
= f

((
a′

ei

)
,

(
d

ei+1

))
∈ R.

Thus (a′, c) ∈ R, and the lemma is proved.

Corollary 6.7. Let R be a subdirect product of R1, R2 ∈ Γ, A ⊆ R1, B ⊆
R2, and (a1,a2) ∈ R is such that max(a1) ⊆ max(A), max(a2) ⊆ max(B). If
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Fig. 6.4. The Fork Lemma 6.8.

max(a1) × max(B) ⊆ R and, for any b1 ∈ max(A), there is b2 ∈ max(a2) such
that (b1,b2) ∈ R, then max(A)×max(B) ⊆ R.

Proof. For any b1 ∈ max(A), there is b2 ∈ max(a2) ⊆ max(B) such that
(b1,b2) ∈ R; moreover, as max(a1) × max(B) ⊆ R, we are in the conditions of
Lemma 6.6, and therefore max(b1)×max(B) ⊆ R. Since this holds for every tuple
b1 ∈ max(A), the result follows.

Now we are in a position to state and prove (see Appendix) the main technical
lemma.

Lemma 6.8 (Fork Lemma). Let R be a subdirect product of R1, R2 ∈ Γ, which
are subdirect products of A1, . . . , Am ∈ A and Am+1, . . . , Am+n ∈ A, respectively,
and o ∈ R1, B ⊆ R2 such that {o}×B ⊆ R. There is I ⊆ K = {m+1, . . . ,m+n}
such that max({o} × prK−IB)×max(prIB) ⊆ R, and all members of prK−IB are
indistinguishable (see Fig. C.2).

6.3 Max-rectangularity

Let R be a subdirect product R of A1, . . . , An. An i-component of G(R) minimal
with respect to ⊑ will be called minimal, a member of a minimal i-component will
be called a minimal element. For a coordinate position j ∈ n and a minimal i-
component B of G(Aj), we define the set JR(m, j, B) (usually we will omit R) as
follows

JR(m, j, B) = {i ∈ n | for any a,b ∈ R, such that a[j] ∈ B, the element b[j]

belongs to B if and only if a[i],b[i] are minimal and indistinguishable}

The relation R is said to be max-rectangular if, for any r-maximal a ∈ R, any min-
imal i-components B1, . . . , Bn of G(A1), . . . ,G(An), respectively, such that a[i] ∈
max(Bi), i ∈ n, any j ∈ n and any r-maximal b ∈ prJ(m,j,Bj)R

∩
(∏

i∈J(m,j,Bj)
max(Bj)

)
, the tuple c:

c[i] =

{
b[i], if i ∈ J(m, j, B),
a[i], otherwise,
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belongs to R (see Fig. 6.5). We will need two auxiliary lemmas.

Lemma 6.9. Let j ∈ n, l ∈ J(m, j, B), and B,C be minimal i-components of
G(Aj),G(Al), respectively, such that, for any o ∈ R with o[j] ∈ B, we have o[l] ∈ C.
For any a ∈ R such that a[j] ∈ F(B), the element a[l] belongs to F(C).

Proof. Without loss of generality we may assume that j = 1, l = 2. Let us
suppose that a ∈ R is such that a[1] ∈ F(B) while a[2] ̸∈ F(C). Notice that if
a[1] ∈ B then a[2] ∈ C; therefore, we may assume that a[1] ∈ F(B) − B. There
is b ∈ R such that b[1] ∈ B and a[1] ∈ F(b[1]). This means that there is also
an r-path b[1] = b1, b2, . . . , bk = a[1]. This r-path can be extended to an r-path
b = b1,b2, . . . ,bk with bi[1] = bi, i ∈ k. By Lemma 6.1, b1[1], . . . ,bk[1] and
b1[2], . . . ,bk[2] can be assumed to be irreducible. Since b1[2], . . . ,bk[2] ∈ F(b[2]),
bi[2] ≤ a[2] for no i ∈ k. Therefore, this r-path satisfies the conditions of the
Path Alignment Lemma 6.2 for the tuple c = f(bk−1,a) with c[1] = a[1] = bk[1]
and c[2] = bk−1[2]. Hence, there is d ∈ R with d[1] = b[1], d[2] = bk−1[2]. If
bk−1[2] ̸∈ C then this contradicts the assumption 2 ∈ J(m, 1, B). If bk−1[2] ∈ C
then as c[1] = a[1] ̸∈ B, we again get a contradiction with the assumption 1 ∈
J(m, 2, C).

Lemma 6.10. Let j ∈ n, l ∈ J(m, j, B), and B,C be minimal i-components of
G(Aj),G(Al), respectively, such that, for any o ∈ R with o[j] ∈ B, we have o[l] ∈ C.
For any a ∈ R such that a[j] ∈ max(B), the element a[l] is such that C ⊑ a[l].

Proof. We may assume that j = 1, l = 2. Let us suppose that a ∈ R is
such that a[1] ∈ max(B) while C ̸⊑ a[2]. By the Maximality Lemma 3.7(1), we
may assume that a[2] is r-maximal. Take a ∈ max(B) ∩ F(B) such that a[1] is
strongly ry-connected with a in max(B), and let a[1] = a0, a1 . . . ak = a be an
ry-path such that a1, . . . , ak ∈ max(B). Let also a = a0,a1 . . .ak be an expansion
of this r-path. If all the elements a1[2] . . .ak[2] are r-maximal then, by Lemma 6.9,
ak[2] ∈ max(C) ∩ F(C), a contradiction with the assumption C ̸⊑ a[2]. Thus, we
have to show that the r-path can be chosen such that a1[2] . . .ak[2] are r-maximal.
Let i be minimal such that ai[2] is not r-maximal. Then i ≥ 1, and ⟨ai−1,ai⟩ ∈ β.

Take a r-maximal b such that ai[2] ≺ b. By the Maximality Lemma 3.7(1), there
is b ∈ R such that b[1] = ai[1] and b[2] = b. If ai−1 ≤ b then replace ai with
c1 = f(ai−1,b) and c2 = p(c1,b). By the P-Lemma ai−1, c1, c2 is an ry-path, and
c1[1] = ai−1[1], c2[1] = ai[1] and c1[2], c2[2] = b. If b ≤ ai−1[2] or ⟨ai−1[2], b⟩ ∈ γ
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then replace ai with c = p(ai−1,b). We have that ai−1 is strongly ry-connected
with c, and c[1] = ai[1], c[2] = ai−1[2]. Finally, if ⟨ai−1[2], b⟩ ∈ β, then ai−1 and
c = p(ai−1,b) are strongly ry-connected, and c[1] = ai[1] and c[2] = b. Then the
ry-path ai . . . ak = a can be expanded with c (or c2)= a′i . . .a

′
k.

Now we are in a position to prove the main result of Section 6.

Proposition 6.11 (Maximal Rectangularity Proposition). Let the G(Ai)
be strongly rb-connected. Then R is max-rectangular.

Proof. Let a ∈ max(R) and B1, . . . , Bn be minimal i-components of G(A1), . . . ,
G(An), respectively, such that a[i] ∈ max(Bi). Let also I1, . . . , Ik ⊆ n be the sets
of the form J(m, i, Bi), and I1 = J(m, 1, B1). Without loss of generality we have
I1 = {1, . . . ,m}. We prove that, for any a′ ∈ prmR ∩ (max(B1)× . . .×max(Bm)),
the tuple (a′,prn−I1a) belongs to R.

Claim 1. If b ∈ R is such that, for certain j ∈ k and i ∈ Ij , b[i] ∈ Bi, then, for
any l ∈ Ij , b[l] ∈ Bl.

Note that the definition of sets J(m, i, Bi) only implies that b[l] belongs to some
minimal i-component, which is the same for all b with b[i] ∈ Bi.
By Lemma 6.9, b[l] ∈ F(Bl). On the other hand, b[l] belongs to a minimal

i-component B of G(Rl). Since Bl ⊑ B and both are minimal, we get B = Bl.

Claim 1 implies that, for any j ∈ k, prIjR∩
∏

i∈Ij
max(Bi) = max(prIjb), where

b ∈ R is an arbitrary tuple such that b[i] ∈ Bi for i ∈ Ij .
If Bi contains an r-maximal element, then max(Bi) ⊆ Bi and G(max(Bi)) is

strongly ry-connected. Indeed, r-maximal elements from different ry-components of
G(max(Bi)) are not indistinguishable.

Claim 2. Let Bj , for a certain j ∈ n, contain an r-maximal element. Then, for
every i ∈ J(m, j, Bj), Bi contains an r-maximal element.

Let d ∈ max(Bj). By the Maximal Expansion Lemma 3.8, it can be expanded
to an r-maximal d ∈ R; in particular, d[i] is r-maximal. Since i ∈ J(m, j, Bj), we
have d[i] ∈ Bi, a contradiction.

Claim 3. Let Bj , for a certain j ∈ n, contain an r-maximal element. Then
J(ry, j,max(Bj)) ⊆ J(m, j, Bj).

We have to show that, for any i ∈ n− J(m, j, Bj), we have i ̸∈ J(ry, j, C), where
C = max(Bj). Without loss of generality, let us assume that j = 1, i = n. Since
n ̸∈ J(m, 1, B1), either
(1) there is c ∈ R such that c[1] ∈ B1 and c[n] is not in a minimal i-component; or
(2) there are c,d such that c[1],d[1] ∈ B1, c[n],d[n] belong to different minimal
i-components; or
(3) there is a minimal i-component B of G(Rn) such that, for any c ∈ R with
c[1] ∈ B1, c[n] ∈ B, but there is d ∈ R with d[n] ∈ B, d[1] ̸∈ B1.

(1) Take d ∈ R such that d[n] is minimal and d[n] ⊑ c[n]. Since max(d[n]) ̸⊆
max(c[n]), there is d ∈ F(d[n]) − max(c[n]). This element can be chosen to be
r-maximal and can be expanded to an r-maximal tuple e ∈ max(d) ∩ F(d), in
particular, there exists an r-path d = d1 ≤ . . . ≤ dr = e.
Suppose first that d[1] ∈ B1, that is max(c[1]) = max(d[1]) and e[1] ∈ max(c[1]).

Therefore, F(c) ∩ max(c) contains a tuple e′ such that e[1], e′[1] are strongly ry-
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connected. Clearly, e[n], e′[n] are in different strongly ry-connected components of
G(max(Rn)). Thus, e, e

′ witness that n ̸∈ J(ry, 1,max(B1)).
Now, let d[1] ̸∈ B1. Since B1 is a minimal i-component, by Lemma 6.3, there is

e ∈ F(c[1])−max(d[1]). The element e can be assumed to be r-maximal, and there
is an r-maximal tuple e ∈ F(c) with e[1] = e. Since max(c[n]) ⊆ max(d[n]), there
is an r-maximal tuple e′ ∈ F(d) such that e[n], e′[n] are strongly ry-connected in
max(d[n]). Furthermore, as e[1] ̸∈ max(d[1]), e[1], e′[1] are in different strongly
ry-connected components of G(max(A1)); this implies n ̸∈ J(ry, 1,max(B1)).

(2) Since c[n],d[n] belong to different minimal i-components, there is d ∈ max(c[n])−
max(d[n]). This element can be expanded to an r-maximal tuple e from F(c). Fur-
thermore, as max(c[1]) = max(d[1]), there is an r-maximal e′ ∈ F(d) such that e′[1]
is in the same strongly ry-connected component with e[1]. The elements e[n], e′[n]
are not strongly ry-connected, that implies n ̸∈ J(ry, 1,max(B1)).

(3) There is d ∈ F(c[1]) − max(d[1]) which can be expanded to an r-maximal
tuple e ∈ F(c). Since e[n] ∈ max(d[n]), there is an r-maximal e′ ∈ F(d) such
that e[n], e′[n] are strongly ry-connected. As e[1], e′[1] are in different strongly
ry-connected components, we get what is required. The claim is proved.

Claim 3 implies that J(m, 1, B1) is a union of sets of the form J(ry, i,max(Bi)).

We proceed by induction on n. If n = 1 then the result is obvious. So, let us
assume that it is proved for any number less than n.
If B1 contains an r-maximal element then, by Claim 3, I1 is the union of

J(ry, i,max(Bi)), i ∈ I1. Moreover, by Claim 2, every Bi, i ∈ m, contains an
r-maximal element. Let a′ be a tuple strongly ry-connected to prI1a, that is, by
the Generalized Connectedness Lemma 5.2(2), for any a′ ∈ prmR∩(max(B1)×. . .×
max(Bm)). By the Rectangularity Proposition 5.4(1), the tuple a′′ corresponding
to a′ belongs to R. So, suppose that B1 contains no r-maximal elements.
First we show that there are b ∈ R with b[1] ∈ B1 and I1 ⊆ J ⊆ n, n ∈ K =

n − J , such that max(prJb) ×max(prKb) ⊆ R. There are three cases to consider
similar to cases (1)–(3) in the proof of Claim 3.

Case 1. There are b ∈ R and j ∈ n − I1, such that b[1] ∈ B1 and b[j] does not
belong to a minimal i-component.

Without loss of generality we may assume that j = n. Take c ∈ R such that c[n]
is minimal and c[n] ⊑ b[n].

Subcase 1.1. c[1] ∈ B1.

Since b[n] ̸⊑ c[n], there is d ∈ F(c[n])−max(b[n]). This element can be chosen
to be r-maximal and can be expanded to an r-maximal tuple d ∈ max(c) ∩ F(c).
As max(b[1]) = max(c[1]), d[1] ∈ max(b[1]). Therefore, F(b)∩max(b) contains a
tuple e such that e[1],d[1] are strongly ry-connected and, by Lemma 6.1, there ex-
ists an r-path b = b1 ≤ . . . ≤ br = e such that b1[1], . . . ,br[1] and b1[n], . . . ,br[n]
are irreducible.
Clearly, e[n],d[n] are in different strongly ry-connected components of G(max(An)).

Therefore, n ̸∈ J(ry, 1, C) where C is the ry-maximal component containing e[1],d[1],
and, by the Rectangularity Proposition 5.4(1), there exists e′ ∈ R such that e′[1] =
e[1], e′[n] = d[n]. The r-path b1, . . . ,br and the tuple f(br−1, e

′) satisfy the con-
ditions of the Path Alignment Lemma 6.2, hence, there is b′ ∈ R with b′[1] = e[1],
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b′[n] = b[n] (see Fig. 6.6). Set J = {i ∈ n | b[i],b′[i] are indistinguishable}, K =
n − J. Clearly, both sets are non-empty, as n ∈ J and 1 ∈ K. By the Fork
Lemma 6.8, where in the notation of Lemma 6.8 o = (b[n]), K = n− 1, I =
J − {n}, and B = {prn−1b, prn−1b

′}, we have max(prJb) ×max(prKb) ⊆ R. By

induction hypothesis, max(prKb) = max(prI1b) × max(prK−I1b); consequently,
max(prI1b)×max(prn−I1b) ⊆ R.

Subcase 1.2. c[1] ̸∈ B1.

Since B1 is a minimal i-component, by Lemma 6.3, there is d ∈ F(b[1]) −
max(c[1]). The element d can be assumed to be r-maximal and there is an r-
maximal tuple d ∈ F(b) with d[1] = d. Since max(b[n]) ⊆ max(c[n]), there
is an r-maximal tuple e ∈ F(c) such that d[n], e[n] are strongly ry-connected in
max(c[n]). Furthermore, as d[1] ̸∈ max(c[1]), d[1], e[1] are in different strongly
ry-connected components of G(max(R1)).
By the Rectangularity Proposition 5.4(1) and the Generalized Connectedness

Lemma 5.2(2), there is an r-maximal e′ ∈ R such that e′[1] = e[1], e′[n] = d[n]
(see Fig. 6.7(1)). Consider an r-path b = d1 ≤ d2 ≤ . . . ≤ dr = d such that
d1[1], . . . ,dr[1] and d1[n], . . . ,dr[n] are irreducible. Considering the subcases below
we show that there exist b′ ∈ R or b′′ ∈ R such that b′[n] = b[n] and b′[1] equals
either d[1] or e[1], or b′′[1] = b[1] and b′′[n] = d[n].

Subcase 1.2.1. dr−1[1] ̸≤ e[1].

The r-path d1, . . . ,dr and the tuple d′ = f(dr−1, e
′) satisfy the conditions of the

Path Alignment Lemma 6.2. Therefore, if r > 2 then there is b′ ∈ R such that
b′[n] = b[n] and b′[1] = d[1] (see Fig. 6.7(2)). If r = 2 then the tuple b′′ = d′

satisfies the required conditions.

Let l be the least number such that dl[1] ≤ e[1].

Subcase 1.2.2. dl[n] ̸≤ e[n].
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Consider the r-path d1, . . . ,dl,d
′, where d′ = f(dl, e). Since d

′[1] = e[1], d′[n] =
dl[n], this r-path and the tuple d′ satisfy the conditions of the Path Alignment
Lemma 6.2 and there is b′ with the required properties.

Let m be the least number such that dm[n] ≤ e[n]. By Subcase 1.2.2, we may
assume m ≤ l.

Subcase 1.2.3. m < l.

For d′ = f(dm, e) we have d′[n] = e[n], d′[1] = dm[1]. If m = 1 then we may
choose b′′ = d′. Otherwise, the r-path d1, . . . ,dm,d

′ and d′ satisfy the conditions
of the Path Alignment Lemma 6.2. Therefore, there exists a tuple d′′ ∈ R such
that d′′[1] = dm−1[1], d

′′[n] = dm[n].
By induction on j ∈ {m, . . . , r} we show that there is a tuple d′′

j such that
d′′
j [1] = dj−1[1], d

′′
j [n] = dj [n]. For the base case of induction we may set d′′

m = d′′.
If the existence of d′′

j is proved, then set d′′
j+1 = f(dj , f(d

′′
j ,dj+1)). It is not hard

to verify that it satisfies the required conditions.
The r-path d1, . . . ,dr and the tuple d′′

r satisfies the conditions of the Path Align-
ment Lemma 6.2, which implies that there exists b′ ∈ R with b′[1] = dr[1],
b′[n] = b[n].

Subcase 1.2.4. m = l.

Let c = e1 ≤ e2 ≤ . . . ≤ eq = e be an r-path connecting c and e, such that
e1[1], . . . , eq[1] and e1[n], . . . , eq[n] are irreducible, and let s be the maximal number
such that either dl[1] ̸≤ es[1] or dl[n] ̸≤ es[n] (see Fig. 6.9). Since b[n] ̸⊑ c[n],
we have b[n] is not r-connected to c[n], therefore dl[n] ̸≤ c[n] and such an s
exists. Analogously to e′ there is a r-maximal e′′ ∈ R such that e′′[1] = d[1],
e′′[n] = e[n]. As d[1] ̸∈ F(c[1]), we have eq−1[1] ̸≤ dj [1], j ∈ r. Therefore, the tuple
d′′ = f(eq−1, e

′′) satisfies the conditions: d′′[1] = eq−1[1], d
′′[n] = e[n] = eq[n].

If q > 2 then the Path Alignment Lemma 6.2 can be applied to e1, . . . , eq and
d′′. There are a1,a2 ∈ R such that a1[1] = es[1], a1[n] = eq[n] and a2[1] = eq[1],
a2[n] = es[n].
If dl[1] ̸≤ es[1] then consider the r-path d1, . . . ,dl, f(dl, e) and the tuple d′ =

f(dl,a1). Since d′[1] = dl[1] and d′[n] = e[n], by the Path Alignment Lemma 6.2,
there is b′ with b′[1] = e[1], b′[n] = b[n]. If dl[n] ̸≤ es[n] then consider the
r-path d1, . . . ,dl, f(dl, e) and the tuple d′ = f(dl,a2). Since d′[1] = e[1] and
d′[n] = dl[n], again by the Path Alignment Lemma 6.2, there is b′ with b′[1] = e[1],
b′[n] = b[n].
Finally, let q = 2; then, since d[1] ≤ e[1] and dl[n] ≤ e[n], we have s = 1. As

before, we get a1 = f(c, e′′) with a1[1] = es[1], a1[n] = eq[n]. If c[n] ̸≤ d[n] then
we also get a2 = f(c, e′) with a2[1] = eq[1], a2[n] = es[n]. Then we proceed as
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in the previous paragraph. If c[n] ≤ d[n] then set d′ = f(dr−1, f(c,d)). Since
d′[1] = dr−1[1], d

′[n] = dr[n], the r-path d1, . . . ,dr and the tuple d′ satisfy the
conditions of the Path Alignment Lemma 6.2 and there is b′′ with b′′[1] = b[1] and
b′′[n] = d[n].

Now, setting J = {i ∈ n | b[i],b′[i] are indistinguishable} or J = {i ∈ n |
b′′[i],d[i] are indistinguishable}, K = n− J we can argue as in Subcase 1.1.

Case 2. For any b ∈ R such that b[1] ∈ B1 and any i ∈ n, b[i] belongs to a minimal
i-component, but there are b, c ∈ R such that b[1], c[1] ∈ B1 and b[n], c[n] are not
indistinguishable.

We shall not use the fact that c[n] is in a minimal i-component. However, b[n]
is assumed to be a member of a minimal i-component. There is d ∈ F(b[n]) −
max(c[n]). The element d can be expanded to an r-maximal tuple d ∈ F(b)
so that d[n] = d. There is an r-path c = c1, c2, . . . , cl = e such that e is r-
maximal, e[1],d[1] are strongly ry-connected and c1[1], . . . , cl[1], c1[n], . . . , cl[n]
are irreducible.

As in Case 1, it can be shown that there is a tuple e′ such that e′[1] = d[1],
e′[n] = e[n]. Again we shall show that there exist non-empty J,K = n − J ⊆ n
such that max(prJb)×max(prKb) ⊆ R.

Since d[n] ̸∈ max(c[n]), we have cl−1[n] ̸≤ d[n]. The r-path c1, . . . , cl and the
tuple d′ = f(cl−1, e

′) satisfy the conditions of the Path Alignment Lemma 6.2;
hence, there is c′ ∈ R such that c′[1] = e[1] and c′[n] = c[n].

We set J = {i ∈ n | c[i], c′[i] are indistinguishable}, K = n − J . Clearly,
both sets are non-empty, as n ∈ J and 1 ∈ K. By the Fork Lemma 6.8, where
o = c[n] and I = J −{n}, we get max(prJc)×max(prKc) ⊆ R. Since c[1] ∈ B1, by
induction hypothesis, max(prK−I1c)×max(prI1c) ⊆ R. Therefore, max(prn−I1c)×
max(prI1c) = max(prn−I1c)×max(prI1b) ⊆ R. Finally, making use of Lemma 6.6,
we get max(prJb)×max(prKb) ⊆ R where J = n− I1 and K = I1.

Case 3. For any b ∈ R such that b[1] ∈ B1 and any i ∈ n, b[i] belongs to a
minimal i-component, but there are b, c ∈ R such that b[1] ∈ B1, b[n], c[n] belong
to the same minimal i-component B and b[1], c[1] are not indistinguishable.

Subcase 3.1. B contains an r-maximal element.

Let d ∈ F(b) be an r-maximal tuple. Let us denote the set J(m, n,B) by I. By
Claim 3, I is the union of the sets J(ry, i, Ci) where i ∈ I and Ci is the strongly
ry-connected component of G(max(Ai)) containing d[i]. Since G(max(prId)) is
strongly ry-connected, by the Rectangularity Proposition 5.4(1), prn−Id×max(prId) =
prn−Id×max(prIb) ⊆ R. Furthermore, by Lemma 6.6, max(prn−Ib)×max(prIb) ⊆
R and we may set J = n− I, K = I.

Subcase 3.2. B contains no r-maximal element.

In this case the proof is similar to that in Case 2.

Now, by induction hypothesis max(prJ−I1b) × max(prI1b) ⊆ prJR. Therefore,
max(prJ−I1b) × max(prI1b) × max(prKb) = max(prn−I1b) × max(prI1b) ∈ R.
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Since max(prI1b) =

(
R ∩

∏
i∈I1

max(Bi)

)
, we get

max(prn−I1b)×
(
R ∩

∏
i∈I1

max(Bi)

)
⊆ R.

Finally, as prn−I1a ∈ max(prn−I1b) and a′ ∈
(
R ∩

∏
i∈I1

max(Bi)

)
, making use

of Lemma 6.6, we get the required result.

6.4 Maximal strongly r-connected components

We complete Section 6 by showing how the results of this section can be used to
solve constraint satisfaction problems, in which the graph of every domain Sv is
strongly rb-connected, but, for a certain v ∈ V , there is an r-connected component
of G(Sv) which is not strongly r-connected.
Let P = (V ;A; δ; C) be such a problem, and let S0

v denote the set of all minimal
elements from Sv, v ∈ V . First, similar to Section 5.3, we extend the notation
J(m, i, B) from relations to problem instances. The following property follows
straightforwardly by the construction of J(m, v, B). By Bw we denote the minimal
i-component corresponding to w ∈ J(m, v, B).

Lemma 6.12. If φ is a solution to P such that φ(v) ∈ B then φ(w) ∈ Bw for
any w ∈ J(m, v, B).

We consider 4 cases: first, J(m, v, B) ̸= V for some v ∈ V and minimal i-component
B of G(Sv); second, J(m, v, B) = V for all v and B, but S0

v ̸= Sv for some v ∈ V ;
third, J(m, v, B) = V and S0

v = Sv for all v and B, but G(Sv) contains more than
one i-component for some v ∈ V ; and forth, S0

v = Sv and G(Sv) has only one
i-component for all v, this implies J(m, v, B) = V for all v and (a unique) B. As
before, we construct subproblems of P, and prove that if some of those subproblems
has no solutions assigning an r-maximal element a from some domain, then P can
be tightened by removing a from the corresponding domain.

Case 1. In this case the subproblems of P correspond to the sets of the form
J(m, v, B) and are defined as follows. For v ∈ V and a minimal i-component
B of G(Sv), by P+

v,B we denote the constraint satisfaction problem (W ;A; δ′; C′)
where W = J(m, v, B), Aδ′(w) = {a ∈ Sw | Bw ⊑ a} and, for each constraint
⟨s,R⟩ ∈ C, we include C ′ = ⟨s ∩W,R′⟩ in C′, with R′ = {prs∩Wa | a ∈ R, a[w] ∈
Aδ′(w) for w ∈ s ∩W}. As is easily seen, for any v, w such that w ∈ J(m, v, Bv), we

have P+
v,Bv

= P+
w,Bw

.

Lemma 6.13 (Maximal Solution Lemma). If P has a solution and every prob-
lem of the form P+

v,B has a solution φv,B such that, for any w ∈ J(m, v, B),
φv,B(w) ∈ max(Bw), then there is a solution ψ to P such that ψ(w) is r-maximal
for any w ∈ V .

Proof. Let φ be a solution to P and Bv, v ∈ V , a minimal i-component such
that Bv ⊑ φ(v). By Lemma 6.9, the Bv can be chosen such that for any v ∈ V
any w ∈ J(m, v, Bv), the minimal i-component Bw corresponds to Bv, that is,
for any a ∈ Sv,w, if a[v] ∈ Bv then a[w] ∈ Bw. Indeed, if it is not the case,
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let B′
w be the minimal i-component corresponding to Bv. By Lemma 3.7 there is

(a, b) ∈ F((φ(v), φ(w)) in Sv,w such that a ∈ F(Bv) and b ∈ F(B′
w) − F(Bw).

However, by Lemma 6.9 this contradicts the assumption w ∈ J(m, v, Bv). By the
assumption, for any v ∈ V , the problem P+

v,Bv
has a solution φv,Bv such that

φv,Bv (w) ∈ max(Bw) for any w ∈ J(m, v, Bv). Since P+
v,Bv

= P+
w,Bw

for any v, w
such that w ∈ J(m, v, Bv), we may assume that φv,Bv = φw,Bw .
Let W1, . . . ,Wk be the sets of the form J(m, v, Bv), let ψ1, . . . , ψk be the so-

lutions of corresponding problems P+
v,B , and let the mapping ψ be defined by

ψ(v) = ψi(v) whenever v ∈ Wi. Since, for any ⟨s,R⟩ ∈ C, (φ(v))v∈s ∈ R
and (ψ(v))v∈s∩Wj ∈ max((φ(v))v∈s∩Wj ), by the Maximal Rectangularity Propo-
sition 6.11, we have (ψ(v))v∈s ∈ R, and therefore ψ is a solution to P with the
required properties.

Lemma 6.14. If for one of the problems P+
v,B there is a variable w an r-maximal

element a from the domain of w such that no solution φ of P+
v,B satisfies φ(v) = a,

then P can be tightened by removing a from the domain of w. More precisely
φ(w) = a for no solution ψ of P.

Proof. Assume there is v ∈ V and a minimal i-component B of G(Sv) such
that J(m, v, B) ̸= V , and for some w ∈ V and a minimal i-component D of G(Sw),
the problem P+

w,D has no solution such that the value of some variable w′ equals
certain r-maximal element a. In order to get a contradiction let us assume that
there exists a solution φ of P such that φ(w′) = a. By Lemma 6.10, for any u ∈ I
and any a ∈ Sw,u, if a[w] ∈ max(D) then Bu ⊑ a[u], where Bu is the minimal
i-component of G(Su) corresponding to D, that is a[u] ∈ Aδ′(u). Therefore, φI is a

solution of P+
w,D.

By Lemma 6.14, if a problem of the form P+
v,B has no r-maximal solution, then

P can be tightened. Otherwise, the Maximal Solution Lemma 6.13 allows us to
reduce P to the smaller problems P+

v,B , and the problem Pmax = (V ;A; δ; C′) in
which every constraint relation ⟨s,R⟩ is replaced with ⟨s,R′⟩, R′ = {a ∈ R | for
any v ∈ s, a[v] is r-maximal}.
However, Lemma 6.13 cannot help us in the case when, for any v ∈ V and any

minimal i-component B, J(m, v, B) = V . In this case we need another method.

Case 2. Let P0 denote the problem (V ;A; δ0; C0), where Aδ0(v) = S0
v and for each

⟨s,R⟩ ∈ C the set C0 contains ⟨s,R0⟩ with R0 = {a ∈ R | a[v] ∈ S0
v for every v ∈ s}.

Lemma 6.15 (Single Minimal Lemma). If J(m, v, B) = Sv for every v ∈ V
and every minimal i-component of G(Sv), then every solution φ of P such that
φ(v) ∈ S0

v for some v ∈ V is also a solution of P0.

Proof. Let φ be a solution of P such that φ(v) ∈ S0
v . Since J(m, v, B) = V ,

where B is the minimal i-component containing φ(v), for any w ∈ V −{v} and any
a ∈ Sv,w such that a[v] = φ(v) we have a[w] ∈ S0

w. This implies the result.

Let P+ denote the problem (V ;A; δ+; C+), where Aδ+(v) = Sv − S0
v and for

any ⟨s,R⟩ ∈ C the set C+ contains ⟨s,R+⟩ with R+ = {a ∈ R | a[v] ∈ Sv −
S0
v for every v ∈ s}.
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Corollary 6.16. Every solution of P is a solution of P0 or of P+. Therefore
P is reducible to P0 and P+.

Lemma 6.17. If for the problem P+ there is a variable w an r-maximal element
a from the domain of w such that no solution φ of P+ satisfies φ(v) = a, then P
can be tightened by removing a from the domain of w. More precisely φ(w) = a for
no solution ψ of P.

Proof. Every solution of P is either a solution of P+ or a solution of P0. The
latter problem cannot have a solution ψ with ψ(w) = a, therefore, a can be removed
from Aδ(w).

Case 3. By the assumption S0
v = Sv and J(m, v, B) = V for all v ∈ V , and for

some w ∈ V the graph G(Sw) contains more than one i-component (all of them are
minimal).

Lemma 6.18 (Many Minimal Lemma). Let S0
v = Sv and J(m, v, B) = V for

all v ∈ V . (1) For any v, w ∈ V there is a one-to-one correspondence ξv,w between
the i-components of G(Sv) and the i-components of G(Sw) such that, for any i-
component B of G(Sv), we have ξv,w = Bw.
(2) The graph G(Sv) contains the same number of i-components for each v ∈ V ;
denote this number by ℓ.
(3) There are ℓ different problems of the form P+

v,B, which can be represented as

follows: fix v ∈ V and let B1, . . . , Bℓ be the i-components of G(Sv); then the different
problems are P+

v,B1 , . . . ,P+
v,Bℓ .

(4) for any solution φ of P, the mapping φ is solution of P+
v,B for some v ∈ V and

an i-component B of G(Sv).

Proof. (1) follows straightforwardly from the condition J(m, v, B) = V for all
v and B, and (2) is a direct consequence of (1). Statement (3) is again a direct
implication of the definition of a problem P+

v,B . If φ is a solution to P and, for
some v ∈ V , φ(v) ∈ B, where B is an i-component of G(Sv), then φ(w) ∈ ξv,w(B)
for every w ∈ V . This proves (4).

Lemma 6.19. If for one of the problems P+
v,B there is a variable w an r-maximal

element a from the domain of w such that no solution φ of P+
v,B satisfies φ(v) = a,

then P can be tightened by removing a from the domain of w. More precisely
φ(w) = a for no solution ψ of P.

Proof. Follows straightforwardly from the Many Minimal Lemma 6.18(4).

Thus, if any of the problems P+
v,B has an r-maximal solution then it is also a

solution to P. Otherwise the problem can be tightened.
Case 4. Recall that the set of r-maximal elements of Sv is denoted by Smax

v . By
the assumption S0

v = Sv, therefore G(Smax
v ) is strongly ry-connected. Note that,

although Sv is strongly rb-connected, G(Smax
v ) may be not strongly rb-connected.

First suppose that, for any v ∈ V , it is also strongly rb-connected. In this case, P
satisfies the conditions studied in Sections 4.3 and 5.5.
Then, suppose that there is v ∈ V such that G(Smax

v ) is not strongly rb-connected.
We consider the sets of the form Jmax(rb, v, B) defined as J(rb, v, B) for the prob-
lem Pmax, where B is a strongly rb-connected component of G(Smax

v ). As usual,
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having fixed v and B we get a strongly rb-connected component Bw for each
w ∈ Jmax(rb, v, B).
We define subproblems of P corresponding to the sets of the form Jmax(rb, v, B)

as follows. By Pmax
v,B we denote the constraint satisfaction problem (W ;A; δ′; C′)

whereW = Jmax(rb, v, B), Aδ′(w) is the set of all a ∈ Sw such that max(a)∩F(a) ⊆
Bw and, for each constraint ⟨s,R⟩ ∈ C, we include C ′ = ⟨s∩W,R′⟩ in C′, with R′ =
{prs∩Wa | a ∈ R, a[w] ∈ Aδ′(w) for w ∈ s ∩W}. Note that max(Aδ′(w)) = Bw.

Lemma 6.20 (All Minimal Lemma). Suppose that
(1) P is 3-minimal;
(2) Sv = S0

v for any v ∈ V ;
(3) there is v ∈ V such that G(Aδ′(v)) is not strongly rb-connected;

(4) for any v ∈ V and rb-maximal component B of G(Aδ′(v)), the problem Pmax
v,B

has a solution ψv,B such that ψv,B(w) ∈ Bw for any w ∈ Jmax(rb, v, B).

Then P has a solution φ such that φ(v) is r-maximal for any v ∈ V .

Proof. If (1)–(4) hold, the problem Pmax defined in Case 1 satisfies the condi-
tions of Red-Blue Decomposition Proposition 5.7, and therefore has a solution.

Lemma 6.21. If for one of the problems Pmax
v,B there is a variable w and r-

maximal element a from the domain of w such that no solution φ of Pmax
v,B satisfies

φ(v) = a, then P can be tightened by removing a from the domain of w. More
precisely φ(w) = a for no solution ψ of P.

Proof. We have to show that if, for a certain v ∈ V , a strongly rb-connected
component B of G(Smax

v ), and a ∈ B, the problem Pmax
v,B has no solution ψ such

that ψ(v) = a, then, for any solution φ to P, we have φ(v) ̸= a.
Supposing the contrary, let φ be a solution to P such that φ(v) = a. Then

there is w ∈ Jmax(rb, v, B) such that F(φ(w)) ∩ max(φ(w)) ̸⊆ Bw, where Bw is
the strongly rb-connected component of G(Smax

w ) corresponding to B. Let b ∈
F(φ(w)) ∩max(φ(w)) be such that b ̸∈ Bw. Take an r-path in Sv,w,(

φ(v)
φ(w)

)
=

(
a1
b1

)
≤

(
a2
b2

)
≤ · · · ≤

(
ak
bk

)
=

(
ak
b

)
.

Clearly, ak ∈ B while b ̸∈ Bw that contradicts the assumption w ∈ Jmax(rb, v, B).
Thus the elements of B can be removed from Aδ(v).

7. ALGORITHM

We are now ready to pull all the results obtained so far together and present an
algorithm that solves conservative constraint satisfaction problems. In Section 7.1,
we recall constructions used in previous sections, and prove the Tightening Propo-
sition 7.1 that allows us to remove some elements from the domains of the original
problems if the derived smaller problems have no solution. Then, in Section 7.2,
we give a formal description of the algorithm. Finally, in Section 7.3, we prove that
the algorithm is correct and estimate its time complexity.
As usual, we assume all problem instances to be 1-minimal, and all constraint

relations to be subdirect products of their domains.
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7.1 Nine types of subproblems

Before giving a formal description of the algorithm we summarize all the cases it
distinguishes and all the constructions it uses. In some sense this review is similar
to that in Section 2.7. Let P = (V ;A; δ; C) be a problem instance from CSP(Γ).
We distinguish 8 main cases.

A non-rb-connected domain. If the graph of one of the domains is not strongly
rb-connected then we construct problems of the form Prb,v,B , for v ∈ V and an
rb-maximal component B of G(Sv), that is defined to be (U ;A; δ′; C′) where U =
J(rb, v, B), Aδ′(w) = Bw for w ∈ U and, for every C = ⟨s,R⟩ ∈ C, there is C ′ =
⟨s ∩ U ;R′⟩ ∈ C such that R′ = {prs∩Ua | a ∈ R, a[w] ∈ Bw for any w ∈ s ∩ U}.
The graph of every domain of Prb,v,B is strongly rb-connected. By the Red-Blue
Decomposition Proposition 5.7, if every problem of this form has a solution then
P has a solution. The Tightening Proposition 7.1 claims that otherwise P can
be tightened by removing some elements from the domains. We use algorithm
Block-3-Width in this case.
Note that this approach works even when J(rb, v, B) = V for some v and B. In

this case, the domains of the problem Prb,v,B are strictly smaller than those of P,
as one of the domains of P is not strongly rb-connected.

In the next 3 cases every domain of P is strongly rb-connected, but there is a
domain Sv such that the set of r-maximal elements of Sv is not strongly ry/rb-
connected.

Every r-connected component of every domain is strongly r-connected. We use
two types of restricted problems in this case. Firstly, for every v ∈ V and every
strongly ry-connected component B of G(Sv), we define the problem Pry,v,B to
be (U ;A; δ′; C′) where U = J(ry, v, B), Aδ′(w) = Bw for w ∈ U and, for every
C = ⟨s,R⟩ ∈ C, there is C ′ = ⟨s ∩ U ;R′⟩ ∈ C such that R′ = {prs∩Ua | a ∈
R, a[w] ∈ Bw for any w ∈ s ∩ U}. Every domain of Pry,v,B is strongly ry-connected
(although it may be not strongly rb-connected) and every element is r-maximal. If
one of such problems Pry,v,B has no solution then, as is easily seen, no solution φ of
P has φ(v) ∈ B. Therefore P can be tightened. If every such problem has a solution
then, by the Skeleton Decomposition Lemma 5.10, P has a solution if and only if
the skeleton problem Ps has a solution. The skeleton problem is defined as follows
(see also Section 5.4): Let φry,v,B be a solution of Pry,v,B . Then Ps = (V ;A; δ; Cs),
where for every C = ⟨s,R⟩ ∈ C there is Cs = ⟨s,Rs⟩ ∈ Cs such that a ∈ Rs if and
only if a ∈ R and, for any v ∈ s, there is an ry-connected component B of G(Sv)
such that a[v] = φry,v,B(v). Note that every edge in every domain of this problem
is blue.

Non-trivial max-decomposition. In this case there is v ∈ V and a minimal i-
component of G(Sv) such that J(m, v, B) ̸= V . Then, for every v ∈ V and ev-
ery minimal i-component B of G(Sv) we define the problem P+

v,B = (W ;A; δ′; C′)
where W = J(m, v, B), Aδ′(w) = {a ∈ Sw | Bw ⊑ a} and, for each constraint
⟨s,R⟩ ∈ C, we include C ′ = ⟨s ∩W,R′⟩ in C′, with R′ = {prs∩Wa | a ∈ R, a[w] ∈
Aδ′(w) for w ∈ s ∩W}. For every problem P+

v,B we have J(m, v, B) = W for any v
and B, although the graphs of some domains can be not strongly rb-connected. If
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one of such problems has no solution then, by the Tightening Proposition 7.1, P
can be tightened. Otherwise the Maximal Solution Lemma 6.13 claims that P has
a solution if and only if Pmax has a solution, where Pmax = (V ;A; δ; C′) in which
every constraint relation ⟨s,R⟩ ∈ C is replaced with ⟨s,R′⟩, R′ = {a ∈ R | for any
v ∈ s, a[v] is r-maximal }.

Trivial max-decomposition. Recall that S0
v denotes the set of all elements from

minimal i-components of G(Sv). If J(m, v, B) = V for all v and B, and Sv ̸= S0
v for

some v, then the Single Minimal Lemma 6.15 shows that P has a solution if and only
if one of P0 or P+ has a solution. Problem P0 is defined to be (V ;A; δ0; C0), where
Aδ0(v) = S0

v and for each ⟨s,R⟩ ∈ C the set C0 contains ⟨s,R0⟩ with R0 = {a ∈
R | a[v] ∈ S0

v for every v ∈ s}. Then P+ = (V ;A; δ+; C+), where Aδ+(v) = Sv − S0
v

and for any ⟨s,R⟩ ∈ C the set C+ contains ⟨s,R+⟩ with R+ = {a ∈ R | a[v] ∈
Sv − S0

v for every v ∈ s}.

All elements are minimal, there are multiple i-minimal components. If J(m, v, B) =
V and Sv = S0

v for all v and B, and the graph G(Sv) contains more than one min-
imal i-component for some v, then the Many Minimal Lemma 6.18 states that P
has an r-maximal solution if and only if one of the problems P+

v,B has, where v is a
fixed variable from V and B goes over the set of minimal i-components of G(Sv).

All elements are minimal, there is only one minimal i-component. In this case
S0
v = Sv for all v ∈ V , but for some v the graph G(Smax

v ) is not strongly rb-
connected. We use Jmax(rb, v, B) to denote the set J(rb, v, B) for the problem
Pmax, where B is a strongly rb-connected component of G(Smax

v ), and by Pmax
v,B we

denote the problem (W ;A; δ′; C′) where W = Jmax(rb, v, B), Aδ′(w) is the set of all
a ∈ Sw such that max(a)∩F(a) ⊆ Bw and, for each constraint ⟨s,R⟩ ∈ C, we include
C ′ = ⟨s ∩W,R′⟩ in C′, with R′ = {prs∩Wa | a ∈ R, a[w] ∈ Aδ′(w) for w ∈ s ∩W}.
The All Minimal Lemma 6.20 implies that if all the problems Pmax

v,B have a solution
then P has a solution such that the value of each variable is r-maximal in its domain.
Otherwise, by the Tightening Proposition 7.1, some elements can be removed from
the domains of P .
In the remaining cases the set of r-maximal elements of every domain is strongly

ry/rb-connected.

A non-hereditarily double-connected domain. In this case, we check if for every
variable v ∈ V of finite depth and any sequences of congruences θ and their classes
B, the problem P∗

v,B,θ
has a solution (see Section 5.5 for definitions). If not then

the Double-Connected Tightening Lemma 5.16 claims that P can be tightened.
Otherwise a solution for P is assembled from solutions of problems of that form by
algorithm Ry/rb-Conn.

Hereditarily double-connected domains. Proposition 4.11 claims that in this case
every 3-minimal problem without empty constraint relations has a solution. We
use algorithm 3-Width.

Same colour domains. In this case one of the previously known algorithms can
be used: 3-Width if all edges of all domains are yellow, or all edges are red, and
Maltsev if all edges of all domains are blue.
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We complete this section by proving that in all the cases considered problem P
can be tightened.

Proposition 7.1 (Tightening Proposition). If one of the problems Prb,v,B

(Pry,v,B, P+
v,B, P+, Pmax

v,B , P∗
v,B,θ

, depending on the type of the problem) has no (r-

maximal) solution, then P can be tightened by removing r-maximal elements from
some of the domains. More precisely there are w ∈ V and a ∈ Amax

δ(w) such that

φ(w) = a for no solution φ of P.

Proof. We proceed by induction on the size of P. In the base case of induction
either every edge of the graph of every domain is yellow, or every edge is blue, or
the set of r-maximal elements of every domain is hereditarily ry/rb-connected. In
the first two cases we assume all the listed derived problems to coincide with P
(although from the formal point of view it is not so, the derived problems that do
not equal P are on 1-element domains and therefore trivial). Such problem can be
solved by algorithms 3-Width or Maltsev and, if they do not have a solution then
P does not have a solution; therefore P can be tightened by removing all elements
from all domains. In the third case, again 3-Width solves P, and the problem can
be tightened in the same fashion.
The induction step follows from Lemmas 5.8, 5.11, 5.16, 6.14, 6.17, 6.19, 6.21.

The proposition is proved.

We complete this section by proving that if the domains from A contain no blue
edge then the problem MCSP(Γ) is of bounded relational width.

Lemma 7.2. If, for any A ∈ A, every edge of the graph G(A) is red or yellow
then MCSP(Γ) has relational width 3.

Proof. Take a problem P = (V ;A; δ; C) ∈ MCSP(Γ). Since G(Sv) is not
strongly rb-connected, we should construct the problems Prb,v,B . However, as
all the strongly rb-connected components are 1-element, the 3-minimality of P
implies that all of them have solutions. Finally, by the Red-Blue Decomposition
Proposition 5.7 and the 3-minimality of P have a solution.

7.2 Algorithm

Now we in are a position to give a formal description of the algorithm.

Input: Problem instance P = (V ;A; δ; C).
Output: Whether P has a solution.

Step 1. invoke Conserv(P) (see Fig. 7.2)
Step 2. if P ̸=∅ output “YES”, otherwise output “NO”.

Step 3. stop.

Fig. 7.1. Algorithm solving conservative constraint satisfaction problems

Input: Problem instance P = (V ;A; δ; C).
Output: A solution to P and a tightened problem instance if P has a solution, (∅,∅) otherwise.

Step 1. invoke 3-Minimality(P)
Step 2. find ry-, rb-, r- connected and i-minimal components of G(Sv), v ∈ V
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Step 3. ifcase:
there exists v ∈ V such that G(Sv) is not strongly rb-connected:

Step 3.1. do

Step 3.1.1. for each v ∈ V , each rb-maximal component B ⊆ G(Sv), do
Step 3.1.1.1. (φ,P ′

rb,v,B
) :=Conserv(Prb,v,B)

Step 3.1.1.2. for every constraint C = ⟨s,R⟩ of P, remove from R every tuple a such
that prs∩W a ̸∈ R′, where C′ = ⟨s ∩W,R′⟩ is the corresponding constraint of

P ′
rb,v,B

and W = J(rb, v, B)

endfor
Step 3.1.2. if P changed then return(Conserv(P))
Step 3.1.3. else return(Block-3-Width(P),P)

enddo
there exists v ∈ V and an r-connected component C of G(Sv) such that G(C) is not
strongly r-connected, there is u ∈ V such that G(Smax

u ) is not strongly ry/rb-connected,

and, for any w ∈ V , Sw = S0
w and G(Sw) has a unique minimal i-component:

Step 3.2. do
Step 3.2.1. for each v ∈ V , each strongly rb-connected component B of G(Smax

v ), do
Step 3.2.1.1. (φ,P ′

v,B) :=Conserv(Pmax
v,B )

Step 3.2.1.2. for every constraint C = ⟨s,R⟩ of P, remove from R every tuple a such that
prs∩W a ̸∈ R′ and a[v] ∈ B, where C′ = ⟨s ∩W,R′⟩ is the corresponding
constraint of P ′

v,B and W = Jmax(rb, v, B)

endfor

Step 3.2.2. if P changed then return(Conserv(P))
Step 3.2.3. else return(Block-3-Width(Pmax),P)

enddo
there exists v ∈ V and an r-connected component C of G(Sv) such that G(C) is not

strongly r-connected, there is u ∈ V such that G(Smax
u ) is not strongly ry/rb-connected,

for any w ∈ V , Sw = S0
w, for some w ∈ V such that G(Sw) contains more than one

minimal i-component, and J(m, w,B) = V for all w ∈ V and all minimal

i-components B of G(Sw):
Step 3.3. do
Step 3.3.1. fix v ∈ V
Step 3.3.1. for each minimal i-component B of G(Sv), do
Step 3.3.1.1. (φ,P ′

v,B) :=Conserv(P+
v,B)

Step 3.3.1.2. for every constraint C = ⟨s,R⟩ of P, remove from R every tuple a such that
a ̸∈ R′ and a[v] ∈ B, where C′ = ⟨s,R′⟩ is the corresponding
constraint of P ′

v,B

endfor

Step 3.3.2. if P changed then return(Conserv(P))

Step 3.3.3. else return(φ,P), where φ is a solution of P+
v,B for an arbitrary minimal

i-component B of G(Sv)
enddo

there exists v ∈ V and an r-connected component C of G(Sv) such that G(C)
is not strongly r-connected, J(m, v, B) = V for all v ∈ B and minimal i-component
B of G(Sv), and there exists w ∈ V such that Sw ̸= S0

w:
Step 3.4. do

Step 3.4.1. set (φ,P ′) :=Conserv(P+)
Step 3.4.2. if P ′ ̸=∅ then
Step 3.4.2.1. for every constraint C = ⟨s,R⟩ of P, remove from R every tuple a

such that a ̸∈ R′, where C′ = ⟨s,R′⟩ is the corresponding

constraint of P ′
v,B

Step 3.4.2.2. return(φ,P)
endif

Step 3.4.3. else for every constraint C = ⟨s,R⟩ of P, remove from R every tuple a

such that a[v] ̸∈ S0
v for some v ∈ s
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Step 3.4.4. return(Conserv(P))
enddo
there exists v ∈ V and an r-connected component C of G(Sv) such that G(C)

is not strongly r-connected and J(m, v, B) ̸= V for some v ∈ B and minimal
i-component B of G(Sv):

Step 3.5. do
Step 3.5.1. for each v ∈ V , each minimal i-component B of G(Sv), do
Step 3.5.1.1. (φ,P ′

v,B) :=Conserv(P+
v,B)

Step 3.5.1.2. for every constraint C = ⟨s,R⟩ of P, remove from R every tuple a
such that prs∩W a ̸∈ R′, where C′ = ⟨s ∩W,R′⟩ is the corresponding
constraint of P ′

v,B and W = J(m, v, B)

endfor
Step 3.5.2. if P changed then return(Conserv(P))
Step 3.5.3. else
Step 3.5.3.1. (φ,P ′) :=Conserv(Pmax))

Step 3.5.3.2. return(φ,P)
endif

enddo
there exists v ∈ V such that G(Sv) is not ry-connected:

Step 3.6. do
Step 3.6.1. for each v ∈ V , each ry-connected component B do
Step 3.6.1.1. (φ,P ′

ry,v,B) :=Conserv(Pry,v,B)

Step 3.6.1.2. for every constraint C = ⟨s,R⟩ of P, remove from R all tuples a such
that prs∩W a ̸∈ R′, where C′ = ⟨s ∩W,R′⟩ is the corresponding constraint of

P ′
ry,v,B and W = J(ry, v, B)

endfor
Step 3.6.2. if P changed then return(Conserv(P))
Step 3.6.3. else return(Maltsev(Ps),P)

enddo
G(Sv) is strongly ry/rb-connected for any v ∈ V and there exists u ∈ V such that
Su is not hereditarily strongly ry/rb-connected:

Step 3.7. do

Step 3.7.1. for each v ∈ V such that Sv is not hereditarily strongly ry/rb connected, each

sequence B = B0, B1, . . . , Bk and θ = θ0, . . . , θk−1 witnessing that Sv is not

hereditarily strongly ry/rb connected, do
Step 3.7.1.1. (φ,P ′′) :=Conserv(P∗

v,B,θ
)

Step 3.7.1.2. for every constraint C = ⟨s,R⟩ of P, remove from R every tuple a
such that there is w ∈ s ∩Wv,B,θ such that a[w] is r-maximal and a[w] ̸∈ S′

w

endfor

Step 3.7.2. if P changed then return(Conserv(P))
Step 3.7.3. else return(Ry/rb-Conn(P),P)

enddo

Sv is hereditarily strongly ry/rb-connected for any v ∈ V :
Step 3.8. return(3-Width(P),P)

endifcase
Step 4. invoke 3-Minimality(P)

Fig. 7.2. Algorithm Conserv

7.3 Soundness and complexity

To prove soundness of the algorithms from Section 7.1 we have to show that the
algorithm Conserv works correctly. However, this is actually done in Section 7.1
and in the Tightening Proposition 7.1.
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Proposition 7.3. The algorithm Conserv returns a solution of the given prob-
lem instance if and only if a solution exists.

Then we estimate the complexity of the algorithm.

Proposition 7.4. If the size of the domains in A is bounded, then the algorithm
Conserv is polynomial time.

Proof. We use |P| to denote the size of a problem instance P. Suppose that
Conserv is applied to a problem instance P = (V ;A; δ; C). We assume first, that
the algorithm never changes P, that is Steps 3.1.2, 3.2.2, 3.3.2, 3.4.4, 3.5.2, 3.6.2
and 3.7.2 are never performed. Let s denote the maximal size of domains in A.

Claim 1. The depth of recursion when performingConserv(P) does not exceed 4s.

Notice that the size of Sv decreases as follows.
– If G(Sv) is not strongly rb-connected then its size decreases on Step 3.1.1.1, as this
domain is split between the domains of two or more problems of the form Prb,v,B
– If there is an r-connected component of G(Sv) which is not strongly r-connected
and J(m, v, B) ̸= V for some v and B, then the size of Sv may stay unchanged
when Step 3.1.1.1 is performed if G(Sv) is strongly rb-connected, as all variables
like this go to the same problem Prb,v,B while there are more problems of this form
for some other variables, but it decreases during the next round of recursion, since
v in one of the sets J(m, w,B).
– If there is an r-connected component of G(Sv) which is not strongly r-connected,
J(m, v, B) = V for all v and B, and S0

v ̸= Sv for some v, then the size of Sv may
stay unchanged when Step 3.1.1.1 or 3.5.1.1 are performed. However, for every
w ∈ J(rb, v,Sv), G(Sw) is strongly rb-connected and, for every w ∈ J(rb, v,Sv),
J(m, w,S0

w) = J(rb, v,Sv). This means that the size of Sv decreases during the
next or during the third round of recursion.
– If there is an r-connected component of G(Sv) which is not strongly r-connected
and S0

v = Sv for all v, then the size of Sv may stay unchanged when Step 3.1.1.1,
3.4.1 or 3.5.1.1 are performed. However, for every w ∈ J(rb, v,Sv), G(Sw) is
strongly rb-connected and, for every w ∈ J(m, v,Sv), Sw = S0

w. This means that
the size of Sv decreases during the next or during the third round of recursion.
– If G(Sv) is strongly rb-connected, is not ry-connected and every r-connected
component is strongly r-connected, then G(Sv) contains more than one minimal i-
components (every ry-connected component is a minimal i-component). Therefore,
the size of Sv may stay unchanged when Step 3.1.1.1 is performed, but v is not
included into any set of the form J(m, w,B) or Jmax(rb, w,B) on Step 3.2.1.1 or
Step 3.4.1. Therefore, for any variable v ∈ V , |Sv| decreases during at least each
third iteration.
– If G(Smax

v ) is strongly ry/rb-connected, it may stay unchanged on Step 3.1.1.1,
3.2.1.1, 3.3.1, 3.4.1, 3.5.1.1 and 3.6.1.1 (at most three of them can be performed),
but then it will change on Step 3.7.1.1.
– Finally, algorithm Conserv on Step 3.5.3 is applied to a problem in which, for
any domain, every r-connected component is strongly r-connected, which means
that for any variable v ∈ V , |Sv| decreases during at least each second iteration.

Let p(n) be a polynomial that bounds the time complexity of 3-Minimality, 3-
Width, Block-3-Width, and Maltsev, r its degree; and ζ the maximal number
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of sets of the form {a ∈ Sv | B ⊑ a}, where B is a minimal i-connected component
of G(Sv), sharing an element.

Claim 2. The number of operations performed by Conserv(P) does not exceed
ξlrp(|P|) where l is the depth of recursion and ξ = ζ + 3.

We prove Claim 2 by induction on the depth l of recursion. The base case
for induction, Steps 3.8, 3.1.3, 3.2.3, and 3.6.3 is obvious, in this case the time
complexity is bounded with p(|P|).
Step 2 can be performed in linear time, so we neglect its contribution. By the

assumption made, Steps 3.1.1.2, 3.1.2, 3.2.1.2, 3.2.2, 3.3.2, 3.4.3, 3.4.4, 3.5.1.2,
3.5.2, 3.6.1.2, 3.6.2, 3.7.1.2 and 3.7.2 are never performed. Therefore, it is enough
to estimate the time complexity of Steps 3.1.1.1, 3.2.1.1, 3.3.1.1, 3.4.1, 3.5.1.1,
3.6.1.1 and 3.7.1.1.
Suppose first, that the conditions for Step 3.6 are valid. Then |Pry,v1,B1 |+ . . .+

|Pry,vk,Bk
| ≤ |P| where B1, . . . , Bk are the strongly ry-connected components of

G(Sv1), . . . ,G(Svk
). Therefore, the number of operations required on Step 3.6.1.1

equals ξr(l−1)p(|Pv1,B1
|) + . . .+ ξr(l−1)p(|Pvk,Bk

|). As is easily seen

ξr(l−1)p(|Pv1,B1 |) + . . .+ ξr(l−1)p(|Pvk,Bk
|) ≤ ξr(l−1)p(|P|).

Since |Prb,v1,B1
| + . . . + |Prb,vk,Bk

| ≤ |P| where B1, . . . , Bk are the maximal rb-
connected components of G(Sv1), . . . ,G(Svk

), the same bound is valid for Step 3.1.1.1
and the same arguments work for Steps 3.2.1.1, 3.3.1.1, 3.4.1 and 3.7.1.1.
In Step 3.5.1.1, we have ζ|P| ≥ |P+

v1,B1
|+ . . .+ |P+

vk,Bk
| where B1, . . . , Bk are the

minimal i-components of G(S1), . . . ,G(Sk). Therefore, the number of operations
required on Step 3.5.1.1 is bounded with

ξr(l−1)p(|P+
v1,B1

|) + . . .+ ξr(l−1)p(|P+
vk,Bk

|) ≤ ξr(l−1)p(ζ|P|) ≤ ξr(l−1)ζrp(|P|).

Thus, the overall time complexity is bounded with

ξr(l−1)ζrp(|P|) + 3p(|P|) ≤ ξrlp(|P|),

as required.
In the case of Step 3.5.3, |Pmax| < |P|.
To complete the proof, notice that in the general case, including performing

Steps 3.1.1.2, 3.1.2, 3.2.1.2, 3.2.2, 3.3.1.2, 3.3.2, 3.4.3, 3.4.4, 3.5.1.2, 3.5.2, 3.6.1.2,
3.6.2, 3.7.1.2 and 3.7.2, the problem P can be changed at most s|V | times. There-
fore, the time complexity of Conserv(P) is bounded with |V | · sξrlp(|P|).

8. CONCLUSION

We have continued the research project aiming to distinguish those constraint lan-
guages that give rise to tractable constraint satisfaction problems from those which
do not. We achieve this goal in the case of conservative constraint languages which,
besides its own importance, including applications, provides a possible prototype
for the most general case of arbitrary constraint languages. The main result of
the paper has become possible due to the algebraic approach to constraints. This
approach being originally developed for unifying and expanding known tractable
classes has grown up to one the most prolific methods of studying the constraint
satisfaction problem. It allows one to tackle problems which can hardly be solved
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by other existing methods, and we strongly believe that eventually it will make it
possible to completely solve the indicated research problems.
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A. PROOFS FROM SECTION 3

Proposition A.1 (Three Operations Proposition, Proposition 3.1, p. 17).
There are polymorphisms f(x, y), g(x, y, z), h(x, y, z) ∈ MPol(Γ) such that, for every
A ∈ A and every two-element subset B ⊆ A,

—fAB is a semilattice operation whenever B is red, and fAB(x, y) = x otherwise;

—gAB is a majority operation if B is yellow, gAB(x, y, z) = x if B is blue, and

gAB(x, y, z) = fAB(f
A
B(x, y), z) if B is red;

—hAB is the affine operation if B is blue, hAB(x, y, z) = x if B is yellow, and

hAB(x, y, z) = fAB(f
A
B(x, y), z) if B is red.

There is also a polymorphism p(x, y) such that pAB = fAB if B is red, pAB(x, y) =

y if B is yellow, and pAB(x, y) = x if B is blue.

Proof. Show first that there is an operation f that is semilattice on each red
edge. Let B1, . . . , Bn be a list of all red edges of graphs G(A) for all A ∈ A. To
avoid clumsy notation we shall denote the operation fABj

, Bj ⊆ A, simply by fBj
.

Let also f1, . . . , fn be the list of polymorphisms of Γ such that fiBi
is a semilattice

operation. Notice that every binary idempotent operation on a 2-element set is
either a projection or a semilattice operation. Since each fi is idempotent, for any
i, j, fiBj

is either a projection or a semilattice operation. We prove by induction

that the operation f i constructed via the following rules is a semilattice operation
on B1, . . . , Bi: f

1 = f1, f
i(x, y) = fi(f

i−1(x, y), f i−1(y, x)).
The base case for induction, i = 1, holds by the choice of f1. Suppose that f i−1

satisfies the required conditions. If f i−1
Bi

is a projection, say, f i−1
Bi
(x, y) = x,

then f i(x, y) = fi(f
i−1(x, y), f i−1(y, x)) = fi(x, y), i.e. it is a semilattice operation

on Bi. Let Bi = {a, b}, and f i−1 a semilattice operation such that f i−1(a, b) =
f i−1(b, a) = a. Then

f i(a, b) = fi(f
i−1(a, b), f i−1(b, a)) = fi(a, a) = a,

f i(b, a) = fi(f
i−1(b, a), f i−1(a, b)) = fi(a, a) = a,

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c⃝ 20YY ACM 1529-3785/YY/00-0001 $5.00
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hence, f i is again a semilattice operation. As is easily seen, f iBj
= f i−1

Bj
, and so

f iBj
is a semilattice operation for j < i.

Thus, for each edge B, fnB is a semilattice operation if B is red and a projection
otherwise. Finally, it is easy to check that f(x, y) = fn(fn(x, y), x) satisfies the
required conditions, as it is first projection on every yellow or blue edge.

Now let B1, . . . , Bk, C1, . . . , Cl be the lists of all yellow and all blue edges
respectively of graphs G(A) for all A ∈ A, and g1, . . . , gk, h1, . . . , hl the lists
of polymorphisms of Γ such that giBi

is a majority operation, and hiCi
is an

affine operation. Notice first that every binary polymorphism is a projection
on the Bi and Ci. Therefore, for any i, j, giBj

(x, y, y), giBj
(y, x, y), giBj

(y, y, x),

hiBj
(x, y, y), hiBj

(y, x, y), hiBj
(y, y, x), giCj

(x, y, y), giCj
(y, x, y), giCj

(y, y, x),

hiCj
(x, y, y), hiCj

(y, x, y), hiCj
(y, y, x) ∈ {x, y}. This means that the operations

giBj
, hiBj

, giCj
, hiCj

are of one of the following types: a projection, a minority

operation (that is the affine operation), a majority operation, or a 2/3-minority
operation, that is an operation satisfying the equalities m(x, y, y) = y, m(y, x, y) =
m(y, y, x) = x or those obtained by permuting the arguments. Moreover, as is
shown in [Post 1941], a majority operation on a 2-element set can be derived by
means of superposition from any 2/3-minority operation. Therefore if giCj

or hiCj

is a 2/3-minority operation, then there is g such that gCj
is a majority opera-

tion, that contradicts the assumption that Cj is blue. Hence, giCj
, hiCj

are either
minority operations or projections.

First we prove by induction that for every j ∈ k there is an operation gj(x, y, z)
which is a majority operation on Bi for i ≤ j. The operation g1 = g1 gives the base
case for induction. Let us assume that gj−1 is already found. If gj−1

Bj
is a majority

operation, set gj = gj−1. Otherwise, it is either a projection, or a 2/3-minority
operation, or a minority operation. In all these case its variables can be permuted
such that gj−1

Bj
(x, y, y) = x. Then the operation r(x, y) = gj−1(x, y, y) satisfies

the conditions rBj
(x, y) = x, and rBi

(x, y) = y for all i < j. It is not hard to

see that the operation gj(x, y, z) = r(gj(x, y, z), g
j−1(x, y, z)) satisfies the required

conditions.

Consider the operation gk. Its restriction gkCj
, 1 ≤ j ≤ l, is either a projection,

or the minority operation. If gkCj
is the minority operation, then as above we

can derive an operation r(x, y) such that rBi
(x, y) = y for all 1 ≤ i ≤ k, and

rCj
(x, y) = x. The operation g′(x, y, z) = r(x, gk(x, y, z)) is a majority operation

on Bi, 1 ≤ i ≤ k, the first projection on Cj , and a projection on each Ci such that
gkCi

is a projection. Therefore, gkCi
can be assumed to be a projection for all i ∈ l.

Then for the operation g(x, y, z) = gk(x, gk(y, x, y), gk(z, z, x)) we have

gBi
(x, y, z) = gkBi

(x, gkBi
(y, x, y), gkBi

(z, z, x)) = gkBi
(x, y, z), for any i ∈ k;

gCi
(x, y, z) = gkCi

(x, gkCi
(y, x, y), gkCi

(z, z, x)) = x, for any i ∈ l

such that gkCi
(x, y, z) = x;

gCi
(x, y, z) = gkCi

(x, gkCi
(y, x, y), gkCi

(z, z, x)) = gkCi
(y, x, y) = x,

for any i ∈ l such that gkCi
(x, y, z) = y;
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gCi
(x, y, z) = gkCi

(x, gkCi
(y, x, y), gkCi

(z, z, x)) = gkCi
(z, z, x) = x,

for any i ∈ l such that gkCi
(x, y, z) = z.

Finally, to make g acting correctly on red edges we set g(x, y, z) = g(f(x, f(y, z)),
f(y, f(z, x)), f(z, f(x, y))). The operation g is as required.
Next we show that, for any j ∈ l, there is hj such that hjCi

is the minority

operation for i ≤ j. As usual, h1 = h1 gives the base case for induction. If
hj−1 is obtained, then if hj−1

Cj
is the minority operation then set hj = hj−1.

Otherwise, we may assume hj−1
Cj
(x, x, y) = x, and hj can be chosen to be

r(hj(x, y, z), h
j−1(x, y, z)) where r(x, y) = hj−1(x, x, y). Finally, set p(x, y) =

g(x, y, y), h′′(x, y, z) = p(hl(x, y, z), x) and h(x, y, z) = h′′(f(x, f(y, z)), f(y, f(z, x)),
f(z, f(x, y))). As is easily seen h satisfies the conditions required.
Finally, note that operation p defined above also satisfies the conditions re-

quired.

B. PROOFS FROM SECTION 5

Proposition B.1 (Connectedness Proposition, Proposition 5.1, p. 34).
Let R be a subdirect product of A1, . . . , An ∈ A.
(1) If every G(Ai) is strongly r-connected, then G(R) is strongly r-connected.
(2) If every G(Ai) is strongly rb-connected, then G(R) is strongly rb-connected.
(3) If every G(Ai) is strongly ry-connected and such that every r-connected compo-
nent of G(Ai) is strongly r-connected, then G(R) is strongly ry-connected.

Proof. We start with (2). Let us suppose first that A1, . . . , An are simple.
Without loss of generality, let us assume that G(A1), . . . ,G(Am) contain a red or
yellow edge while G(Am+1), . . . ,G(An) do not. We use R1 to denote pr{1,...,m}R
and R2 to denote pr{m+1,...,n}R. It is not hard to see that the Almost Trivial
Proposition 4.7 implies that G(R1) is strongly rb-connected.
Take (a,b), (c,d) ∈ R ⊆ R1 × R2. There is an rb-path a = a1,a2, . . . ,ak = c

and tuples b = b1,b2, . . . ,bk ∈ R2 such that (a1,b1), (a2,b2), . . . , (ak,bk) ∈
R. Clearly, any two elements of R2 constitute a blue edge. We build an rb-
path from (a,b) to (c,d) as follows. Set (a1,d1) = (a1,b1) = (a,b). Then,
if (ai,d2i−1) is already constructed and ⟨ai,ai+1⟩ ∈ γ then set (ai+1,d2i) =

(ai+1,bi+1) and (ai+1,d2i+1) = (ai+1,d2i). If ai ≤ ai+1, then set

(
ai+1

d2i

)
=

f

((
ai

d2i−1

)
,

(
ai+1

bi+1

))
(observe that (ai+1,d2i) = (ai+1,d2i−1) and (ai+1,d2i+1) =

(ai+1,bi+1). As is easily seen, the sequence (a1,d1), (a2,d2), (a2,d3), . . . , (ak,b2k−1) =
(c,d2k−1) is an rb-path. Finally, as (c,d2k−1) and (c,d) constitute a blue edge,
(a,b), (c,d) are strongly rb-connected.
We prove the proposition by induction on the number of non-simple factors.
Let R be a subdirect product of domains A1, . . . , An ∈ A whose graphs are

strongly rb-connected, and An is not simple. Take a maximal congruence θ of
Rn, and consider the relation R′ = {(a[1], . . . ,a[n − 1], (a[n])θ) | a ∈ R}. The
relation R′ is a subdirect product of A1, . . . , An−1, An/θ; all of these domains have
strongly rb-connected graphs, and An/θ is simple. Hence, they have one non-simple
domain less than A1, . . . , An. Therefore, by inductive hypothesis, G(R′) is strongly
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rb-connected.
For any (a, a), (b, b) ∈ R (here a,b ∈ pr1,...,n−1R), the corresponding tuples

(a, aθ), (b, bθ) are rb-connected. Suppose first aθ ̸= bθ. First we prove two claims.

Claim 1. There is (c, c) ∈ R such that cθ ̸= bθ, and c ≤ b, c ≤ b or ⟨c,b⟩ ∈
γ, ⟨c, b⟩ ∈ γ.

By the Semi-Simple Double Connected Corollary 4.4 and Lemma 3.5 the relation
R′ is either the direct product of pr1,...,n−1R and An/θ, or the graph of a mapping
φ: pr1,...,n−1R → An/θ. If R′ = pr1,...,n−1R × An/θ then the claim is obvious, so
suppose that R′ is the graph of a mapping φ.
Let I ⊆ {1, . . . , n−1} be a maximal set such that prI∪{n}R

′ is the direct product

of prIR and An/θ. If I = ∅ then for any (c, c) ∈ R such that cθ ≤ bθ [or ⟨c, b⟩ ∈ γ]
we have c ≤ b [⟨c,b⟩ ∈ γ, correspondingly]. Since An/θ is strongly rb-connected,

there exists c with cθ ̸= bθ and cθ ≤ bθ or ⟨c, b⟩ ∈ γ, and the required tuple is found.
Now suppose that I ̸= ∅. Suppose first that there is c ∈ An with cθ ̸= bθ

and cθ ≤ bθ. By the choice of I there is c ∈ pr1,...,n−1R such that (c, cθ) ∈
R′ and prIc = prIb. Take i ∈ n− 1 − I and suppose that c[i] ̸≤ b[i]. Let(
d
bθ

)
= f

((
c
cθ

)
,

(
b
bθ

))
∈ R′. We have prId = prIb and d[i] = c[i]. Therefore

(prI∪{i}d, b), (prI∪{i}d, c) ∈ prI∪{i,n}R
′ implying prI∪{i,n}R

′ is not the graph of a
mapping; a contradiction with the choice of I.
Next, suppose that that there is c ∈ An with cθ ̸= bθ and ⟨cθ, bθ⟩ ∈ γ. By

the choice of I there is c ∈ pr1,...,n−1R such that (c, cθ) ∈ R′ and prIc = prIb.
Take i ∈ n− 1 − I and suppose that ⟨c[i],b[i]⟩ ̸∈ γ. If c[i] ≤ b[i] then setting(
d
cθ

)
= f

((
c
cθ

)
,

(
b
bθ

))
∈ R′ we get (prI∪{i}d, b), (prI∪{i}d, c) ∈ prI∪{i,n}R

′,

a contradiction. Otherwise set Let

(
d
bθ

)
= p

((
c
cθ

)
,

(
b
bθ

))
∈ R′. We have

prId = prIb and d[i] = c[i]. Therefore (prI∪{i}d, b), (prI∪{i}d, c) ∈ prI∪{i,n}R
′, a

contradiction again. Claim 1 is proved.

Claim 2. Let (a, aθ) = (a0, a
θ
0), (a1, a

θ
1), . . . , (ak, a

θ
k) be an rb-path in R′ such

that a0 = a and (ai, ai) ∈ R for all i. Then there are a = c0, c1, . . . , cℓ ∈ {a0, . . . , ak}
and a = c0, c1, . . . , cℓ ∈ {a0, . . . ,ak} such that (a, a) = (c0, c0), (c1, c1), . . . , (cℓ, cℓ)
is an rb-path in R, cℓ = ak, and c

θ
ℓ = aθk.

We proceed by induction on k. If k = 0 there is nothing to prove. Suppose that
the claim is proved for k−1; that is there are a = c0, c1, . . . , cℓ′ ∈ {a0, . . . , ak−1} and
a = c0, c1, . . . , cℓ′ ∈ {a0, . . . ,ak−1} such that (a, a) = (c0, c0), (c1, c1), . . . , (cℓ′ , c

θ
ℓ′)

is an rb-path in R, cℓ′ = ak−1, and c
θ
ℓ = aθk−1. If aθk ̸= aθk−1 then by Lemma 4.1

cℓ′ ≤ ak [⟨cℓ′ , ak⟩ ∈ γ] whenever aθk−1 ≤ aθk [⟨aθk−1, a
θ
k⟩ ∈ γ], and we can choose

ℓ = ℓ′ + 1, cℓ = ak, and cℓ = ak. If aθk = aθk−1 and ak−1 ≤ ak, cℓ′ ≤ ak or
⟨ak−1,ak⟩ ∈ γ, ⟨cℓ′ , ak⟩ ∈ γ then we can do the same.
If aθk = aθk−1, and ak ≤ cℓ′ or ⟨ak, cℓ′⟩ ∈ β, then we choose again ℓ = ℓ′,

cℓ = ak and cℓ = cℓ′ . This is possible because

(
ak
cℓ′

)
= p

((
ak
ak

)
,

(
ak−1

cℓ′

))
∈ R.

If ak−1 ≤ ak while ⟨cℓ′ , ak⟩ ∈ γ, then set ℓ = ℓ′ + 2, cℓ′+1 = cℓ′+2 = ak, and
cℓ′+1 = cℓ′ , cℓ′+2 = ak. If ⟨ak−1,ak⟩ ∈ γ while cℓ′ ≤ ak, then set ℓ = ℓ′ + 2,
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cℓ′+1 = cℓ′ , cℓ′+2 = ak, and cℓ′+1 = cℓ′+2 = ak. In both cases it is straightforward
that the tuples (cℓ′+1, cℓ′+1), (cℓ′+2, cℓ′+2) belong to R and satisfy the conditions
required. Claim 2 is proved.

Now we are ready to prove that there is an rb-path from (a, a) to (b, b) in R.
Choose (c, c) satisfying the conditions of Claim 1. By Claim 2 there is an rb-path in
(a, a) = (a0, a0), (a1, aa), . . . , (ak, ak) such that ak = c and aθk = cθ. Thus we may
assume ak = c. Clearly, (a, a) = (a0, a0), (a1, aa), . . . , (ak, ak), (b, b) is an rb-path.
(1) can be proved in a very similar way, but the base case of induction follows

straightforwardly from the Almost Trivial Proposition 4.7.
(3) We prove the lemma by induction on n. The base case of induction, n = 1,

is obvious. So, suppose that the result is proved for any subdirect product of any
B1, . . . , Bn−1 ∈ A such that the G(Bi) are strongly ry-connected.

Claim 3. Let B1, . . . , Bn be strongly r-connected components of G(A1), . . . ,G(An)
respectively. Then either R′ = R ∩ (B1 × . . . × Bn) = ∅ or G(R′) is strongly
r-connected.

Let us suppose that R′ ̸= ∅, say, (a, a) ∈ R′ where a ∈ R′′ = prn−1R ∩ (B1 ×
. . .×Bn−1), and a ∈ B′

n = prnR
′. We show that B′

n = Bn. Since G(Bn) is strongly
r-connected it is enough to prove that if b, c ∈ Bn are such that b ≤ c and (b, b) ∈ R
for some b ∈ R′′ then there exists c ∈ R′′ with (c, c) ∈ R. Take d ∈ prn−1R with

(d, c) ∈ R. For

(
c
c

)
= f

((
b
b

)
,

(
d
c

))
∈ R we have b ≤ c, and therefore c ∈ R′′.

We have proved that R′ is a subdirect product of B1, . . . , Bn. By the Connect-
edness Proposition 5.1(1), G(R′) is strongly r-connected.

Claim 4. Let R′ denote prn−1R. Any tuples of the form (a, a), (a, b) ∈ R where

a ∈ R′ are strongly ry-connected.

Suppose the contrary, there are (a, a), (a, b) ∈ R such that (a, a) is not strongly
ry-connected to (a, b). Notice first that if a ≤ b or ⟨a, b⟩ ∈ β the tuples are strongly
ry-connected by definition, and if b ≤ a then they are strongly ry-connected by
Claim 1. So, we may assume ⟨a, b⟩ ∈ γ. Since G(Rn) is strongly ry-connected,
there are a = a1, a2, . . . , ak = b such that ai ≤ ai+1 or ⟨ai, ai+1⟩ ∈ β. Without loss
of generality, we may assume that a, b and k are such that k is the least possible.
Let a1, . . . ,ak ∈ R′ be such that a1 = a and (ai, ai) ∈ R.

Case 1. k > 3.

Then a2 ̸≤ b and ⟨a2, b⟩ ̸∈ β. We have two subcases to consider.

Subcase 1.1. b ≤ a2.

In this case a2, b are in the same strongly r-connected component. If also a ≤ a2,
then a, b in the same strongly r-connected component, and we get the result by
Claim 3. Therefore, ⟨a, a2⟩ ∈ β, and (a′, a), (a′′, a), (a′, b) belong to R, where(

a′

a

)
= f

((
a
a

)
,

(
a2
a2

))
,

(
a′′

a2

)
= f

((
a2
a2

)
,

(
a
a

))
,

(
a′

b

)
= p

((
a
b

)
,

(
a′

a

))
.

Since a ≤ a′, if we prove that (a′, a), (a′, b) are strongly ry-connected, then by
Claim 1, (a, a) and (a′, a) are strongly ry-connected, and we get the result. As
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⟨a′[i],a′′[i]⟩ ∈ β ∪ γ for any i ∈ n− 1, we get(
a′

a2

)
= f

((
a′

b

)
,

(
a′′

a2

))
∈ R.

By Claim 3, (a′, a2) and (a′, b) are strongly ry-connected. Hence, (a′, a), (a′, b) and
therefore (a, a), (a, b) are strongly ry-connected, a contradiction.

Subcase 1.2. ⟨a2, b⟩ ∈ γ.

Observe that p

((
a2
a2

)
,

(
a
b

))
=

(
p(a2,a)
a2

)
. Therefore, by replacing a2 with

p(a2,a) we may assume that ⟨a[i],a2[i]⟩ ∈ β or a[i] ≤ a2[i] for all i ∈ n− 1. For the

tuple

(
a′

a′

)
= f

((
a
a

)
,

(
a2
a2

))
we have (a, a) ≤ (a′, a′) and ⟨(a′, a′), (a2, a2)⟩ ∈ β.

This means that (a, a) and (a2, a2) are strongly ry-connected. Furthermore, as is
easily seen(

a2
b

)
= p

(
f

((
a
b

)
,

(
a2
a2

))
,

(
a2
a2

))
= p

((
a′

b

)
,

(
a2
a2

))
∈ R.

Since a2 and b are connected with an rb-path shorter than k, by the assumption
made, (a2, a2) and (a2, b) are strongly ry-connected, and therefore (a, a), (a, b) are
strongly ry-connected, a contradiction.

Case 2. k = 3.

If a ≤ a2 ≤ b then the result follows from Claim 3. Therefore, either ⟨a, a2⟩ ∈ β
or ⟨a2, b⟩ ∈ β.

Subcase 2.1. ⟨a, a2⟩ ∈ β.

As before, replacing (a2, a2) with

(
a′2
a2

)
= p

((
a
a

)
,

(
a2
a2

))
, we may assume

that ⟨a[i],a2[i]⟩ ∈ γ and a2[i] ≤ a[i] for no i ∈ n− 1. Then

(
a
a

)
≤

(
a′

a

)
=

f

((
a
a

)
,

(
a2
a2

))
and ⟨(a′, a), (a2, a2)⟩ ∈ β.

If a2 ≤ b then

(
a2
b

)
= f

((
a2
a2

)
,

(
a
b

))
∈ R and

(
a2
b

)
= f

((
a2
a2

)
,

(
a′

b

))
∈ R.

We have (a2, a2) ≤ (a2, b) and ⟨(a2, b), (a′, b)⟩ ∈ β, and hence (a, a) is strongly ry-
connected to (a′, b). Since a′ and a are strongly r-connected, by Claim 1, the result
follows.

If ⟨a2, b⟩ ∈ β then set

(
a′′

a2

)
= f

((
a2
a2

)
,

(
a
b

))
. We have (a2, a2) ≤ (a′′, a2),

⟨a′′, a2), (ab)⟩ ∈ β. Thus, (a2, a2), (a, b) are strongly ry-connected, and so are
(a, a), (a, b), a contradiction.

Subcase 2.2. ⟨a2, b⟩ ∈ β.

If ⟨a, a2⟩ ∈ β then we are in the conditions of Subcase 2.1. If a ≤ a2 then(
a′

a2

)
= f

((
a
a

)
,

(
a2
a2

))
∈ R and

(
a′

b

)
= f

((
a
b

)
,

(
a2
a2

))
∈ R.

As is easily seen, (a, a) ≤ (a′, a2), ⟨(a′, a2), (a′, b)⟩ ∈ β and, by Claim 1, (a′, b) and
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(a, b) are strongly r-connected. The claim is proved.

Finally, take (a, a), (b, b) ∈ R where a,b ∈ R′. Since G(R′) is strongly ry-
connected, there are a = a1,a2, . . . ,ak = b such that ai ≤ ai+1 or ⟨ai,ai+1⟩ ∈ β.
These tuples can be expanded to tuples from R: there are a1, . . . , ak ∈ An with
(ai, ai) ∈ R, i ∈ k. We prove that, for every i, (ai, ai) and (ai+1, ai+1) are strongly
ry-connected.
First, suppose ai ≤ ai+1. If ai ≤ ai+1, then (ai, ai) ≤ (ai+1, ai+1). If ai+1 ≤ ai

then the result follows by Claim 1. If ⟨ai, ai+1⟩ ∈ β, then

(
ai
ai

)
≤

(
ai+1

ai

)
=

f

((
ai
ai

)
,

(
ai+1

ai+1

))
and ⟨(ai+1, ai), (ai+1, ai+1)⟩ ∈ β. Finally, if ⟨ai, ai+1⟩ ∈ γ then(

ai
ai

)
≤

(
ai+1

ai

)
= f

((
ai
ai

)
,

(
ai+1

ai+1

))
and (ai+1, ai), (ai+1, ai+1) are strongly ry-

connected by Claim 4.
Then, let ⟨ai,ai+1⟩ ∈ β. If ⟨ai, ai+1⟩ ∈ β then ⟨(ai, ai), (ai+1, ai+1)⟩ ∈ β. If

⟨ai, ai+1⟩ ∈ γ or ai ≤ ai+1 then ⟨(ai, ai+1), (ai+1, ai+1)⟩ ∈ β, where (ai, ai), (ai, ai+1)

are strongly ry-connected by Claim 2 and

(
ai
ai+1

)
= p

((
ai+1

ai+1

)
,

(
ai
ai

))
. If ai+1 ≤

ai then ⟨(ai, ai), (ai+1, ai)⟩ ∈ β, where

(
ai+1

ai

)
= f

((
ai+1

ai+1

)
,

(
ai
ai

))
, and (ai+1, ai),

(ai+1, ai+1) are strongly ry-connected by Claim 3. Finally, (ak, ak) = (b,ak) and
(b, b) are strongly ry-connected by Claim 4.

C. PROOFS FROM SECTION 6

Lemma C.1 (Lemma 6.1, p. 50). Let R be an n-ary relation and a1, . . . ,ak ∈
R an r-path. Then, for any i, j ∈ n, there is an r-path b1, . . . ,bm such that b1 = a1,
b1[l], . . . ,bm[l] ∈ {a1[l], . . . ,ak[l]}, for l ∈ n, bm[i] = ak[i],bm[j] = ak[j], and both
b1[i], . . . ,bm[i] and b1[j], . . . ,bm[j] are irreducible.

Proof. Without loss of generality we may assume that i = 1, j = 2. We
prove the lemma by induction on the sum of the numbers of alternations in the
sequences a1[1], . . . ,ak[1] and a1[2], . . . ,ak[2] (that is positions i such that ai[1] ̸=
ai+1[1] and ai[2] ̸= ai+1[2], respectively). In the base case for induction when
this number equals 2, we have k = 1, and the result holds trivially. We also
may assume that either ak−1[1] ̸= ak[1] or ak−1[2] ̸= ak[2], and by induction
hypothesis, that a1[1], . . . ,ak−1[1], a1[2], . . . ,ak−1[2] are irreducible, since the set
{a1[1], . . . ,ak−1[1],a1[2], . . . ,ak−1[2]} contains fewer elements than {a1[1], . . . ,ak[1],
a1[2], . . . ,ak[2]}. Note that it suffices to consider only the first two components
of the tuples. Indeed, if we obtain a sequence of tuples b1, . . . ,bm such that
pr1,2b1, . . . , pr1,2bm is an irreducible r-path, then the sequence b′

1, . . . ,b
′
m with

b′
1 = b1 and b′

i+1 = f(b′
i,bi+1), for i > 1, is an r-path and pr1,2b

′
i = pr1,2bi.

There are two cases to consider.

Case 1. ak−2[1] ̸= ak−1[1] and ak−2[2] ̸= ak−1[2].

Subcase 1a. ak−2[1] ̸≤ ak[1], ak−2[2] ̸≤ ak[2].

In this case a1[1], . . . ,ak−1[1],ak[1] and a1[2], . . . ,ak−1[2],ak[2] are irreducible
and we are done.
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Subcase 1b. ak−2[1] ̸≤ ak[1], ak−2[2] ≤ ak[2] or ak−2[1] ≤ ak[1], ak−2[2] ̸≤ ak[2].

Without loss of generality we assume the former case. If ak−1[2] = ak[2] then
a1[1], . . . ,ak−1[1],ak[1] and a1[2], . . . ,ak−1[2],ak[2] are irreducible and we are done.
Otherwise, by setting a′k−2 = f(ak−2,ak) and a′k−1 = f(ak−1,a

′
k−2), we get

a′k−2[1] = ak−2[1], a′k−2[2] = ak[2], a′k−1[1] = ak−1[1], a′k−1[2] = ak[2]. In the r-
path a1, . . . ,ak−2,a

′
k−1,ak the number of alternations in a1[1], . . . ,ak−2[1],a

′
k−1[1],

ak[1] and a1[2], . . . ,ak−2[2],a
′
k−1[2],ak[2] is less than that for the original r-path,

as ak−1[2] is excluded. Therefore we can apply induction hypothesis.

Subcase 1c. ak−2[1] ≤ ak[1] and ak−2[2] ≤ ak[2].

In this case it suffices to remove ak−1 and apply induction hypothesis.

Case 2. ak−2[1] ̸= ak−1[1] and ak−l[2] = . . . = ak−2[2] = ak−1[2], or ak−l[1] =
. . . = ak−2[1] = ak−1[1] and ak−2[2] ̸= ak−1[2].

We assume that ak−2[2] ̸= ak−1[2] and ak−l[1] = . . . = ak−2[1] = ak−1[1].
Clearly, ak−l[1] = . . . = ak−2[1] = ak−1[1] ≤ ak[1].

Subcase 2a. ak−l−1[1] ̸≤ ak[1], ak−2[2] ̸≤ ak[2].

By setting a′k−2 = f(ak−2,ak), a
′
k−1 = f(a′k−2,ak−1), and then a′j = f(aj ,a

′
j+2)

for all k−l+1 ≤ j ≤ k−3, we get a′k−l+1[1] = . . . = a′k−1[1] = ak[1] and a′k−l+1[2] =
ak−l+1[2], . . . ,a

′
k−1[2] = ak−1[2]. Then, for the r-path a1, . . . ,ak−l,a

′
k−l+1, . . . ,a

′
k−1,

ak, the r-paths a1[1], . . . ,an−l[1],a
′
n−l+1[1], . . . ,a

′
k−1[1],ak[1] and a1[2], . . . ,an−l[2],

a′n−l+1[2], . . . ,a
′
k−1[2],ak[2] are irreducible.

Subcase 2b. ak−l−1[1] ≤ ak[1], ak−2[2] ̸≤ ak[2].

As in Subcase 2a we may get a′k−l, . . . ,a
′
k−1 such that a′k−l[1] = . . . = a′k−1 =

ak[1] and a′k−l[2] = ak−l[2], . . . ,a
′
k−1[2] = ak−1[2]. Then in the r-path a1, . . . ,ak−l−1,

a′k−l, . . . ,a
′
k−1,ak the number of alternations in a1[1], . . . ,ak−l−1[1],a

′
k−l[1], . . . ,

a′k−1[1],ak[1] and a1[2], . . . ,ak−l−1[2],a
′
k−l[2], . . . ,a

′
k−1[2],ak[2] is less than that for

the original r-path, as ak−l[1] = . . . = ak−1[1] is excluded. Therefore we may apply
induction hypothesis.

Subcase 2c. ak−2[2] ≤ ak[2].

Replace the original r-path with a1, . . . ,ak−2, f(ak−2,ak) and apply induction
hypothesis.

Lemma C.2 (Lemma 6.4, p. 52). If a,b ∈ R are such that a ∈ max(b), then
there is c ∈ F(b) ∩max(b) such that c is strongly ry-connected to a in G(Rmax).

Proof. We should prove that every strongly ry-connected component of G(max(b))
contains a tuple a such that a ∈ F(b). By the Generalized Connectedness Lem-
ma 5.2(2), the strongly ry-connected components of G(max(b)) are of the form
R′ = R ∩ (C1 × . . .× Cn) where C1, . . . , Cn are strongly ry-connected components
of G(max(b[1])), . . . ,G(max(b[n])) respectively.
We proceed by induction on n. The base case for induction, n = 1, is obvious by

definition of r-maximal elements. So, suppose the lemma is proved for all m < n.
By induction hypothesis, there is c ∈ max(b) such that c[i] ∈ Ci for i ∈ n− 1

and prn−1b ≺ prn−1c. Moreover, by the Maximal Expansion Lemma 3.8(1), c
can be chosen to be r-maximal. We also may assume that b ≺ c. Indeed, let
prn−1b = b′

1 ≤ b′
2 ≤ . . . ≤ b′

k = prn−1c be an r-path, and b = b1 ≤ b2 ≤ . . . ≤
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bk ∈ R its extension that exists by the Path Extension Lemma 3.6(1). Then, by
the Maximality Lemma 3.7(1), there is c′ such that bk ≺ c′ and c′[n] is r-maximal.
Since prn−1bk = prn−1c and prn−1c

′ belong to the same strongly r-connected

component, there is c′′ such that prn−1c
′′ = prn−1c and c′ ≺ c′′. Thus b ≺ c′′,

and c′′ satisfies the same condition as c. Let us replace c with c′′ if needed.

If c[n] ∈ Cn then we are done. Otherwise, let a ∈ R′. Since J(ry, n, Cn) = {n},
by the Rectangularity Proposition 5.4(1), max(b) is ry-rectangular, which implies
that the tuple d = (prn−1c,a[n]) belongs to R

′. Thus we may assume that there is

a ∈ R′ ⊆ max(b) such that prn−1a = prn−1c, a[n] ∈ Cn and ⟨c[n],a[n]⟩ ∈ γ. We
shall show that b ≺ a. Let b = b1 ≤ b2 ≤ . . . ≤ bk = c be an r-path connecting b
and c.

Notice that if ⟨a[n],bj [n]⟩ ̸∈ β ∪ γ for a certain j ∈ k then b ≺ a. Indeed,
suppose first a[n] ≤ bl[n] for a certain l. Consider the tuples b′

l = f(a,bl), and if
b′
j is obtained, b′

j+1 = f(b′
j ,bj+1). It is not hard to see that b′

j [i] ∈ {bj [i],bk[i]}.
Therefore, b′

k = bk. Since a ≤ b′
j , we have a ≺ bk. Since a is r-maximal and by the

Generalized Connectedness Lemma 5.2(1), we have bk ≺ a, a contradiction with
c[n] ̸∈ Cn. So, suppose that, for any j ≤ k, bj [n] ≤ a[n] or ⟨bj [n],a[n]⟩ ∈ β ∪ γ. If
bl[n] ≤ a[n] for a certain l ≤ k, then the r-path al = f(bl,a), aj+1 = f(aj ,bj+1),
for j > l, ends up with a, which proves that b ≺ a.

Then we prove by induction on m < n that there exists d ∈ F(b) such that
prmd, prmc are strongly r-connected, d[n] = b[n], and d[i] ∈ {b1[i], . . . ,bk[i]} for
i ∈ {m+1, . . . , n−1}. In the base case for induction, m = 0, we may choose d = b.

By Lemma 6.1, the r-paths b1[m], . . . ,bk[m], b1[n], . . . ,bk[n] can be assumed to
be irreducible. Clearly, by truncating the sequence b1, . . . ,bk, either all b1[m], . . . ,
bk[m] or all b1[n], . . . ,bk[n] can be assumed to be different.

There are two cases.

Case 1. All b1[m], . . . ,bk[m] are different.

If k ≤ 2 then for the tuple a′ = f(b1,a), we have a′[m] = c[m], a′[n] = b1[n]
and b = b1 ≤ a′. If k > 2 then set a′ = f(bk−1,a). By the Path Alignment
Lemma 6.2(2), we obtain tuples c11, . . . , c

1
k ∈ F(b) such that c11[n] = . . . = c1k[n] =

b1[n], c1j [m] = bj [m] for j ∈ k, and c11[i], . . . , c
1
l [i] ∈ {b1[i], . . . ,bk[i]} for i ∈

n− {m,n}.
Case 2. All b1[n], . . . ,bk[n] are different.

Let l be such that bk−l[m] = . . . = bk[m], but bk−l−1[m] ̸= bk−l[m]. Consider
the r-path b1, . . . ,bk−l. As in the previous case, there are c11 ≤ . . . ≤ c1k−l with
c11[n] = . . . = c1k−l = b1[n] and c1j [m] = bj [m] for j ∈ k − l.

In both cases, there are b = c11 ≤ . . . ≤ c1k where in Case 2 c1n−l+1, . . . , c
1
k

can be taken to be equal c1k−l. Let also d′ be the tuple existing by induction
hypothesis, that is such that prm−1d

′ is strongly r-connected with prm−1c and

d′[n] = b[n]. There is j ∈ k such that d′[m] = bj [m]. Let us define tuples dj , . . . ,dk

as follows. Set dj = d′, and if di is already defined then set di+1 = f(di, c
1
i+1).

Clearly, dk[m] = c[m] and prm−1dk is strongly r-connected with prm−1c. By

the Generalized Connectedness Lemma 5.2(1), prmdk is strongly r-connected with
prmc.
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Fig. C.2. The Fork Lemma 6.8.

Thus, F(b) contains a tuple d such that d[n] = b[n] and prn−1d is strongly

r-connected with prn−1c. Take an r-path b[n] = e1 ≤ e2 ≤ . . . ≤ er = a[n], and its

extension to an r-path b = e1 ≤ e2 ≤ . . . ≤ er. Then set e′1 = f(d, e1), and if e′j is
already obtained, then e′j+1 = f(e′j , ej+1). It is not hard to see, that e′1, . . . , e

′
r form

an r-path. Since prn−1a ≺ prn−1dk ≺ prn−1e
′
r, a[i] is in a r-maximal component

and e′r[n] = a[n], by the Generalized Connectedness Lemma 5.2(1), a and e′r are
strongly r-connected. Finally, as b ≺ dk ≺ e′r ≺ a, we get a ∈ F(b), as required.

Lemma C.3 (Fork Lemma, Lemma 6.8, p.54). Let R be a subdirect product
of R1, R2 ∈ Γ, which are subdirect products of A1, . . . , Am ∈ A and Am+1, . . . , Am+n ∈
A, respectively, and o ∈ R1, B ⊆ R2 such that {o} × B ⊆ R. There is I ⊆ K =
{m + 1, . . . ,m + n} such that max({o} × prK−IB) × max(prIB) ⊆ R, and all
members of prK−IB are indistinguishable (see Fig. C.2).

Proof. We proceed by induction on 3 parameters: n, |F(o)|,
∑

b∈B |F(b)|. The
base case for induction, n = 1 and the other parameters any, is trivial.
Since max(B) =

∪
b∈B max(b), it is enough to prove that there is I ⊆ K such

that, for any b ∈ B, we have max(o,prK−Ib)×max(prIb) ⊆ R and the members of
prK−IB are indistinguishable. In fact, this condition can be weakened even further.

Claim 1. If there is b0 ∈ B and ∅ ̸= J ⊆ K such that max(o, prK−Jb
0) ×

max(prJb
0) ⊆ R, then the result follows.

Consider prm∪(K−J)R, o ∈ R1, and prK−JB ⊆ prK−JR
2. Since J ̸= ∅, by

induction hypothesis, there is I ⊆ K − J such that max({o} × prK−J−IB) ×
max(prIB) ⊆ R, and the members of prK−J−IB are indistinguishable. In particu-
lar, max(o, prK−J−Ib

0)×max(prJ∪Ib
0) ⊆ R.

Since, for any b ∈ B, (o, prK−J−Ib) and (o,prK−J−Ib
0) are indistinguish-

able, we get max(o, prK−J−Ib) × max(prJ∪Ib
0) ⊆ R. Finally, by Corollary 6.7,

where A = {prJ∪Ib
0, prJ∪Ib}, B = {(o, prK−J−Ib

0), (o, prK−J−Ib)}, we get
max(o, prK−J−Ib)×max(prJ∪Ib) ⊆ R. The claim is proved.

As is easily seen, by Claim 1, we may restrict ourselves with the case |B| = 2.
So, let B = {b1,b2}, b1,b2 are not indistinguishable. The base case for induction,
where n is any, o and b1,b2 are r-maximal, follows from the next claim.
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Claim 2. Let b1,b2 be r-maximal elements of G(R2), let o be an r-maximal element
of G(R1), let B1

i , B
2
i be the strongly ry-connected components of G(max(Ai)), i ∈

K, containing b1[i],b2[i] respectively, and let I = {i ∈ K | B1
i ̸= B2

i }. If I = ∅
then b1,b2 are indistinguishable, otherwise, max(o, prK−Ib1)×max(prIb1) ⊆ R.

By the Generalized Connectedness Lemma 5.2(2), the relation Ej = R2∩(Bj
m+1×

. . . × Bj
m+n), j = 1, 2, is a subdirect product of Bj

m+1, . . . , B
j
m+n, E

j = max(bj);
and G(Ej) is strongly ry-connected.
Notice that max(o), max(b1), max(b2) equal the strongly ry-connected compo-

nents of G(R1),G(R2) containing o,b1,b2 respectively. Therefore, if I = ∅ then
max(b1) = max(b2), and b1,b2 are indistinguishable. Otherwise, we apply the
Rectangularity Proposition 5.4(1) to the relation

R ∩
(
max(o)×

(
R2 ∩ ((B1

m+1 ∪B2
m+1)× . . .× (B1

m+n ∪B2
m+n))

))
.

This relation is ry-rectangular, which means that for any a ∈ max(o, prK−Ib1) and
any b ∈ prIb1, the tuple (a,b) belongs to R. The claim is proved.

Suppose that b1 is not r-maximal. If b2 is r-maximal, then b2 ̸⊑ b1. Indeed,
max(b2) is the strongly ry-connected component of G(R2) containing b2, therefore,
if max(b1) ⊆ max(b2) then max(b1) = max(b2), that is b1,b2 are indistinguish-
able. Now suppose that there is c ∈ F(b1) − F(b2). We may assume that c is
r-maximal and c,b1 are in different strongly r-connected components. In other
words, |F(c)| ≤ |F(b1)|.
There is an r-path b1 = c1, c2, . . . , ck = c and, by Lemma 6.3, b2 ≤ d for no

d ∈ R2 indistinguishable with one of c1, . . . , ck. We proceed by induction on k.

Claim 3. Either there is o′ ∈ F(o) such that (o′, c2), (o
′,b2) ∈ R, or there is

J ⊆ K with max(o, prK−Jb2)×max(prJb2) ⊆ R.

There is o′ ∈ R1 with (o′, c2) ∈ R. Replacing (o′, c2) with f

((
o
b1

)
,

(
o′

c2

))
,

we may assume that o ≤ o′.

Consider the tuple

(
o′

d

)
= f

((
o
b2

)
,

(
o′

c2

))
. Clearly, b2 ≤ d. Let us denote

by L the set {i ∈ K | d[i] = b2[i]}. If L = K then (o′, c2), (o
′,b2) ∈ R. If

L = ∅ then d = c2 which means b2 ≤ c2, a contradiction with the condition
c ∈ F(b1)− F(b2). Otherwise, d[i] = c2[i] for any i ∈ K − L, hence, we may use
induction hypothesis for the pair (a, prLb2), (a, prLc2) where a = (o′,prK−Lc2).
Therefore there is∅ ̸= J ⊆ L such that max(a,prL−Jb2)×max(prJb2) ⊆ R. Since
(o, prK−L−Jb2) ≤ a = (o′, prK−L−Jc2), by Corollary 6.7, max(o, prK−L−Jb2) ×
max(prJb2) ⊆ R (see Fig. C.3).

If the second possibility (a direct decomposition) from Claim 3 is the case then,
by Claim 1, the result follows. Otherwise, if k = 2 then, since |F(c2)|+ |F(b2)| <
|F(b1)| + |F(b2)| and |F(o′)| ≤ |F(o)|, by induction hypothesis, there is J ⊆ K
such that max(o′, prK−Jb2)×max(prJb2) ⊆ R.Moreover, as (a, prJb2) ∈ R, where
a = (o, prK−Jb2), we have, by Lemma 6.6, max(o, prK−Jb2) ×max(prJb2) ⊆ R.
Therefore, we get what is required.
In the case k > 2, the argument is the same but we use induction hypothesis of
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the second induction process, on k. This completes the proof.
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