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Abstract. In this paper we briefly survey the history of the Dichotomy
Conjecture for the Constraint Satisfaction problem, that was posed 25
years ago by Feder and Vardi. We outline some of the approaches to this
conjecture, and then describe an algorithm that yields an answer to the
conjecture.

1 Constraint Satisfaction Problem

We begin with definitions, examples and brief historical remarks on the Constraint
Satisfaction Problem.

1.1 The Problem

The archetypal example of the Constraint Satisfaction Problem is a Sudoku
puzzle, see, Fig. 1: One needs to assign values to every cell of the puzzle so
that the assignment satisfies certain constraints, such as the values in every
row, column, and smaller block are different. This example can be naturally
generalized in the following way. In the definition below tuples of elements are
denoted in boldface, say, a, and the ith component of a is referred to as a[i].

Definition 1. Let A1, . . . , An be finite sets. An instance I of the Constraint
Satisfaction Problem (CSP for short) over A1, . . . , An consists of a finite set of
variables V such that each v ∈ V is assigned a domain Aiv , iv ∈ {1, . . . , n}, and
a finite set of constraints C. Each constraint is a pair 〈s, R〉 where R is a relation
over A1, . . . , An (say, k-ary), often called the constraint relation, and s is a k-tuple
of variables from V , called the constraint scope. Let σ : V → A = A1 ∪ · · · ∪An
with σ(v) ∈ Aiv ; we write σ(s), for (σ(s[1]), . . . , σ(s[k])). A solution of I is a
mapping σ : V → A such that for every constraint 〈a, R〉 ∈ C we have σ(s) ∈ R.
The objective in the CSP is to decide whether or not a solution of a given instance
I exists.
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Fig. 1. A Sudoku puzzle as a CSP. The ellipses inducate some of the constraints

Since its inception in the early 70s [59], the CSP has become a very popular
and powerful framework, widely used to model computational problems first in
artificial intelligence, [34] and later in many other areas.

Modeling a specific computational problem usually gives rise to a restricted
CSP. Such restrictions can be imposed either on the type of the allowed constraint
relations, or on the way the constraint scopes interact, or both. Restrictions of
the first kind — the main subject of this paper — are usually given by specifying
a constraint language, that is, a set of relations Γ over a set, or a collection of
sets such that every constraint relation has to belong to Γ . More formally, let
A1, . . . , A` be finite sets and Γ a set (finite or infinite) of relations over A1, . . . , A`,
called a constraint language. Then CSP(Γ ) is the class of all instances I of the
CSP such that R ∈ Γ for every constraint 〈s, R〉 from I. The following examples
are just a few of the problems representable as CSP(Γ ).

k-Col The standard k-Coloring problem has the form CSP(Γk−Col), where Γk−Col =
{6=k} and 6=k is the disequality relation on a k-element set (of colours).

3-SAT An instance of the 3-SAT problem is a propositional logic formula in CNF
each clause of which contains 3 literals, and asking if it has a satisfying
assignment. Thus, 3-SAT is equivalent to CSP(Γ3SAT), where Γ3SAT is the
constraint language on {0, 1} and containing relations R1, . . . , R8, which are
the 8 ternary relations that can be expressed by a 3-clause.

Lin Let F be a finite field and let 3Lin(F ) be the problem of deciding the
consistency of a system of linear equations over F each of which contains
at most 3 variables. Then 3Lin(F ) is equivalent to CSP(Γ3Lin(F )), where
Γ3Lin(F ) is the constraint language over F whose relations are given by an
equation with at most 3 variables.

MonEq Let M be a monoid (or a semigroup). An equation over M is an expression
of the form t = s, where t and s are words that involve indeterminates and
constants from M . A solution of t = s is an assignment of elements from M
to the indeterminates such that t and s evaluate to the same element of M . In
the problem MonEq(M) we are given a system of equations over monoid M ,
and the objective is to decide, whether or not there exists an assignment to
the indeterminates that is a solution for each of the given equations. Similar to
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3Lin, MonEq(M) is the problem CSP(ΓMonEq(M)), where ΓMonEq(M) is the
constraint language consisting of all relations representable by an equation
over M . Note that ΓMonEq(M) is infinite in general.

1.2 Logic and Databases

The next step in the CSP research was motivated by its applications in the theory
of relational databases. The Query Evaluation problem can be thought of as
deciding whether a first order sentence in the vocabulary of a database is true in
that database (that is, whether or not the query has an answer). The Query
Containment problem asks, given two queries Φ and Ψ , whether Φ→ Ψ is true
in any database with the appropriate vocabulary. The former problem is of course
the main problem relational databases are needed for, while the latter is routinely
used in various query optimization techniques. It turns out that both problems
have intimate connections to the CSP, if the CSP is properly reformulated. We
need some terminology from model theory.

A vocabulary is a finite set of relational symbols R1, . . . , Rn each of which
has a fixed arity ar(Ri). A relational structure over vocabulary R1, . . . , Rn is a
tuple H = (H;RH1 , . . . , R

H
n ) such that H is a non-empty set, called the universe

of H, and each RHi is a relation over H having the same arity as the symbol Ri.
A sentence is said to be a conjunctive query if it only uses existential quantifiers
and its quantifier-free part is a conjunction of atomic formulas.

Definition 2. An instance of the CSP is a pair (Φ,H), where H is a relational
structure in a certain vocabulary, and Φ is a conjunctive sentence in the same
vocabulary. The objective is to decide whether Φ is true in H.

To see that the definition above is equivalent to the original definition of the
CSP, we consider its special case, k-Colouring. The vocabulary corresponding
to the problem contains just one binary predicate R 6=. Let Hk be the relational

structure with universe [k] = {1, . . . , k} in the vocabulary {R 6=}, where RHk6= is
interpreted as the disequality relation on the set [k]. (In the future we will tend
to omit the superscripts indicating an interpretation, whenever it does not lead
to a confusion.) Then an instance G = (V,E) of k-Colouring is equivalent to
testing whether conjunctive sentence

∧
(u,v)∈E R6=(u, v) (we omit the quantifier

prefix) is true in H.
The Query Evaluation problem is thus just the CSP, when restricted to

conjunctive queries. A database is then cosidered as the input relational structure.
The Chandra-Merlin Theorem [29] shows that the Query Containment problem
is also equivalent to the CSP.

Relational database theory also massively contributed to the CSP research,
most notably by techniques related to local propagation algorithms and the logic
language Datalog. We will return to this subject in Section 3.1.

1.3 Homomorphisms and Dichotomy

The complexity of the CSP and its solution algorithms have been a major theme
since the problem was introduced. The general CSP is NP-complete, as it can
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be easily shown. However, various restrictions of the CSP may result in more
tractable problems. Paper [36, 37] by Feder and Vardi marked the beginning of a
systematic research of the complexity of the CSP. Among the numerous insights
of this paper, it introduced a new definition of the CSP.

Let G and H be relational structures over the same vocabulary. A homo-
morphism from G to H is a mapping ϕ : G→ H from the universe G of G (the
instance) to the universe H of H (the template) such that, for every relation RG

of G and every tuple a ∈ RG , we have ϕ(a) ∈ RH.

Definition 3. An instance of the CSP is a pair of relational structures G,H
over the same vocabulary. The objective is to decide whether or not there exists a
homomorphism from G to H.

The homomorphic definition of the CSP makes its restricted version very
elegant. Let H be a relational structure. An instance of the nonuniform constraint
satisfaction problem CSP(H) is a structure G over the same vocabulary as H,
and the question is whether there is a homomorphism from G to H.

We again illustrate the correspondence between the definition above and
Definition 1 with an example. Consider again the k-Colouring problem, and
let Hk denote the relational structure with universe [k] over vocabulary {R 6=}
and RHk6= is interpreted as the disequality relation. In other words, Hk = Kk is
a complete graph with k vertices. Then a homomorphism from a given graph
G = (V,E) to Kk exists if and only if it is possible to assign vertices of Kk

(colours) to vertices of G in such a way that for any (u, v) ∈ E the vertices u and
v are assigned different colours. The latter is just a proper k-colouring of G.

Using the homomorphism framework the k-Colouring problem can be
generalized to the H-Colouring problem, where H is a graph or digraph: Given
a (di)graph G, decide whether or not there is a homomorphism from G to H.
Using the CSP notation the H-Colouring is CSP(EH), where EH denotes the
edge relation of H. The H-Colouring problem has received much attention in
graph theory, see, e.g. [48, 49].

Feder and Vardi in [36, 37] also initiated the line of research that is central for
this paper, the study of the complexity of nonuniform CSPs. They observed that
in all known cases a nonuniform CSP either can be solved in polynomial time, e.g.
CSP(Γ3Lin) or 2-Colouring, or is NP-complete, e.g., 3-SAT or k-Colouring
for k > 2. Two results were quite suggestive at that point. The first one is
the classification of the complexity of CSP(H) for 2-element structures (or the
Generalized Satisfiability problem, as it was referred to) by Schaefer [68];
who proved that every such problem is either solvable in polynomial time, or is
NP-complete. The second result by Hell and Nesetril [49] establishes that the
H-Colouring problem, where H is a graph, follows the same pattern: The
H-Colouring problem can be solved in polynomial time if H is bipartite or
has a loop, and it is NP-complete otherwise. This allowed Feder and Vardi to
pose the following

Conjecture 4 (The Dichotomy Conjecture). For every finite relational structure
H the problem CSP(H) is either solvable in polynomial time or is NP-complete.
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Most of the remaining part of this paper is devoted to resolving the Dichotomy
Conjecture.

1.4 The Other Side and Other Types

In nonuniform CSPs we restrict a constraint language or a template relational
structure. Clearly, other kinds of restrictions are also possible. For instance,
in database theory one cannot assume any restrictions on the possible content
of a database — which is a template structure in the Conjunctive Query
Evaluation problem — but some restrictions on the possible form of queries
make much sense. If a CSP is viewed as in Definition 1, the cosntraint scopes
of an instance I form a hypergraph on the set of variables. In a series of works
[43, 40, 44, 46, 47] it has been shown that if this hypergraph allows some sort of
decomposition, or is tree-like, then the CSP can be solved in polynomial time. The
tree-likeness of a hypergraph is usually formalized as having bounded treewidth,
or bounded hypertree width, or bounded fractional hypertree width. This line
of work culminated in [64], in which Marx gave an almost tight description of
classes of hypergraphs that give rise to a CSP solvable in polynomial time. Hybrid
restrictions are also possible, although research in this direction has been more
limited, see, [38, 39, 30] as an example.

Along with the decision version of the CSP, other versions of the problem
have been intensively studied, see, [31] for definitions and early results on many
of them. These include the Quantified CSP, which is the problem of checking
whether or nor a conjunctive sentence allowing both universal and existential
quantifiers is true in a given relational structure [11]. In the MaxCSP one needs
to maximize the number of satisfied constraints. Note that often constraints
in MaxCSP are considered weighted and the the problem is to maximize the
total weight of satisfied constraints. Another variation of this problem is Valued
CSP, in which the constraints are replaced by functions that give a weight to
each assignment. The problem is to minimize (or maximize) the weight of an
assignment. This problem has been considered for both exact optimization [57,
69, 56] and approximation algorithms [66, 33, 5]. The Counting CSP has received
much attention, particularly due to its connections to statistical physics. In this
problem the goal is to count the number of solutions of a CSP (the unweighted
version) or to evaluate the total weight of the assignments (the weighted version).
The complexity of exact counting is well understood [35, 18, 28], while approximate
counting remains a largely open area [54].

2 Algebraic Approach

The most successful approach to tackling the Dichotomy Conjecture turned out
to be the algebraic one. In this section we introduce the algebraic approach to the
CSP and show how it can be used to determe the complexity of nonuniform CSPs.
A keen reader can find more details on the algebraic approach, its applications,
and the underlying algebraic facts from the following books [45, 50], surveys [7, 6,
27, 26], and research papers [25, 16, 17, 19, 24, 9, 2, 4, 3, 51].
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2.1 Primitive Positive Definitions

Let Γ be a set of relations (predicates) over a finite set A. A relation R over A
is said to be primitive-positive (pp-) definable in Γ if R(x) = ∃y Φ(x,y), where
Φ is a conjunction that involves predicates from Γ and equality relations. The
formula above is then called a pp-definition of R in Γ . A constraint language ∆
is pp-definable in Γ if so is every relation from ∆. In a similar way pp-definability
can be introduced for relational structures.

Example 5. Let K3 = ([3], E) be a 3-element complete graph. Its edge relation is
the binary disequality relation on [3]. Then the pp-formula

Q(x, y, z) = ∃t, u, v, w(E(t, x) ∧ E(t, y) ∧ E(t, z) ∧ E(u, v) ∧ E(v, w)

∧E(w, u) ∧ E(u, x) ∧ E(v, y) ∧ E(w, z))

defines the relation Q that consists of all triples containing exactly 2 different
elements from [3].

A link between pp-definitions and reducibility between nonuniform CSPs was
first observed in [52].

Theorem 6 ([52]). Let Γ and ∆ be constraint languages and ∆ finite. If ∆ is
pp-definable in Γ then CSP(∆) is polynomial time reducible1 to CSP(Γ ).

It was later shown that pp-definability in Theorem 6 can be replaced with a
more general notion of pp-constructibility [7, 8].

2.2 Polymorphisms and Invariants

Primitive positive definability can be concisely characterized using polymorphisms.
An operation f : Ak → A is said to be a polymorphism of a relation R ⊆
An if for any a1, . . . ,ak ∈ R the tuple f(a1, . . . ,ak) also belongs to R, where
f(a1, . . . ,ak) stands for (f(a1[1], . . . ,ak[1]), . . . , f(a1[n], . . . ,ak[n])). Operation
f is a polymorphism of a constraint language Γ if it is a polymorphism of every
relation from Γ . Similarly, operation f is a polymorphism of a relational structure
H if it is a polymorphism of every relation of H. The set of all polymorphisms of
language Γ or relational structure H is denoted by Pol(Γ ), Pol(H). If F is a set
of operations, Inv(F ) denotes the set of all relations R such that every operation
from F is a polymorphism of R.

Example 7. Let R be an affine relation, that is, R is the solution space of a system
of linear equations over a field F . Then the operation f(x, y, z) = x − y + z
is a polymorphism of R. Indeed, let A · x = b be the system defining R, and
x,y, z ∈ R. Then

A · f(x,y, z) = A · (x− y + z) = A · x−A · y +A · z = b.

In fact, the converse can also be shown: if R is invariant under f , where f is
defined in a certain finite field F then R is the solution space of some system of
linear equations over F .

1 In fact, due to the result of [67] this reduction can be made log-space.



Constraint Satisfaction Problems: Complexity and Algorithms 7

Example 8. In [55] it was shown that MonEq(M) for a monoid M can be
solved in poltnomial time if and only if M is commutative and is the union
of its subgroups. If this is the case then the operation t(x, y, z) = xyω−1z is a
polymorphism of ΓMonEq(M) (see also [58]). Here xω denotes the power of x such
that xω is an idempotent of M .

Several other useful polymorphisms are the following

Example 9 ([52, 53, 24]). (1) A binary semilattice operation.

(2) A k-ary operation g on A is called a near-unanimity operation, or NU if

g(y, x, . . . , x) = g(x, y, x, . . . , x) = · · · = g(x, . . . , x, y) = x

for any x, y ∈ A. A ternary NU is also referred to as a majority operation.

(3) A k-ary operation g on A is called a weak near-unanimity operation, or WNU
if it satisfies all the equations of an NU except for the last one

g(y, x, . . . , x) = g(x, y, x, . . . , x) = · · · = g(x, . . . , x, y).

(4) A ternary operation h on A is called Maltsev if

h(x, y, y) = h(y, y, x) = x

for any x, y ∈ A. As we saw in Example 7 any structure whose relations can be
represented by linear equations has the Maltsev polymorphism x− y+ z where +
and − are the operations of the underlying field. Note that the operation xyω−1z
from Example 8 is not necessarily Mal’tsev.

(5) If every polymorphism f of a relational structureH is such that f(x1, . . . , xn) =
xi for some i and all x1, . . . , xn ∈ H, then CSP(H) is NP-complete.

(6) Schaefer’s Theorem [68] can be stated in terms of polymorphisms. Let H
be a 2-element relational structure (we assume its universe to be {0, 1}). The
problem CSP(H) is solvable in polynomial time if and only if one of the following
operations is a polymorphism of H: the constant operations 0 or 1, the semilattice
operations of conjunction and disjunction, the majority operation on {0, 1} (there
is only one such operation), or the Maltsev operation x− y + z where + and −
are modulo 2. Otherwise CSP(H) is NP-complete.

A link between polymorphisms and pp-definability of relations is given by
Galois connection.

Theorem 10 (Galois connection, [10, 42]). Let Γ be a constraint language
on A, and let R ⊆ An be a non-empty relation. Then R is preserved by all
polymorphisms of Γ if and only if R is pp-definable in Γ .

2.3 Algebras and the CSP

Recall that a (universal) algebra is an ordered pair A = (A,F ) where A is a non-
empty set, called the universe of A, and F is a family of finitary operations on A,



8 A.Bulatov

called the basic operations of A. Operations that can be obtained from F by means
of composition are said to be term operations of the algebra. Every constraint
language on a set A can be associated with an algebra Alg(Γ ) = (A,Pol(Γ )). In
a similar way any relational structure A (with universe A) can be paired up with
the algebra Alg(A) = (A,Pol(A)). On the other hand, an algebra A = (A,F ),
can be associated with the constraint language Inv(F ) or the class Str(A) of
structures A = (A,R1, . . . , Rk) such that R1, . . . , Rk ∈ Inv(F ).

This correspondence can be extended to CSPs: For an algebra A by CSP(A)
we denote the class of problems CSP(A), A ∈ Str(A). Equivalently, CSP(A)
can be thought of as CSP(Inv(F )) for the infinite constraint language Inv(F ).
Note, however, that there is a subtle difference in the notion of polynomial time
solvability in these two cases that we will address next.

We say that algebra A is tractable if every CSP(A), A ∈ Str(A), is solvable in
polynomial time. Observe that this does not guarantee that there is a single solu-
tion algorithm for all such problems, nor it guarantees that there is any uniformity
among those algorithms. In general, it is plausible that for a tractable algebra
A = (A,F ) the problem CSP(Inv(F )) is NP-hard. If the problem CSP(Inv(F ))
is solvable in polynomial time, we call A globally tractable. Algebra A is called
NP-complete if some CSP(A), A ∈ Str(A) is NP-complete. Algebra A is globally
NP-complete if CSP(Inv(F )) is NP-complete.

Using the algebraic terminology we can pose a stronger version of the Di-
chotomy Conjecture.

Conjecture 11 (Dichotomy Conjecture+). Every finite algebra is either globally
tractable or NP-complete (in the local sense).

Our next goal is to make Conjecture 11 more precise. We achieve this goal
in Section 2.4, while now we observe that the standard algebraic constructions
behave quite well with respect to reducibility between CSPs.

Theorem 12 ([25]). Let A = (A;F ) be a finite algebra. Then
(1) if A is tractable then so is every subalgebra, homomorphic image, and

direct power of A.
(2) if A has a NP-hard subalgebra, homomorphic image, or direct power, then

A is NP-hard.

More reducibility properties related to term operations of an algebra can
be proved. Recall that an operation f on a set A is said to be idempotent if
the equality f(x, . . . , x) = x holds for all x ∈ A. An algebra all of whose term
operations are idempotent is said to be idempotent.

Theorem 13 ([25]). For any finite algebra A there is an idempotent finite
algebra B such that:

– A is globally tractable if and only if B is globally tractable;

– A is NP-complete if and only if B is NP-complete.

Theorem 13 reduces the Dichotomy Conjecture+ 11 to idempotent algebras.
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Example 14. The next example will be our running example throughout the
paper. Let A = {0, 1, 2}, and let AM be the algebra with universe A and two
basic operations: a binary operation r such that r(0, 0) = r(0, 1) = r(2, 0) =
r(0, 2) = r(2, 1) = 0, r(1, 1) = r(1, 0) = r(1, 2) = 1, r(2, 2) = 2; and a ternary
operation t such that t(x, y, z) = x − y + z if x, y, z ∈ {0, 1}, where +,− are
the operations of Z2, t(2, 2, 2) = 2, and otherwise t(x, y, z) = t(x′, y′, z′), where
x′ = x if x ∈ {0, 1} and x′ = 0 if x = 2; the values y′, z′ are obtained from
y, z by the same rule. It is an easy excercise to verify the following facts: (a)
B = ({0, 1}, r{0,1}, t{0,1}) and C = ({0, 2}, r{0,2}, t{0,2}) are subalgebras of AM ,

(b) the partition {0, 1}, {2} is a congruence of AM , let us denote it θ, (c) algebra C
is basically a semilattice, that is, a set with a semilattice operation, see Fig 2(a).

The classes of congruence θ are 0θ = {0, 1}, 2θ = {2}. Then the quotient
algebra AM/θ is also basically a semilattice, as r/θ(0

θ, 0θ) = r/θ(0
θ, 2θ) =

r/θ(2
θ, 0θ) = 0θ and r/θ(2

θ, 2θ) = 2θ. �

2.4 The CSP and Omitting Types

In the 1980s Hobby and McKenzie developed tame congruence theory that studies
the local structure of algebras [50]. They discovered that the local structure of
universal algebras is surprisingly well behaved and can be classified into just five
types. Each type is associated with a certain basic algebra, and if an algebra
admits a type, it means that its local structure resembles that of the corresponding
basic algebra. The five basic algebras and corresponding types are:

1. A unary algebra whose basic operations are permutations (unary type);
2. A one-dimensional vector space over some finite field (affine type);
3. A 2-element boolean algebra whose basic operations include conjunction,

disjunction, and negation (boolean type);
4. A 2-element lattice whose basic operations include conjunction and disjunction

(lattice type);
5. A 2-element semilattice whose basic operations include a semilattice operation

(semilattice type).

Omitting or admitting types is strongly related to the complexity of the CSP.
Theorem 5 from [25] claims that if a relational structure A is such that Alg(A) is
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idempotent and admits the unary type then CSP(A) is NP-complete. Combined
with Theorem 12 this allows for a more precise Dichotomy Conjecture.

Conjecture 15. If a relational structure A is such that Alg(A) is idempotent, then
CSP(A) is solvable in polynomial time if and only if no subalgebra of Alg(A)
admits the unary type. Otherwise it is NP-complete.

Or in the stronger algebraic version

Conjecture 16 (Dichotomy Conjecture ++). An idempotent algebra A is globally
tractable if and only if none of its subalgebras admits the unary type. Otherwise
it is NP-complete.

The results [63] imply that the latter condition in Conjecture 16 is also
equivalent to the existence of a weak near-unanimity term operation in A.

Conjecture 16 has been confirmed in a number of special cases.

– Schaefer’s classification of 2-element structures [68] with respect to complex-
ity can be easily extended to 2-element algebras. Then it claims that an
idempotent 2-element algebra is globally tractable if and only if it has one of
the following term operations: a semilattice operation, a majority operation,
or the affine operation x− y + z. By [65] this is equivalent to having a term
weak near-unanimity operation.

– Let H be a graph, A = Alg(H), and let B the idempotent algebra constructed
from A as in Theorem 13. If H is bipartite then B is 2-element and has a
majority term operation. Otherwise B admits the unary type [15]. Thus the
classification from [49] matches the Dichotomy Conjecture++.

– The Dichotomy Conjecture++ was confirmed for 3-element algebras in [12,
16], and for 4-element algebras in [61].

– It was shown in [13, 17] that the Dichotomy Conjecture++ holds for conser-
vative algebras, that is, algebras in which every subset of the universe is a
subalgebra. These results have also been simplified in [1, 19].

– Finally, Zhuk in [71, 70] proved the conjecture for 5- and 7-element algebras.

In the rest of this paper we show that Conjecture 16 is true. The hardess part
of the conjecture follows from the mentioned result of [25]; so we focus on the
algorithmic part. The algorithm presented here is based on [23] (a full version
can be found in [22]). Note that the conjecture was also independently proved by
Zhuk [72].

3 CSP Algorithms

It would be natural to expect a wide variety of algorithms solving the CSP in
those cases in which it can be solved in polynomial time. However, surprisingly,
only two types of such algorithms are known, and for each type there is ‘the most
general’ algorithm, which means that basically only two CSP algorithms exist.



Constraint Satisfaction Problems: Complexity and Algorithms 11

3.1 Local Propagation Algorithms

The first type can be described as local propagation algorithms. We describe one
such algorithm, applicable whenever any other propagation algorithm solves the
problem.

Let R ⊆ An be a relation, a ∈ An, and J = {i1, . . . , ik} ⊆ [n]. Let prJa =
(a[i1], . . . ,a[ik]) and prJR = {prJa : a ∈ R}. Often we will use sets of CSP
variables to index entries of tuples and relations. Projections in these case are
defined in a similar way. Let I = (V, C) be a CSP instance. For W ⊆ V by IW
we denote the restriction of I onto W , that is, the instance (W, CW ), where for
each C = 〈s, R〉 ∈ C, the set CW includes the constraint CW = 〈s ∩W, prs∩WR〉.
The set of solutions of IW will be denoted by SW .

Unary solutions, that is, when |W | = 1 play a special role. As is easily seen, for
v ∈ V the set Sv is just the intersections of unary projections prvR of constraints
whose scope contains v. Instance I is said to be 1-minimal if for every v ∈ V
and every constraint C = 〈s, R〉 ∈ C such that v ∈ s, it holds prvR = Sv. For a
1-minimal instance one may always assume that allowed values for a variable
v ∈ V is the set Sv. We call this set the domain of v and assume that CSP
instances may have different domains, which nevertheless are always subalgebras
or quotient algebras of the original algebra A. It will be convenient to denote the
domain of v by Av. The domain Av may change as a result of transformations of
the instance.

Instance I is said to be (2,3)-minimal if it satisfies the following condition:
– for every X = {u, v} ⊆ V , any w ∈ V −X, and any (a, b) ∈ SX , there is c ∈ Aw
such that (a, c) ∈ S{u,w} and (b, c) ∈ S{v,w}.
For k ∈ N, (k, k + 1)-minimality is defined in a similar way using k, k + 1.

Instance I is said to be minimal (or globally minimal) if for every C =
〈s, R〉 ∈ C and every a ∈ R there is a solution ϕ such that ϕ(s) = a. Similarly, I
is said to be globally 1-minimal if for every v ∈ V and a ∈ Av there is a solution
ϕ with ϕ(v) = a.

Any instance can be transformed to a 1-minimal or (2,3)-minimal instance
in polynomial time using the standard constraint propagation algorithms (see,
e.g. [34]). These algorithms work by changing the constraint relations and the
domains of the variables eliminating some tuples and elements from them. We call
such a process tightening the instance. It is important to notice that if the original
instance belongs to CSP(A) for some algebra A, that is, all its constraint relations
are invariant under the basic operations of A, the constraint relations obtained
by propagation algorithms are also invariant under the basic operations of A,
and so the resulting instance also belongs to CSP(A). Establishing minimality
amounts to solving the problem and so not always can be easily done.

If a constraint propagation algorithm solves a CSP, the problem is said to be
of bounded width. More precisely, CSP(Γ ) (or CSP(A)) is said to have bounded
width if for some k every (k, k + 1)-minimal instance from CSP(Γ ) (or CSP(A))
has a solution (we also say that CSP(Γ ) has width k in this case). Problems of
bounded width are well studied, see the older survey [26] and more recent [2].
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Theorem 17 ([2, 21, 14, 60]). For an idempotent algebra A the following are
equivalent:

(1) CSP(A) has bounded width;

(2) every (2,3)-minimal instance from CSP(A) has a solution;

(3) A has a weak near-unanimity term of arity k for every k ≥ 3;

(4) every quotient algebra of a subalgebra of A has a nontrivial operation, and
none of them is equivalent to a module (in a certain precise sense).

Example 18. (1) The 2-SAT problem has bounded width, namely, width 2.

(2) The H-Colouring problem has width 2 when graph H is bipartite, and
NP-complete otherwise.

(3) The Horn-SAT is the Satisfiability problem restricted to Horn clauses,
i.e., clauses of the form x1 ∧ · · · ∧ xk → y. Let Γk-Horn be the constraint language
consisting of relations expressible by a Horn clause with at most k premises. The
problem k-Horn-SAT is equivalent to CSP(Γk-Horn) and has width k.

3.2 Gaussian Elimination and Few Subpowers

The simplest algorithm of the second type is known from basic linear algebra
— Gaussian elimination. While propagation algorithms cannot solve the Lin
problem, it is solvable by Gaussian elimination. A similar algorithm solving group
constraints, defined in terms of finite groups, was suggested in [37].

Algebraic techniques make it possible to generalize the Gaussian elimination
algorithm. The algorithm from [24] solving CSP(A) for a relational structure
A with a Maltsev polymorphism can be viewed as a generalization of Gaussian
elimination in the following sense. Similar to the output of Gaussian elimination
it constructs some sort of a basis or a compact representation of the set of all
solutions of a CSP.

It is thought that the property of relations to have a compact representation,
where compactness is understood as having size polynomial in the arity of the
relation, is the right generalization of linear algebra problems where Gaussian
elimination can be used. Let A = (A,F ) be an algebra. It is said to be an algebra
with few subpowers if every relation over A invariant under F admits a compact
representation [9, 51]. The term few subpowers comes from the observation that
every relation invariant under F is a subalgebra of a direct power of A, and
if the size of compact representation is bounded by a polynomial p(n) then at
most 2p(n) n-ary relations can be represented, while the total number of such
relations can be as large as 2|A|

n

. Algebras with few subpowers are completely
characterized by Idziak et al. [9, 51]. A minor generalization of the algorithm
from [32] solves CSP(A), where A has few subpowers.

Here the few subpowers algorithm is used in the context of semilattice edges.
A pair of elements a, b ∈ A is said to be a semilattice edge if there is a binary
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term operation f of A such that f(a, a) = a and f(a, b) = f(b, a) = f(b, b) = b,
that is, f is a semilattice operation on {a, b}. For example, the set {0, 2} from
Example 14 is a semilattice edge, and the operation r of AM witnesses that.

Proposition 19 ([21]). If an idempotent algebra A has no semilattice edges, it
has few subpowers, and therefore CSP(A) is solvable in polynomial time.

Semilattice edges have other useful properties including the following one
that we use for reducing a CSP to smaller problems.

Lemma 20 ([20]). For any idempotent algebra A there is a term operation xy
(think multiplication) such that xy is a semilattice operation on any semilattice
edge and for any a, b ∈ A either ab = a or {a, ab} is a semilattice edge.

Note that any semilattice operation satisfies the conditions of Lemma 20. The
operation r of the algebra AM from Example 14 is not a semilattice operation
(it is not commutative), but it satisfies the conditions of Lemma 20.

4 Congruence Separation and Centralizers

We now move on to describe the algorithm resolving the Dichotomy Conjecture.
In this section we introduce two of the key ingredients of our algorithm.

4.1 Separating Congruences

Unlike the vast majority of the literature on the algebraic approach to the CSP
we use not only term operations, but also polynomial operations of an algebra. It
should be noted however that the first to use polynomials for CSP algorithms was
Maroti in [62]. We make use of some ideas from that paper in the next section.
Let f(x1, . . . , xk, y1, . . . , y`) be a k + `-ary term operation of an algebra A and
b1, . . . , b` ∈ A. The operation g(x1, . . . , xk) = f(x1, . . . , xk, b1, . . . , b`) is called a
polynomial of A. A polynomial for which k = 1 is said to be a unary polynomial.
If α is a congruence, and f is a unary polynomial, by f(α) we denote the set of
pairs {(f(a), f(b)) | (a, b) ∈ α}.

Let A be an algebra and let Con(A) denote its congruence lattice. For α, β ∈
Con(A) we write α ≺ β if α < β (that is, α ⊂ β as sets of pairs) and α ≤ γ ≤ β in
Con(A) implies γ = α or γ = β. If this is the case we call (α, β) a prime interval
in Con(A). Let α ≺ β and γ ≺ δ be prime intervals in Con(A). We say that α ≺ β
can be separated from γ ≺ δ if there is a unary polynomial f of A such that
f(β) 6⊆ α, but f(δ) ⊆ γ. The polynomial f in this case is said to separate α ≺ β
from γ ≺ δ.

Example 21. The unary polynomials of the algebra AM from Example 14 include
the following unary operations (these are the polynomials we will use, there are
more unary polynomials of AM ):
h1(x) = r(x, 0) = r(x, 1), such that h1(0) = h1(2) = 0, h1(1) = 1;
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h2(x) = r(2, x), such that h2(0) = h2(1) = 0, h2(2) = 2;
h3(x) = r(0, x) = 0.

The lattice Con(AM ) has two prime intervals 0 ≺ θ and θ ≺ 1 (see Example 14
and Fig 2(b)). As is easily seen, h3(1) ⊆ 0, therefore h3 collapses both prime
intervals. Since h1(θ) 6⊆ 0, but h1(1) ⊆ θ, polynomial h1 separates (0, θ) from
(θ, 1). Similarly, the polynomial h2 separates (θ, 1) from (0, θ), because h2(1) 6⊆ θ,
while h2(θ) ⊆ 0. �

In a similar way separation can be defined for prime intervals in different
coordinate positions of a relation. Let R be a subdirect product of A1 × · · · ×An,
that is, priR = Ai for i ∈ [n]. Then R can also be viewed as an algebra with
operations acting component-wise, and polynomials of R can be defined in the
same way. Since every basic operation acts on R component-wise, its unary
polynomials also act component-wise. Therefore, for a unary polynomial f of
R it makes sense to consider f(a), where a ∈ Ai, i ∈ [n]. Let i, j ∈ [n] and let
α ≺ β, γ ≺ δ be prime intervals in Con(Ai) and Con(Aj), respectively. Interval
α ≺ β can be separated from γ ≺ δ if there is a unary polynomial f of R such
that f(β) 6⊆ α but f(δ) ⊆ γ. The binary relation ‘cannot be separated’ on the
set of prime intervals of an algebra or factors of a relation is easily seen to be
reflexive and transitive. We will say that α ≺ β, γ ≺ δ cannot be separated if
α ≺ β and γ ≺ δ cannot be separated from each other.

Example 22. Let R be a ternary relation over AM invariant under r, t, given by

R =

0 0 1 1 0 0 1 1 2 2
0 1 1 0 0 1 1 0 2 2
0 0 0 0 1 1 1 1 0 2

 ,

where triples, the elements of the relation are written vertically. It will be
convenient to distinguish congruences in the three factors of R, so we denote
them by 0i, θi, 1i for the ith factor. Since pr12R is the congruence θ, any unary
polynomial h of R acts identically modulo θ on the first and the second coordinate
positions. In particular, the prime interval (θ1, 11) cannot be separated from the
prime interval (θ2, 12). Consider the polynomial h(x) of R given by

h(x) = r

2
2
0

 , x

 =

r(2, x)
r(2, x)
r(0, x)

 =

h2(x)
h2(x)
h3(x)

 ,

it is a polynomial of R because (2, 2, 0) ∈ R. Since h2(1) 6⊆ θ, but h3(1) ⊆ θ
and h3(θ) ⊆ 0, the prime interval (θ2, 12) can be separated from (03, θ3) and
(θ3, 13). Similarly, the interval (θ3, 13) can be separated from (01, θ1), (02, θ2).
Through a slightly more involved argument it can be shown that (θ3, 13) cannot
be separated from (θ1, 11), (θ2, 12). In the next section we explain why the prime
intervals (0i, θi), (0j , θj) cannot be separated from each other. �
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4.2 Quasi-Centralizers

The second ingredient we will use here is the notion of quasi-centralizer of a pair
of congruences. It is similar to the centralizer as it is defined in commutator
theory [41], albeit the exact relationship between the two concepts is not quite
clear, and so we name it differently for safety.

For an algebra A, a term operation f(x, y1, . . . , yk), and a ∈ Ak, let fa(x) =
f(x,a); it is a unary polynomial of A. Let α, β ∈ Con(A), and let ζ(α, β) ⊆ A2

denote the following binary relation: (a, b) ∈ ζ(α, β) if an only if, for any term
operation f(x, y1, . . . , yk), any i ∈ [k], and any a,b ∈ Ak such that a[i] = a,
b[i] = b, and a[j] = b[j] for j 6= i, it holds fa(β) ⊆ α if and only if fb(β) ⊆ α.
(Polynomials of the form fa, fb are sometimes called twin polynomials.) The
relation ζ(α, β) is always a congruence of A. Next we show how it is related to
the structure of algebra A and the corresponding CSP.

Example 23. In the algebra AM , see Example 14, the quasi-centralizer acts as
follows: ζ(0, θ) = 1 and ζ(θ, 1) = θ. We start with the second centralizer. Since
every polynomial preserves congruences, for any term operation h(x, y1, . . . , yk)
and any a,b ∈ AkM such that (a[i],b[i]) ∈ θ for i ∈ [k], we have (ha(x), hb(x)) ∈ θ
for any x. This of course implies ζ(θ, 1) ≥ θ. On the other hand, let f(x, y) =
r(y, x). Then as we saw before, f0(x) = f(x, 0) = r(0, x) = h3(x) and f2(x) =
f(x, 2) = r(2, x) = h2(x), and f0(1) ⊆ θ, while f2(1) 6⊆ θ. This means that
(0, 2) 6∈ ζ(θ, 1) and so ζ(θ, 1) ⊂ 1. For the first centralizer it suffices to demonstrate
that the condition in the definition of quasi-centrailizer is satisfied for pairs of
twin polynomials produced by r, t of the form (r(a, x), r(b, x)), (r(x, a), r(x, b)),
(t(x, a1, a2), t(x, b1, b2)), (t(a1, x, a2), t(b1, x, b2)), (t(a1, a2, x), t(b1, b2, x)), which
can be verified directly.

Note that the equality ζ(0, θ) = 1 explains why prime intervals (0i, θi), (0j , θj)
in Example 22 cannot be separated. For that the relation prijR has to contain
tuples (a, b), (c, d) such that (a, c) ∈ ζ(0i, θi) while (b, d) 6∈ ζ(0j , θj), which is
impossible. �

5 The Algorithm

In this section we introduce the reductions used in the algorithm, and then
explain the algorithm itself.

5.1 Decomposition of CSPs

Let R be a binary relation, a subdirect product of A × B, and α ∈ Con(A),
γ ∈ Con(B). Relation R is said to be αγ-aligned if, for any (a, c), (b, d) ∈ R,
(a, b) ∈ α if and only if (c, d) ∈ γ. This means that if A1, . . . , Ak are the α-blocks
of A, then there are also k γ-blocks of B and they can be labeled B1, . . . , Bk in
such a way that

R = (R ∩ (A1 ×B1)) ∪ · · · ∪ (R ∩ (Ak ×Bk)).
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Lemma 24. Let R,A,B be as above and α, β ∈ Con(A), γ, δ ∈ Con(B), with
α ≺ β, γ ≺ δ. If (α, β) and (γ, δ) cannot be separated, then R is ζ(α, β)ζ(γ, δ)-
aligned.

Lemma 24 provides a way to decompose CSP instances. Let I = (V, C) be a
(2,3)-minimal instance from CSP(A). We will always assume that a (2,3)-minimal
instance has a constraint CX = 〈X,RX〉 for every X ⊆ V , |X| = 2, where
RX = SX . Recall that Av denotes the domain of v ∈ V . Also, let W ⊆ V and
congruences αv, βv ∈ Con(Av) for v ∈ W be such that αv ≺ βv, and for any
v, w ∈W the intervals (αv, βv) and (αw, βw) cannot be separated in R{v,w}.

Denoting ζv = ζ(αv, βv) for v ∈ W we see that there is a one-to-one corre-
spondence between ζv- and ζw-blocks of Av and Aw, v, w ∈ W . Moreover, by
(2,3)-minimality these correspondences are consistent, that is, if u, v, w ∈W and
Bu, Bv, Bw are ζu-, ζv- and ζw-blocks, respectively, such that R{u,v}∩(Bu×Bv) 6=
∅ and R{v,w} ∩ (Bv × Bw) 6= ∅, then R{u,w} ∩ (Bu × Bw) 6= ∅. This means
that IW can be split into several instances, whose domains are ζv-blocks.

Lemma 25. Let I,W, αv, βv for each v ∈ W , be as above. Then IW can be
decomposed into a collection of instances I1, . . . , Ik, k constant, Ii = (W, Ci) such
that every solution of IW is a solution of one of the Ii and for every v ∈W its
domain in Ii is a ζv-block.

Example 26. Consider the following simple CSP instance from CSP(AM ), where
AM is the algebra introduced in Example 14, and R is the relation introduced
in Example 22: I = (V = {v1, v2, v3, v4, v5}, {C1 = 〈s1 = (v1, v2, v3), R1〉, C2 =
〈s2 = (v2, v4, v5), R2〉}, where R1 = R2 = R. To make the instance (2,3)-minimal
we run the appropriate local propagation algorithm on it. First, such an algorithm
adds new binary constraints C{vi,vj} = 〈(vi, vj), R{vi,vj}〉 for i, j ∈ [5] starting
with R{vi,vj} = AM × AM . It then iteratively removes pairs from these relations
that do not satisfy the (2,3)-minimality condition. Similarly, it tightens the
original constraint relations if they violate the conditions of (2,3)-minimality. This
algorithm does not change constraints C1, C2, and the new binary relations are
as follows: R{v1,v2} = R{v2,v4} = R{v1,v4} = θ, R{v1,v3} = R{v2,v3} = R{v2,v5} =
R{v4,v5} = R{v1,v5} = R{v3,v4} = Q, and R{v3,v5} = S, where

Q = pr13R =

(
0 0 1 1 2 2
0 1 0 1 0 2

)
, S =

(
0 0 1 1 0 2 2
0 1 0 1 2 0 2

)
.

For convenience let the domain of vi be denoted by Ai, its elements by 0i, 1i, 2i,
and the congruences of Ai by 0i, θi, 1i.

Let W = {v1, v2, v4}, αi = θi, βi = 1i for vi ∈ W . We have ζi = ζ(αi, βi) =
θi = αi. Then, as was observed in Example 23, the prime interval (αi, βi) cannot
be separated from (αj , βj) for vi, vj ∈W . Therefore by Lemma 25 the instance
IW = ({v1, v2, v4}, {C1

W = 〈(v1, v2),prv1v2R1〉, C2
W = 〈(v2, v4),prv2v4R2〉}) can

be decomposed into a disjoint union of two instances:
I1 = ({v1, v2, v4}, {〈(v1, v2), Q1〉, 〈(v2, v4), Q2〉),
I2 = ({v1, v2, v4}, {〈(v1, v2), {(21, 22)}〉, 〈(v2, v4), {(22, 24)})〉,
where Q1 = {01, 11} × {02, 12}, Q2 = {02, 12} × {04, 14}. �
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5.2 Block-Minimality

In order to formulate the algorithm properly we need one more transformation of
algebras. An algebra A is said to be subdirectly irreducible if the intersection of
all its nontrivial (different from the equality relation) congruences is nontrivial.
This smallest nontrivial congruence µA is called the monolith of A. For instance,
the algebra AM from Example 14 is subdirectly irreducible, because it has the
smallest nontrivial congruence, θ. It is a folklore observation that any CSP
instance can be transformed in polynomial time to an instance, in which the
domain of every variable is a subdirectly irreducible algebra. We will assume this
property of all the instances we consider.

Lemma 25 allows us to use a new type of consistency of a CSP instance,
block-minimality, which is key for our algorithm. In a certain sense it is similar to
the standard local consistency, as it is also defined through a family of relations
that have to be consistent in a certain way. However, block-minimality is not
quite local, and is more difficult to establish, as it involves solving smaller CSP
instances recursively. The definitions below are designed to allow for an efficient
procedure to establish block-minimality. This is achieved either by allowing for
decomposing a subinstance into instances over smaller domains as in Lemma 25,
or by replacing large domains with their quotient algebras.

Let I = (V, C) ∈ CSP(A) and αv be a congruence of Av for v ∈ V . By I/α
we denote the instance (V, Cα) constructed as follows: the domain of v ∈ V is
Av/αv; for every constraint C = 〈s, R〉 ∈ C, s = (v1, . . . , vk), the set Cα includes
the constraint 〈s, R/α〉, where R/α = {(a[v1]αv1 , . . . ,a[vk]αvk ) | a ∈ R}.

We start with several definitions. Let I = (V, C) be a (2,3)-minimal instance
and let {RX | X ⊆ V, |X| = 2} be the relations introduced after Lemma 24. Let
UI denote the set of triples (v, α, β) such that v ∈ V , α, β ∈ Con(Av), and α ≺ β.
For every (v, α, β) ∈ UI , let Wv,αβ denote the set of all variables w ∈ V such that
(α, β) and (γ, δ) cannot be separated in R{v,w} for some γ, δ ∈ Con(Aw) with
(w, γ, δ) ∈ UI . Sets of the form Wv,αβ are called coherent sets. Let ZI denote
the set of triples (v, α, β) ∈ UI , for which ζ(α, β) is the full relation.

We say that algebra Av is semilattice free if it does not contain semilattice
edges. Let size(I) denote the maximal size of domains of I that are not semilattice
free and MAX(I) be the set of variables v ∈ V with |Av| = size(I) and Av is not
semilattice free. For instances I, I ′ we say that I ′ is strictly smaller than I if
size(I ′) < size(I). For Y ⊆ V let µYv = µv if v ∈ Y and µYv = 0v otherwise.

Instance I is said to be block-minimal if for every (v, α, β) ∈ UI the following
conditions hold:

(B1) if (v, α, β) 6∈ ZI , the problem IWv,αβ
is minimal;

(B2) if (v, α, β) ∈ ZI , for every C = 〈s, R〉 ∈ C the problem IWv,αβ
/µY , where

Y = MAX(I)− s, is minimal;
(B3) if (v, α, β) ∈ ZI , then for every (w, γ, δ) ∈ UI −ZI the problem IWv,αβ

/µY ,
where Y = MAX(I)− (Wv,αβ ∩Ww,γδ) is minimal.

Example 27. Let us consider again the instance I from Example 26. There
we found all its binary solutions, and now we use them to find coherent sets
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and to verify that this instance is block-minimal. For the instance I we have
UI = {(vi, 0i, θi), (vi, θi, 1i) | i ∈ [5]} and ZI = {(vi, 0i, θi) | i ∈ [5]}. As
we noticed in Example 22, interval (0i, θi) cannot be separated from (0j , θj)
for any i, j ∈ [5]. Therefore, for each i ∈ [5] we have Wvi,0iθi

= V . Also, it
was shown in Example 22 that (θi, 1i) cannot be separated from (θj , 1j) for
{i, j} = {1, 2} and {i, j} = {2, 4}, while {θi, 1i} can be separated from (θj , 1j)
and (0j , θj) for i ∈ {1, 2, 4} and j ∈ {3, 5}. Therefore, for i ∈ {1, 2, 4} we have
Wvi,θi1i

= {v1, v2, v4}. Finally, (θ3, 13) can be separated from (05, θ5), (θ5, 15) by
considering the relation S from Example 26, and (0i, θi), i ∈ {1, 2, 4} can be
separated from (θ3, 13) by considering the relation Q. Therefore, Wvi,θi1i

= {vi}
for i ∈ {3, 5}.

Now we check the conditions (B1)–(B3) for I. Since ζ(θi, 1i) = θi, i ∈ [5],
for the coherent sets Wvi,θi1i

we need to check condition (B1). If i = 3, 5 this
condition is trivially true, as the set of solutions of I on every 1-element set
of variables is AM . Consider Wv1,θ111

= {v1, v2, v4}; as is easily seen, a triple
(a1, a2, a4) is a solution of I{v1,v2,v4} if and only if (a1, a2), (a1, a4), (a2, a4) ∈ θ.
Condition (B1) amounts to saying that for any constraint of I, say, C1, and any
tuple a from its constraint relation R1, the projection prv1v2a can be extended
to a solution of I{v1,v2,v4}. Since prv1v2a ∈ θ, this can always be done. For other
constraints (B1) is verified in a similar way.

Next consider Wv1,01θ1
= V . As ζ(01, θ1) = 11, we have to verify conditions

(B2),(B3). We consider condition (B2) for constraint C1, the remaining cases are
similar. The monolith of AM is θ, therefore in the first case Y = {v4, v5} and µYvi
is the equality relation for i ∈ {1, 2, 3} and µYv4 = θ4, µ

Y
v5 = θ5. The instance I/µY

is as follows: I/µY = (V, {C ′1 = 〈s1, R1〉, C ′2 = 〈s2, R2/µ〉}). The constraint rela-
tion, of C ′1 equals R1, as µYvi = 0i for i ∈ {1, 2, 3}. The constraint relation of C ′2

then equals R′2 = R2/µY = {(0, 0θ, 0θ), (1, 0θ, 0θ), (2, 2θ, 0θ), (2, 2θ, 2θ)}. Now, for
every tuple a ∈ R1, and for every tuple b ∈ R′2 we need to find solutions ϕ,ψ of
I/µY such that ϕ(vi) = a[vi] for i ∈ {1, 2, 3} and ψ(vi) = b[vi] for i ∈ {2, 4, 5}. If
a[v2] ∈ {0, 1} (b[v2] ∈ {0, 1}) then extending a by ϕ(v4) = ϕ(v5) = 0θ (extending
b by ψ(v1) = ψ(v3) = 0) gives solutions of I/µY . If a[v2] = 2 (b[v2] = 2), then
tuples a,b can be extended by ϕ(v4) = ϕ(v5) = 2θ and by ψ(v1) = ψ(v3) = 2 to
solutions of I/µY . �

Next we observe that establishing block-minimality can be efficiently reduced
to solving a polynomial number of strictly smaller instances. First, observe that
Wv,αβ can be large, even equal to V , as we saw in Example 27. However if
(v, α, β) 6∈ ZI , by Lemma 25 the problem IWv,αβ

splits into a union of disjoint
problems over smaller domains, and so its minimality can be established by
recursing to strictly smaller problems. On the other hand, if (v, α, β) ∈ ZI then
IWv,αβ

may not split into such a union. Since we need an efficient procedure
of establishing block-minimality, this explains the complications introduced in
conditions (B2),(B3). In the case of (B2) IWv,αβ

/µY (see the definition of block-
minimality) can be solved for each tuple a ∈ R by fixing the values from this
tuple. Taking the quotient algebras of the remaining domains guarantees that we
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recurse to a strictly smaller instance. In the case of (B3) IWv,αβ∩Ww,γδ
/µY splits

into disjoint subproblems, and we branch on those strictly smaller subproblems.

Lemma 28. Let I = (V, C) be a (2,3)-minimal instance. Then by solving a
quadratic number of strictly smaller CSPs I can be transformed to an equivalent
block-minimal instance I ′.

5.3 The Algorithm

In the algorithm we distinguish three cases depending on the presence of semi-
lattice edges and quasi-centralizers of the domains of variables. In each case we
employ different methods of solving or reducing the instance to a strictly smaller
one. Algorithm 1 gives a more formal description of the solution algorithm.

Let I = (V, C) be a subdirectly irreducible, (2,3)-minimal instance. Let
Center(I) denote the set of variables v ∈ V such that ζ(0v, µv) = 1v. Let µ∗v = µv
if v ∈ MAX(I) ∩ Center(I) and µ∗v = 0v otherwise.

Semilattice Free Domains If no domain of I contains a semilattice edge then by
Proposition 19 I can be solved in polynomial time, using the few subalgebras
algorithm, as shown in [51, 21].

Small Centralizers If µ∗v = 0v for all v ∈ V , block-minimality guarantees the
existence of a solution, as Theorem 29 shows, and we can use Lemma 28 to solve
the instance.

Theorem 29. If I is subdirectly irreducible, (2,3)-minimal, block-minimal, and
MAX(I) ∩ Center(I) = ∅, then I has a solution.

Proof of Theorem 29 is the most technically involved part of our result.

Large Centralizers Suppose that MAX(I) ∩ Center(I) 6= ∅. In this case the
algorithm proceeds in three steps.

Step 1. Consider the problem I/µ∗. We establish the global 1-minimality of this
problem. If it is tightened in the process, we start solving the new problem from
scratch. To check global 1-minimality, for each v ∈ V and every a ∈ Av/µ∗

v
, we

need to find a solution of the instance, or show it does not exists. To this end, add
the constraint 〈(v), {a}〉 to I/µ∗. The resulting problem belongs to CSP(A), since
Av is idempotent, and hence {a} is a subalgebra of Av/µ∗

v
. Then we establish

(2,3)-minimality and block minimality of the resulting problem. Let us denote it
I ′. There are two possibilities. First, if size(I ′) < size(I) then I ′ is a problem
strictly smaller than I and can be solved by recursivly calling Algorithm 1 on I ′.
If size(I ′) = size(I) then, as all the domains Av of maximal size for v ∈ Center(I)
are replaced with their quotient algebras, there is w 6∈ Center(I) such that
|Aw| = size(I) and Aw is not semilattice free. Therefore for every u ∈ Center(I ′),
for the corresponding domain A′u we have |A′u| < size(I) = size(I ′). Thus,
MAX(I ′) ∩ Center(I ′) = ∅, and I ′ has a solution by Theorem 29.
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Step 2. For every v ∈ Center(I) we find a solution ϕ of I/µ∗ satisfying the
following condition: there is a ∈ Av such that {a, ϕ(v)} is a semilattice edge if
µ∗v = 0v, or, if µ∗v = µv, there is b ∈ ϕ(v) such that {a, b} is a semilattice edge.
Take b ∈ Av/µ∗

v
such that {a, b} is a semilattice edge in Av/µ∗

v
for some a ∈ Av/µ∗

v
.

Since I/µ∗ is globally 1-minimal, there is a solution ϕv,b such that ϕv,b(v) = b.

Step 3. We apply the transformation of I suggested by Maroti in [62]. For a
solution ϕ of I/µ∗ by I · ϕ we denote the instance (V, Cϕ) given by the rule: for
every C = 〈s, R〉 ∈ C the set Cϕ contains a constraint 〈s, R · ϕ〉. To construct
R · ϕ choose a tuple b ∈ R such that b[v]µ

∗
v = ϕ(v) for all v ∈ s; this is possible

because ϕ is a solution of I/µ∗. Then set R · ϕ = {a · b | a ∈ R}. By the results
of [62] it can be shown that the instance I ·ϕ has a solution if and only if I does.
Let I ′ = (. . . (I · ϕv1,b1) · . . . ) · ϕv`,b` , where ϕv1,b1 , . . . , ϕv`,b` are the solutions
chosen in Step 2. We have size(I ′) < size(I).

This last case can be summarized as the following

Theorem 30. If I/µ∗ is globally 1-minimal, then I can be reduced in polynomial
time to a strictly smaller instance over an algebra satisfying the conditions of the
Dichotomy Conjecture.

Algorithm 1 Procedure SolveCSP

Require: A CSP instance I = (V, C) from CSP(A)
Ensure: A solution of I if one exists, ‘NO’ otherwise
1: if all the domains are semilattice free then
2: Solve I using the few subpowers algorithm and RETURN the answer
3: end if
4: Transform I to a subdirectly irreducible, block-minimal, and (2,3)-minimal instance
5: µ∗v = µv for v ∈ MAX(I) ∩ Center(I) and µ∗v = 0v otherwise
6: I∗ = I/µ∗

7: %% Check the 1-minimality of I∗
8: for every v ∈ V and a ∈ Av/µ∗

v
do

9: I′ = I∗(v,a) %% Add the constraint 〈(v), {a}〉 fixing the value of v to a
10: Transform I′ to a subdirectly irreducible, (2,3)-minimal instance I′′
11: if size(I′′) < size(I) then
12: Call SolveCSP on I′′ and flag a if I′′ has no solution
13: else
14: Establish block-minimality of I′′; if the problem changes, return to Step 10
15: If the resulting instance is empty, flag element a
16: end if
17: end for
18: If there are flagged values, tighten the instance by removing the flagged elements

and start over
19: Use Theorem 30 to reduce I to an instance I′ with size(I′) < size(I)
20: Call SolveCSP on I′ and RETURN the answer
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Example 31. We illustrate the algorithm SolveCSP on the instance from Exam-
ple 26. Recall that the domain of each variable is AM , its monolith is θ, and ζ(0, θ)
is the full relation. This means that size(I) = 3, MAX(I) = V and Center(I) = V ,
as well. Therefore we are in the case of large centralizers. Set µ∗vi = θi for each
i ∈ [5] and consider the problem I/µ∗ = (V, {C∗1 = 〈s1, R∗1〉, C∗2 = 〈s2, R∗2〉),
where R∗ = {(0θ, 0θ, 0θ), (2θ, 2θ, 0θ), (2θ, 2θ, 2θ)}. It is an easy excercise to show
that this instance is globally 1-minimal (every value 0θ can be extended to
the all-0θ solution, and every value 2θ can be extended to the all-2θ solution).
This completes Step 1. For every variable vi we choose b ∈ AM/θ such that
for some a ∈ AM/θ the pair {a, b} is a semilattice edge. Since AM/θ is a 2-
element semilattice, setting b = 0θ and a = 2θ is the only choice. Therefore
all solutions ϕvi,0θ in our case can be chosen to be ϕ, where ϕ(vi) = 0θ; and
Step 2 is completed. For Step 3 first note that in AM the operation r plays the
role of multiplication · defined in Lemma 20. Then for each of the constraints
C1, C2 choose a representative a1 ∈ R1 ∩ (ϕ(v1)× ϕ(v2)× ϕ(v3)) = R1 ∩ {0, 1}3,
a2 ∈ R2∩(ϕ(v2)×ϕ(v4)×ϕ(v5)) = R2∩{0, 1}3, and set I ′ = ({v1, . . . , v5}, {C ′1 =
〈(v1, v2, v3), R′1〉, C ′2 = 〈(v2, v4, v5), R′2〉}), where R′1 = r(R1,a), R′2 = r(R2,b).
Since r(2, 0) = r(2, 1) = 0, regardless of the choice of a,b in our case R′1 ⊆
R1, R

′
2 ⊆ R2, and are invariant with respect to the affine operation of Z2. There-

fore the instance I ′ can be viewed as a system of linear equations over Z2 (this
system is actually empty in our case), and can be easily solved. �

Using Lemma 28 and Theorems 29,30 it is not difficult to see that the
algorithm runs in polynomial time. Indeed, every time it makes a recursive call
it calls on a problem whose non-semilattice free domains of maximal cardinality
have strictly smaller size, and therefore the depth of recursion is bounded by |A|
if we are dealing with CSP(A).
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