
The complexity of global cardinality constraints

Andrei A. Bulatov∗ Dániel Marx†

Abstract

In a constraint satisfaction problem (CSP) the goal is
to find an assignment of a given set of variables subject
to specified constraints. A global cardinality constraint
is an additional requirement that prescribes how many
variables must be assigned a certain value. We study
the complexity of the problem CCSP(Γ), the constraint
satisfaction problem with global cardinality constraints
that allows only relations from the set Γ. The main result
of this paper characterizes sets Γ that give rise to prob-
lems solvable in polynomial time, and states that the re-
maining such problems are NP-complete. We extend the
result also to the corresponding counting problem.

1 Introduction

In a constraint satisfaction problem (CSP) we are
given a set of variables, and the goal is to find an assign-
ment of the variables subject to specified constraints,
and a constraint is usually expressed as a requirement
that combinations of values of a certain (usually small)
set of variables belong to a certain relation. CSPs have
been intensively studied in both theoretical and practical
perspectives. On the theoretical side the key research
direction has been the complexity of the CSP when ei-
ther the interaction of sets constraints are imposed on,
that is, the hypergraph formed by these sets, is restricted
[12, 13, 14], or restrictions are on the type of allowed
relations [16, 7, 5, 6, 1]. In the latter direction the main
focus has been on the so called Dichotomy conjecture
[10] suggesting that every CSP restricted in this way is
either solvable in polynomial time or is NP-complete.
This ‘pure’ constraint satisfaction problem is some-

times not enough to model practical problems, as some
constraint that have to be satisfied are not ‘local’ in

∗School of Computing Science, Simon Fraser University, Burnaby,
Canada, abulatov@cs.sfu.ca

†Budapest University of Technology and Economics, Budapest,
Hungary, dmarx@cs.bme.hu

the sense that they cannot be viewed as applied to
only a limited number of variables. Constraints of
this type are called global. Global constraints are very
diverse, the current Clobal Constraint Catalog (see
http://www.emn.fr/x-info/sdemasse/gccat/)
lists 313 types of such constraints. In this paper we
focus on global cardinality constraints [2, 4, 19]. A
global cardinality constraint π is specified for a set of
values D and a set of variables V , and is given by a
mapping π : D → N that assigns a natural number to
each element of D such that

∑

a∈D π(a) = |V |. An
assignment of variables V satisfies π if for each a ∈ D
the number of variables that take value a equals π(a). In
a CSP with global cardinality constraints, given a CSP
instance and a global cardinality constraint π, the goal
is to decide if there is a solution of the CSP instance
satisfying π. We consider the following problem:
Characterize sets of relations Γ such that CSP with
global cardinality constraint that uses relations from Γ,
denoted by CCSP(Γ), is solvable in polynomial time.
The complexity of CCSP(Γ) has been studied in [9]

for sets Γ of relations on a 2-element set. It was shown
that CCSP(Γ) is solvable in polynomial time if and
only if every relation in Γ is width-2-affine, i.e. it can
be expressed as the set of solutions of system of lin-
ear equations over a 2-element field containing at most
2 variables. Otherwise it is NP-complete. In this case
CCSP(Γ) is also known as the k-ONES(Γ) problem,
since a global cardinality constraint can be expressed by
specifying how many ones (the set of values is thought
to be {0, 1}) one wants to have among the values of vari-
ables. The parametrized complexity of k-ONES(Γ) has
also been studied [18], where k is used as a parameter.
In this paper we characterize sets of relations Γ on an

arbitrary finite set that give rise to the CCSP(Γ) prob-
lem solvable in polynomial time, and prove that in all
other cases the problem is NP-complete. For 2-element
domains [9], the polynomial-time solvable cases rely
on the fact that if the value of a variable is set, then
this forces a unique assignment on the component of
the variable. Generalizing this property, we can obtain

tractable cases for larger domains: for example, ifΓ con-
tains only binary one-to-onemappings, then the value of
a variable clearly defines the assignment of its compo-
nent. However, there are further polynomial-time cases.
The problem does not becomemore difficult if a value is
replaced by a set of equivalent values, thus in particular
the the problem is tractable if Γ consists of a binary re-
lation that is a one-to-onemapping between equivalence
classes of the domain. The situation becomes signifi-
cantly more complicated if there are several such rela-
tions: to ensure tractability, the equivalence classes have
to be coordinated in a certain way. We do not see an
easy way of giving a combinatorial characterization of
the tractable cases. However, we can obtain a compact
characterization using logical definability.
Sets of relations Γ that give rise to polynomial time

solvable problem are given by the following 3 condi-
tions: (1) every R ∈ Γ can be expressed as a conjunc-
tion of binary relations; (2) every binary relation Q in-
volved in the definition of R is a thick mapping, i.e.
Q ⊆ A × B for some sets A, B and there are equiv-
alence relations α, β on A, B, respectively, and a map-
ping ϕ : A/α → B/β such that (a, b) ∈ Q if and only
if bβ = ϕ(aα); (3) any pair of equivalence relations α, β
that appear in the definition of binary projections ofR is
non-crossing, that is, for any α-class C and any β-class
D either C ∩ D = ∅, or C ⊆ D, orD ⊆ C.
Following [9], we study the counting problem corre-

sponding to CCSP(Γ), in which the objective is to find
the number of solutions of a CSP instance that satisfy a
global cardinality constraint specified. Although we do
not prove a complexity dichotomy, as we do not deter-
mine the exact complexity of the hard counting prob-
lems, it turns out that the counting problem is solv-
able in polynomial time whenever the decision problem
CCSP(Γ) is solvable in polynomial time. In all other
cases the problem is, clearly, NP-hard.
The paper is structured as follows. After introducing

in Section 2 necessary definition and notation, in Sec-
tion 3 we study properties of thick mappings, state the
main result, and prove that recognizing if a set Γ gives
rise to a polynomial time problem can also be done in
polynomial time. In Section 4 we present an algorithm
solving CCSP(Γ). Then a result similar to the key re-
sult of the algebraic approach to the CSP is proved in
Section 5.1: Adding to Γ a relation definable in Γ by
a primitive positive formula does not increase the com-
plexity of the problem. We also prove in Section 5.2 that
adding the constant relations does not increase the com-
plexity of CCSP(Γ). Section 6 proves the hardness part
of the theorem. Omitted proofs are in the Appendix.

2 Preliminaries

Relations and constraint languages. The set of all
tuples of elements from a set D is denoted by Dn. We
denote tuples in boldface, e.g., a, and their components
by a[1],a[2], For a subset I = {i1, . . . , ik} ⊆
{1, . . . , n} with i1 < . . . < ik and an n-tuple a, by
prIa we denote the projection of a onto I , the k-tuple
(a[i1], . . . ,a[ik]). An n-ary relation on setD is any sub-
set of Dn. Sometimes we use instead of relation R the
corresponding predicate R(x1, . . . , xn). Using predi-
cates we can express or define relations through other
relations by means of logical formulas. The projection
prIR of R is the k-ary relation {prIa | a ∈ R}.
Pairs from equivalence relations play a special role,

so such pairs will be denoted by, e.g., 〈a, b〉. If α is an
equivalence relation on a set D then D/α denotes the
set of α-classes, and aα for a ∈ D denotes the α-class
containing α. Sometimes we need to emphasize that the
unary projections pr1R, pr2R of a binary relation R are
sets A and B. We denote this by R ⊆ A × B.
Constraint Satisfaction Problem with cardinality

constraints. Let D be a finite set and Γ a constraint
language over D. An instance of the Constraint Sat-
isfaction Problem (CSP for short) CSP(Γ) is a pair
P = (V, C), where V is a finite set of variables and C is a
set of constraints. Every constraint is a pair C = 〈s, R〉
consisting of an nC -tuple of variables, called the con-
straint scope and an nC -ary relation R ∈ Γ, called
the constraint relation. A solution of P is a mapping
ϕ : V → D such that for every constraint C = 〈s, R〉
the tuple ϕ(s) belongs to R.
A global cardinality constraint for a CSP instance P

is a mapping π : D → N with
∑

a∈D π(a) = |V |. A
solution ϕ of P satisfies the cardinality constraint π if
the number of variables mapped to each a ∈ D equals
π(a). The variant ofCSP(Γ) allowing global cardinality
constraints will be denoted by CCSP(Γ); the question
is, given an instance P and a cardinality constraint π,
whether there is a solution of P satisfying π.

Example 1 If Γ is a constraint language on the 2-
element set {0, 1} then to specify a global cardinality
constraint it suffices to specify the number of ones we
want to have in a solution. This problem is also known
as the k-ONES(Γ) problem, [9].

Sometimes it is convenient to use arithmetic opera-
tions on cardinality constraints. Let π, π′ : D → N be
cardinality constraints on a set D, and c ∈ N. Then
π + π′ and cπ denote cardinality constraints given by

2

(π + π′)(a) = π(a) + π′(a) and (cπ)(a) = c · π(a), re-
spectively, for any a ∈ D. Furthermore, we extend addi-
tion to sets Π, Π′ of cardinality vectors in a convolution
sense: Π + Π′ is defined as {π + π′ | π ∈ Π, π′ ∈ Π′}.
Primitive positive definitions and polymorphisms.

We now introduce the algebraic tools that will assist us
throughout the paper. Let Γ be a constraint language on
a set D. A relation R is primitive positive (pp-) defin-
able in Γ if it can be expressed using (a) relations from
Γ, (b) conjunction, (c) existential quantifiers, and (d) the
binary equality relations. The set of all relations pp-
definable in Γ will be denoted by 〈〈Γ〉〉.

Example 2 An important example of pp-definitions that
will be used throughout the paper is the product of bi-
nary relations. LetR, Q be binary relations. ThenR◦Q
is the binary relation given by

R ◦ Q(x, y) = ∃zR(x, z) ∧ Q(z, y).

In this paper we will need a slightly weaker notion of
definability. We say that R is pp-definable in Γ without
equalities if it can be expressed using only items (a)–
(c) from above. The set of all relations pp-definable in
Γ without equalities will be denoted by 〈〈Γ〉〉′. Clearly,
〈〈Γ〉〉′ ⊆ 〈〈Γ〉〉. The two sets are different only on rela-
tions with redundancies. LetR be a (say, n-ary) relation.
A redundancy of R is a pair i, j of its coordinate posi-
tions such that, for any a ∈ R, a[i] = a[j].

Lemma 3 For every constraint language Γ, every R ∈
〈〈Γ〉〉 without redundancies belongs to 〈〈Γ〉〉′.

A polymorphism of a (say, n-ary) relation R on D is
a mapping f : Dk → D for some k such that for any
tuples a1, . . . ,ak ∈ R the tuple

f(a1, . . . ,ak)

= (f(a1[1], . . . ,ak[1]), . . . , f(a1[n], . . . ,ak[n]))

belongs to R. Operation f is a polymorphism of a con-
straint language Γ if it is a polymorphism of every re-
lation from Γ. There is a tight connection, a Galois
correspondence, between polymorphisms of a constraint
language and relations pp-definable in the language, see
[11, 3]. This connection has been extensively exploited
to study the ordinary constraint satisfaction problems
[16, 7]. Here we do not need the full power of this Galois
correspondence, we only need the following result:

Lemma 4 If operation f is a polymorphism of a con-
straint language Γ, then it is also a polymorphism of
any relation from 〈〈Γ〉〉, and therefore of any relation
from 〈〈Γ〉〉′.

Consistency. Let us fix a constraint language Γ on
a set D and let P = (V, C) be an instance of CSP(Γ).
A partial solution of P on a set variables W ⊆ V is
a mapping ψ : W → D that satisfies every constraint
〈W ∩s, prW∩s

R〉 ∈ C. HereW ∩s denotes the subtuple
of s consisting of those entries of s that belong to W .
InstanceP is said to be k-consistent if for any k-element
set W ⊆ V and any v ∈ V \ W any partial solution on
W can be extended to a partial solution on W ∪ {v}.
As we only need k = 2, all further definitions are given
under this assumption.
Any instance P = (V, C) can be transformed to

a 2-consistent instance by means of a standard 2-
CONSISTENCY algorithm. This algorithm works as fol-
lows. First, for each pair v, w ∈ V it creates a con-
straint 〈(v, w), Rv,w〉 where Rv,w is the binary relation
consisting of all partial solutions on {v, w}. These new
constraints are added to C, let the resulting instance
be denoted by P ′ = (V, C′). Second, for each pair
v, w ∈ V , every partial solution ψ ∈ Rv,w, and every
u ∈ V \ {v, w}, the algorithms checks if ψ can be ex-
tended to a partial solution of P ′ on {v, w, u}. If not it
updates P ′ by removing ψ from Rv,w. The algorithm
repeats this step until no more changes happen.

Lemma 5 Let P = (V, C) be an instance of CSP(Γ).
(a) The problem obtained from P by applying 2-
CONSISTENCY is 2-consistent;
(b) On every step of 2-CONSISTENCY for any pair
v, w ∈ V the relation Rv,w belongs to 〈〈Γ〉〉′.

3 The results

3.1 Decomposability, thick mapping,
and cardinality constraints

We introduce several properties of relations that are
necessary to describe the relations for which, as we will
prove, CCSP(Γ) is solvable in polynomial time.
A (say, n-ary) relation R is said to be 2-

decomposable if a ∈ R if and only if, for any i, j ∈
{1, . . . , n}, pri,ja ∈ pri,jR.
A binary relation R ⊆ A × B is called a thick map-

ping if there are equivalence relations α and β on A and
B, respectively, and a one-to-one mapping ϕ : A/α →
B/β (thus, in particular, |A/α| = |B/β|) such that
(a, b) ∈ R if and only if bβ = ϕ(aα). In this case we
shall also say that R is a thick mapping with respect to
α, β, and ϕ. Given a thick mapping R the correspond-
ing equivalence relations will be denoted by α1

R and α2
R.

Thick mappingR is said to be trivial if both α1
R and α2

R

are the total equivalence relations (pr1R)2 and (pr2R)2.

3

Observation 6 Binary relation R ⊆ A × B is a thick
mapping if and only if whenever (a, c), (a, d), (b, d) ∈
R, the pair (b, c) also belongs to R.

We say that two sets C and D are non-crossing if
C ∩ D = ∅, or C ⊆ D, or D ⊆ C. A pair α, β of
equivalence relations is non-crossing if every α-class C
forms a non-crossing pair with every β-class D. Note
that this is equivalent to saying that α ∨ β = α ∪ β
holds. A pair of thick mappings R ⊆ A1 × A2 and
R′ ⊆ B1 × B2 is called non-crossing if αi

R and α
j
R′ are

non-crossing for any i, j ∈ {1, 2}.

Observation 7 If α, β are non-trivial non-crossing
equivalence relations, then α∨β = α∪β is non-trivial.

Lemma 8 Let R1, R2 be a pair of thick mappings.
(1) R = R1 ∩R2 is a thick mapping. IfR1, R2 are non-
crossing, then R, R1 and R, R2 are also non-crossing.
(2) If R1, R2 is a non-crossing pair then R′ = R1 ◦ R2

is a thick mapping.

For a set Γ of thick mappings on a setD let [Γ] denote
the set of binary relations that can be obtained from Γ
by means of intersections and products. A set Γ of thick
mappings is said to be non-crossing if Γ = [Γ], and the
members of Γ are pairwise non-crossing.
A (say, n-ary) relation R is said to be non-crossing

decomposable if it is 2-decomposable and all the binary
projections prijR belong to a certain non-crossing set
of thick mappings. Sometimes we need to stress that the
binary projections belong to a non-crossing set∆. Then
R is called∆-non-crossing decomposable.
Now we are able to state the main result of the paper:

Theorem 9 Let Γ be a constraint language. The prob-
lem CCSP(Γ) is polynomial time if there is a non-
crossing set ∆ of thick mappings such that every rela-
tion from Γ is ∆-non-crossing decomposable and NP-
complete otherwise.

In the counting CSP with global cardinality con-
straints given a CSP instance P and a cardinality con-
straint π the objective is to determine the number of so-
lutions of P that satisfy π. This counting problem can
also be parametrized by constraint languages. The prob-
lem that allows only instances from CSP(Γ) will be de-
noted by#CCSP(Γ). Theorem 9 can be generalized by
showing that #CCSP(Γ) is polynomial-time solvable
in the same cases (Appendix G).

3.2 Meta-Problem

We also consider the so called meta-problem for
CCSP(Γ): Suppose set D is fixed. Given a finite
constraint language Γ on D, decide whether or not
CCSP(Γ) is solvable in polynomial time.

Theorem 10 Let D be a finite set. The meta-problem
for CCSP(Γ) is polynomial time solvable.

To prove Theorem 10 we need several auxiliary state-
ments. For a non-crossing set Γ of thick mappings
Un(Γ) denotes the set {priR | R ∈ Γ, i ∈ {1, 2}};
and Eqv(Γ) = {α1

R, α2
R | R ∈ Γ}. As is easily

seen, Eqv(Γ) ⊆ Γ, since for any R ∈ Γ we have
α1

R = R ◦ R−1 and α2
R = R−1 ◦ R.

For a subset A ⊆ D by SgΓ(A) we denote the small-
est set from Un(Γ) that contains A if A ⊆ B for some
B ∈ Un(Γ); otherwise SgΓ(A) = D. Observe that
if B, C ∈ Un(Γ) then B ∩ C ∈ Un(Γ). Indeed, let
B = pr1R, C = pr1R

′ where R, R′ ∈ Γ. Then
α1

R, α1
R′ ∈ Γ and B ∩ C = pr1(α

1
R ∩ α1

R′). Thus there
is a unique minimal set in Un(Γ) containing A.
Let A ∈ Un(Γ). The set of all equivalence rela-

tions from Eqv(Γ) that are relations on A is denoted
by EqvΓ(A). For a subset A ⊆ D and a set B ⊆
A2 by EgΓ,A(B) we denote the smallest relation from
EqvΓ(SgΓ(A)) such that B ⊆ EgΓ,A(B). For any
α, β ∈ EqvΓ(A) the relations α ∧ β and α ∨ β (the
smallest equivalence relation containing both α and β)
belong to EqvΓ(A). To show that α ∨ β ∈ EqvΓ(A) we
need α∨β = α∪β = α◦β that follow from the fact that
Γ is non-crossing. Thus EgΓ,A(B) is properly defined.

Lemma 11 Let A = {a, b, c} ⊆ D and η1 =
EgΓ,A({〈a, b〉}), η2 = EgΓ,A({〈b, c〉}), η3 =
EgΓ,A({〈c, a〉}). Then η1, η2, η3 are all comparable.

For a non-crossing set Γ,we define a ternary oper-
ation m that is a polymorphism of Γ and a majority
operation, that is, m satisfies equations m(x, x, y) =
m(x, y, x) = m(y, x, x) = x. Let A = {a, b, c} ⊆ D,
and let η1, η2, η3 are given by η1 = EgΓ,A({〈a, b〉}),
η2 = EgΓ,A({〈b, c〉}), η3 = EgΓ,A({〈c, a〉}). Then

m(a, b, c) =







a, if η1 ⊆ η2, η3,
b, if η2 ⊂ η1 and η2 ⊆ η3,
a, if η3 ⊂ η1, η2.

Lemma 12 Operationm is a majority operation and is
a polymorphism of Γ.

4

Corollary 13 Let∆ be a non-crossing set of thick map-
pings and Γ is a set of ∆-non-crossing decomposable
relations. Then Γ has a majority polymorphism.

Proof: (of Theorem 10) By Theorem 9, given a con-
straint language Γ, it suffices to check whether or not
Γ is ∆-non-crossing decomposable for a certain non-
crossing set of thick mappings∆.
Set ∆0 to be the set of all binary projections of

relations from Γ. It follows from the definition of
non-crossing decomposable constraint languages, that
if Γ is ∆′-non-crossing decomposable for some ∆′

then it is ∆-non-crossing decomposable for ∆ = [∆0].
First, compute ∆ by setting initially ∆ = ∆0, and
then iteratively finding intersections and products of
relations from ∆ and adding the result to ∆ if it is not
already there. Since D is fixed, the maximal number of
members in ∆, and therefore the number of iterations
of the process above is bounded by the constant 2|D|2 .
Second, check if ∆ contains a relation that is not a
thick mapping, and that all pairs of thick mappings are
non-crossing. Again, as the number of relations in ∆
is bounded by a constant, this can be done in constant
time. Third, construct the majority polymorphismm as
described above. Finally, check ifm is a polymorphism
of Γ. This last step can be done in a time cubic in the
total size of relations in Γ, since it suffices for each
relation R ∈ Γ to applym to every triple of tuples in R.
By Corollary 13, Γ is ∆-non-crossing decomposable if
and only ifm is a polymorphism of Γ. !

4 Algorithm

In this section we fix a non-crossing set ∆ of thick
mappings, and a ∆-non-crossing decomposable set Γ.
We present a polynomial-time algorithm for solving
CCSP(Γ) in this case.

4.1 Prerequisites

Let Γ be a constraint language and let P = (V, C)
be a 2-consistent instance of CCSP(Γ). By bin(P) we
denote the instance (V, C′) such that C′ is the set of all
constraints of the form 〈(v, w), Rv,w〉 where v, w ∈ V
and Rv,w is the set of all partial solutions on {v, w}.

Lemma 14 Let ∆ be a non-crossing set of thick map-
pings, and let Γ be a set of ∆-non-crossing decompos-
able relations.
(1) Any R pp-definable in Γ is ∆-non-crossing decom-
posable.

(2) If P is a 2-consistent instance of CCSP(Γ) then
bin(P) has the same solutions as P .

Let P = (V, C) be an instance of CCSP(Γ). Ap-
plying algorithm 2-CONSISTENCY we may assume that
P is 2-consistent, and, by Lemma 14, as all relations
of Γ are 2-decomposable, that every constraint relation
of P is 2-decomposable, and therefore every constraint
of P can be assumed to be binary, and every constraint
relation belongs to [∆] = ∆. Let constraints of P be
〈(v, w), Rvw〉 for each pair of different v, w ∈ V . Let
Sv, v ∈ V , denote the set of a ∈ D such that there
is a solution ϕ of P such that ϕ(v) = a. Since P
is globally consistent, Sv = pr1Rvw for any w ∈ V ,
w /= v. Constraint 〈(v, w), Rvw〉 is said to be trivial if
Rvw = Sv × Sw, otherwise it is said to be non-trivial.
The graph of P , denoted G(P), is a graph with

vertex set V and edge set E = {vw | v, w ∈
V and 〈(v, w), Rvw〉 is non-trivial}.

Observation 15 By the 2-consistency of P , for any
u, v, w ∈ V , Ruv ⊆ Ruw ◦ Rwv.

Lemma 16 Let R, R′ be a non-crossing pair of non-
trivial thick mappings such that pr2R = pr1R

′. Then
R ◦ R′ is also non-trivial.

Suppose that G(P) is connected and fix v ∈ V . By
Observation 15 and Lemma 16, for any w ∈ V the
constraint 〈(v, w), Rvw〉 is non-trivial. Note that due to
2-consistency, all the α1

Rvw
are over the same set. Set

ηv =
∨

w∈V −{v} α
1
Rvw

.

Lemma 17 Equivalence relations ηv andα1
Rvw

(for any
w ∈ V − {v}) are non-trivial.

Lemma 18 SupposeG(P) is connected.
(1) For any v, w ∈ V there is a one-to-one corre-
spondence ψvw between Sv/ηv

and Sw/ηw
such that

for any solution ϕ of P if ϕ(v) ∈ A ∈ Sv/ηv
, then

ϕ(w) ∈ ψvw(A) ∈ Sw/ηw
.

(2) The mappings ψvw are consistent, i.e. for any
u, v, w ∈ V we have ψuw(x) = ψvw(ψuv(x)). for every
x.

4.2 Algorithm

We split the algorithm into two parts. Algorithm
CARDINALITY (Figure 1) just ensures 2-consistency
and initializes a recursive process. The main part of the
work is done by EXT-CARDINALITY (Figure 2).

5

Algorithm EXT-CARDINALITY solves the more gen-
eral problem of computing the set of all cardinality con-
straints π that can be satisfied by a solution ofP . Thus it
can be used to solve directly CSP with extended global
cardinality constraints, where the input contains a set Π
of allowed cardinality constraints and the solution can
satisfy any one of them.
The algorithm considers three cases. Step 2 handles

the trivial case when the instance consists of a single
variable and there is only one possible value it can be as-
signed. Otherwise, we decompose the instance either by
partitioning the variables or by partitioning the domain
of the variables. If G(P) is not connected, then the sat-
isfying assignments of P can be obtained from the sat-
isfying assignments of the connected components. Thus
a cardinality constraint π can be satisfied if it arises as
the sum π1 + · · · + πk of cardinality constraints such
that the i-th component has a solution satisfying πi. In-
stead of considering all such sums (which would not be
possible in polynomial time), we follow the standard
dynamic programming approach of going through the
components one by one, and determining all possible
cardinality constraints that can be satisfied by a solution
for the first i components (Step 3).
If the graphG(P) is connected, then we fix a variable

v0 and go through each classA of the partition ηv0
(Step

4). If v0 is restricted to A, then this implies a restric-
tion for every other variablew. We recursively solve the
problem for the restricted instance arising for each class
A; if constraint π can be satisfied, then it can be satisfied
for one of the restricted instances.
The correctness of the algorithm follows from the dis-

cussion above. The only point that has to be verified is
that the instance remains 2-consistent after the recursion.
This is obvious if we recurse on the connected compo-
nents (Step 3). In Step 4, 2-consistency follows from the
fact that if (a, b) ∈ Rvw can be extended by c ∈ Su, then
in every subproblem either these three values satisfy the
instance restricted to {v, w, u} or a, b, c do not appear
in the domain of v, w, u, respectively.
To show that the algorithm runs in polynomial time,

observe first that every step of the algorithm (except the
recursive calls) can be done in polynomial time. Here we
use thatD is fixed, thus the size of the setΠ is polynomi-
ally bounded. Thus we only need to bound the size of the
recursion tree. If we recurse in Step 3, then we produce
instances whose graphs are connected, thus it cannot be
followed by recursing again in Step 3. In Step 4, the do-
main of every variable is decreased: by Lemma 17, ηw is
nontrivial for any variable w. Thus in any branch of the
recursion tree, recursion in Step 4 can occur at most |D|

times, hence the depth of the recursion tree is O(|D|).
As the number of branches is polynomial in each step,
the size of the recursion tree is polynomial.

INPUT: An instance P = (V, C) of CCSP(Γ), and
a cardinality constraint π

OUTPUT: YES if P has a solution satisfying π,
NO otherwise

Step 1. apply 2-CONSISTENCY to P
Step 2. set Π :=EXT-CARDINALITY(P)
Step 3. if π ∈ Π output YES

else output NO

Figure 1. Algorithm CARDINALITY.

5 Definable relations, constant relations,
and the complexity of CCSP

We present two reductions that will be crucial for the
proofs in Section 6. In Section 5.1, we show that adding
relations that are pp-definable (without equalities) does
not make the problem harder, while in Section 5.2, we
show the same for unary constant relations.

5.1 Definable relations and the com-
plexity of cardinality constraints

Theorem 19 Let Γ be a constraint language and R
a relation pp-definable in Γ without equalities. Then
CCSP(Γ ∪ {R}) is reducible to CCSP(Γ).

Proof (sketch): We proceed by induction on the
structure of pp-formulas. The base case of induction
is given by R ∈ Γ. There are two cases: when R
is defined by conjunction of two relations, and when
R(x1, . . . , xn) = ∃xR′(x1, . . . , xn, x). In the first case
it suffices to replace in an instance of CCSP(Γ) every
constraint using R with two constraints using the con-
juncts. So, we consider the second case.
Let P = (V, C) be a CCSP(Γ ∪ {R}) instance.

W.l.o.g. let C1, . . . , Cq be the constraints involving R.
Instance P ′ of CCSP(Γ) is constructed as follows.
Variables: Replace every variable v from V with a set
Wv of variables of size q|D| and introduce a set of |D|
variables for each constraint involvingR. Formally,

W =
⋃

v∈V

Wv ∪ {w1, . . . , wq} ∪
q

⋃

i=1

{w1
i , . . . , w|D|−1

i }.

6

INPUT: A 2-consistent instance P = (V, C)
of CCSP(Γ)

OUTPUT: The set of cardinality constraints π such
that P has a solution that satisfies π

Step 1. construct the graphG(P) = (V, E)
Step 2. if |V | = 1 and the domain of this variable is

a singleton {a} then do
Step 2.1 set Π := {π} where π(x) = 0

except π(a) = 1
Step 3. else if G(P) is disconnected and

G1 = (V1, E1), . . . , Gk = (Vk, Ek) are
its connected components do

Step 3.1 set Π := ∅
Step 3.2 for i = 1 to k do
Step 3.2.1 set Π := Π + EXT-CARDINALITY(P|Vi

)
endfor

endif
Step 4. else do
Step 4.1 for each v ∈ V find ηv

Step 4.2 fix v0 ∈ V and set Π := ∅
Step 4.3 for each ηv0

-class A do
Step 4.3.1 set PA := (V, CA) where for every

v, w ∈ V the set CA includes
the constraint
〈(v, w), Rvw ∩ (ψv0v(A) × ψv0w(A))〉

Step 4.3.2 set Π := Π ∪ EXT-CARDINALITY(PA)
endfor

enddo
Step 4. output Π

Figure 2. Algorithm EXT-CARDINALITY.

Non-R constraints: For every Ci = 〈(v1, . . . , v#), Q〉
with i > q, introduce all possible constraints of the form
〈(u1, . . . , u#), Q〉, where uj ∈ Wvj

for j ∈ {1, . . . , '}.
R constraints: For every Ci = 〈(v1, . . . , v#), R〉,
i ≤ q, introduce all possible constraints of the form
〈(u1, . . . , u#, wi), R′〉, where uj ∈ Wvj

, j ∈ {1, . . . , '}.
It is not hard to see that if P has a solution satisfying

cardinality constraint π then P ′ has a solution satisfying
the cardinality constraint π′ = |Wv| · π + q. Thus it
suffices to show that if P ′ has a solution ψ satisfying π′,
then P has a solution satisfying π.
Let a ∈ D and Ua(ψ) = ψ−1(a) = {u ∈ W |

ψ(u) = a}. Observe first that if ϕ : V → D is a map-
ping such that Uϕ(v)(ψ)∩Wv /= ∅ for every v ∈ V (i.e.,
ϕ(v) appears on at least one variable v′ ∈ Wv in ψ),
then ϕ satisfies all the constraints of P . Then we show
that it is possible to construct such a ϕ that also satisfies
the cardinality constraint π. Since |Wv| = q|D|, even

if set Ua(ψ) contains all q|D| variables of the form wi

and wj
i , it has to intersect at least π(a) sets Wv . Using

this observation we construct a bipartite graph indicat-
ing which intersectionsUa(ψ)∩Wv are nonempty, show
that required solutions correspond to perfect matchings
in this graph, and prove that such a perfect matching ex-
ists using Hall’s Theorem.

5.2 Constant relations and the com-
plexity of cardinality constraints

Let D be a set, and let a ∈ D. The constant re-
lation Ca is the unary relation that contains only one
tuple, (a). If a constraint language Γ over D contains
all the constant relations, then they can be used in the
corresponding constraint satisfaction problem to force
certain variables to take some fixed values. The goal of
this section is to show that for any constraint languageΓ
the problem CCSP(Γ ∪ {Ca | a ∈ D}) is polynomial
time reducible to CCSP(Γ). For the ordinary decision
CSP such a reduction exists when Γ does not have unary
polymorphisms that are not permutations, see [7].
Let R be a (say, n-ary) relation on a set D, and let f

be a mapping from D to 2D, the powerset of D. Map-
ping f is said to be a multi-valued morphism of R if for
any tuple (a1, . . . , an) ∈ R the set f(a1)×. . .×f(an) is
a subset ofR. Mapping f is a multi-valued morphism of
a constraint language Γ if it is a multi-valued morphism
of every relation in Γ.

Theorem 20 Let Γ be a finite constraint language over
a set D. Then CCSP(Γ ∪ {Ca | a ∈ D}) ≤ CCSP(Γ).

Proof (sketch): Let D = {d1, . . . , dk} and a = d1.
We show that CCSP(Γ ∪ {Ca}) ≤ CCSP(Γ). This
clearly implies the result. We make use of the following
multi-valued morphism gadget MVM(Γ, n) (i.e. a CSP
instance). Observe that it is somewhat similar to the in-
dicator problem [17].

• The set of variables is V (n) =
⋃k

i=1 Vdi
, where

Vdi
contains n|D|+1−i elements. All sets Vdi

are
assumed to be disjoint.

• The constraints are as follows: For every R ∈ Γ
and every (a1, . . . , ar) ∈ R we include all possi-
ble constraints of the form 〈(v1, . . . , vr), R〉 where
vi ∈ Vdi

for i ∈ {1, . . . , k}.

Given an instance P = (V, C) of CCSP(Γ ∪ {Ca}),
we construct instance P ′ = (V ′, C′) of CCSP(Γ).

7

• Let W ⊆ V be the set of variables, on which the
constant relation Ca is imposed, that is, C contains
the constraint 〈(v), Ca〉. Set n = |V |. The set V ′ of
variables of P ′ is the disjoint union of the set V (n)
of variables ofMVM(Γ, n) and V \ W .

• The set C′ of constraints of P ′ consists of three
parts:

(a) C′
1, the constraints ofMVM(Γ, n);

(b) C′
2, the constraints of P that do not include
variables fromW ;

(c) C′
3, for any constraint 〈(v1, . . . , vn), R〉 ∈ C
whose scope contains variables con-
strained by Ca (without loss of gener-
ality let v1, . . . , v# be such variables),
C′
3 contains all constraints of the form

〈(w1, . . . , wk, v#+1, . . . , vn), R〉, where
w1, . . . , w# ∈ Va.

We show thatP has a solution satisfying a cardinality
constraint π if and only if P ′ has a solution satisfying
cardinality constraint π′ given by

π′(di) =

{

π(a) + (|Va| − |W |), if i = 1,
π(di) + |Vdi

|, otherwise.

Suppose that P has a right solution ϕ. Then a re-
quired solution for P ′ is given by

ψ(v) =

{

ϕ(v), if v ∈ V \ W,
di, if v ∈ Vdi

.

It is clear that ψ is a solution to P ′ and it satisfies π′.
Suppose that P ′ has a solution ψ that satisfies π′.

Since π′(a) > |V ′ \ Va|, there is v ∈ Va such that
ψ(v) = a. Thus the assignment

ϕ(v) =

{

ψ(v), if v ∈ V \ W,
a if v ∈ W

is a satisfying assignment P , but it might not satisfy π.
Using the following observation one can show that P ′

has a solution ψ, where ϕ obtained this way satisfies π.

OBSERVATION. Mapping f taking every di ∈ D to
{ψ(v) | v ∈ Vdi

} is a multi-valued morphism of Γ. !

We will use the following simple lemma:

Lemma 21 Let α be an equivalence relation on a setD
and a ∈ D. Then aα ∈ 〈〈α, Ca〉〉′.

6 Hardness

We prove that if Γ does not satisfy the conditions of
Theorem 9 then CCSP(Γ) is NP-complete.

For a (say, n-ary) relationR over a setD and a subset
D′ ⊆ D, byR|D′ we denote the relation {(a1, . . . , an) |
(a1, . . . , an) ∈ R and a1, . . . , an ∈ D′}. For a con-
straint language Γ over D we use Γ|D′ to denote the
constraint language {R|D′ | R ∈ Γ}. We can easily sim-
ulate the restriction to a subset of the domain by setting
to 0 the cardinality constraint on the unwanted values:

Lemma 22 For any constraint language Γ over a set D
and any D′ ⊆ D, the problem CCSP(Γ|D′) is polyno-
mial time reducible to CCSP(Γ).

Suppose now that a constraint language Γ does not
satisfy the conditions of Theorem 9. Then one of the
following cases takes place: (a) 〈〈Γ〉〉′ contains a bi-
nary relation wich is not a thick mapping; or (b) 〈〈Γ〉〉′
contains two equivalence relations that are not a non-
crossing pair; or (c) Γ contains a relation which is not
2-decomposable. We consider these three cases in turn.
One of the NP-complete problems we will reduce to

CCSP(R) is the BIPARTITE INDEPENDENT SET prob-
lem (or BIS for short). In this problem given a con-
nected bipartite graph G with bipartition V1, V2 and
numbers k1, k2, the goal is to verify if there exists an
independent set S of G such that |S ∩ V1| ≥ k1 and
|S ∩ V2| ≥ k2. It is easy to see that the problem is hard
even for graphs containing no isolated vertices. By rep-
resenting the edges of a bipartite graph with the relation
R = {(a, c), (a, d), (b, d)}, we can express the problem
of finding an bipartite independent set. Value b (resp.,
a) represents selected (resp., unselected) vertices in V1,
while value c (resp., d) represents selected (resp., unse-
lected) vertices in V2. With this interpretation, the only
combination that relationR excludes is that two selected
vertices are adjacent. By Observation 6, if a binary re-
lation is not a thick mapping, then it contains something
very similar to R. However, some of the values a, b, c,
and d might coincide and the relation might contain fur-
ther tuples such as (c, d). Thus we need a delicate case
analysis to show that the problem is NP-hard for binary
relations that are not thick mappings.

Lemma 23 Let R be a binary relation which is not a
thick mapping. Then CCSP({R}) is NP-complete.

Next we show hardness in the case when there are
two equivalence relations that are crossing.

Lemma 24 Let R, Q be a crossing pair of equivalence
relations. Then CCSP({R, Q}) is NP-complete.

Proof: Let R, Q be equivalence relations on D
and D′, respectively. As these relations are not a non-
crossing pair there are a, b, c ∈ D ∩ D′ such that

8

〈a, c〉 ∈ R \ Q and 〈c, b〉 ∈ Q \ R. Let R′ = R|{a,b,c}

and Q′ = Q|{a,b,c}. Clearly,

R′ = {(a, a), (b, b), (c, c), (a, c), (c, a)},

Q′ = {(a, a), (b, b), (c, c), (b, c), (c, b)}.

By Lemma 22, CCSP({R′, Q′}) is polynomial time
reducible to CCSP({R, Q}). Consider R′′(x, y) =
∃z(R′(x, z) ∧ Q′(z, y)). We have that CCSP(R′′) is
reducible to CCSP({R′, Q′}) and

R′′ = {(a, a), (b, b), (c, c), (a, c), (c, a), (b, c), (c, b), (a, b)}.

Observe that R′′ is not a thick mapping and by
Lemma 23, CCSP(R′′) is NP-complete. !

Finally, we prove hardness in the case when there is
a relation that is not 2-decomposable. An example of
such a relation is a ternary Boolean affine relation, i.e.,
x + y + z = c for c = 0 or c = 1. The CSP with global
cardinality constraints for this relation is NP-complete
by [9]. Our strategy is to obtain such a relation from
a relation that is not 2-decomposable. However, as in
Lemma 23, we have to consider several cases.

Lemma 25 Let R be a relation whose binary projec-
tions is a non-crossing set of thick mappings, butR is not
2-decomposable. Then CCSP({R}) is NP-complete.

Proof: We choose R to be the ‘smallest’ non-2-
decomposable relation in the sense that every relation
R′ ∈ 〈〈{R} ∪ {Ca | a ∈ D}〉〉′ that either have smaller
arity, or R′ ⊂ R, is 2-non-crossing decomposable, and
every relation obtained fromR by restricting on a proper
subset of D is also 2-non-crossing decomposable. By
Theorems 19, 20, and Lemmas 22, 23, 24, it suffices to
consider relations satisfying these conditions.
Relation R is ternary. Indeed, it cannot be binary by

assumptions made about it. Let a /∈ R be a tuple such
that prija ∈ prijR for any i, j. Let

R′(x, y, z) = ∃x4, . . . , xn(R(x, y, z, x4, . . . , xn) ∧

C
a[4](x4) ∧ . . . ∧ C

a[n](xn)).

By the minimality of R all binary projections of
R′ are pairwise non-crossing thick mappings. It is
straightforward that (a[1],a[2],a[3]) /∈ R′, while, since
any proper projection of R is 2-decomposable,
pr{2,...,n}a ∈ pr{2,...,n}R, pr{1,3,...,n}a ∈
pr{1,3,...,n}R, pr{1,2,4,...,n}a ∈ pr{1,2,4,...,n}R,
implying (a[1],a[2]) ∈ pr12R

′, (a[2],a[3]) ∈ pr23R
′,

(a[1],a[3]) ∈ pr13R
′. Thus R′ is not 2-decomposable,

a contradiction with assumptions made.

Let (a, b, c) /∈ R and (a, b, d), (a, e, c), (f, b, c) ∈
R, and let B = {a, b, c, d, e, f}. As R|B is not 2-
decomposable, we should have R = R|B .
If R12 = pr12R is a thick mapping with respect

to η12, η21, R13 = pr13R is a thick mapping with re-
spect to η13, η31, and R23 = pr23R is a thick map-
ping with respect to η23, η32, then 〈a, f〉 ∈ η12 ∩ η13,
〈b, e〉 ∈ η21 ∩ η23, and 〈c, d〉 ∈ η31 ∩ η32. Let the corre-
sponding classes of η12 ∩ η13, η21 ∩ η23, and η31 ∩ η32

be B1, B2, and B3, respectively. Then B1 = pr1R,
B2 = pr2R, B3 = pr3R. Indeed, if one of these
equalities is not true, since by Lemma 21 B1, B2, B3

are pp-definable in R without equalities, the relation
R′(x, y, z) = R(x, y, z) ∧ B1(x) ∧ B2(y) ∧ B3(z) is
pp-definable in R and the constant relations, is smaller
than R, and is not 2-decomposable.
Next we show that (a, g) ∈ pr12R for all g ∈

pr2R. If there is g with (a, g) /∈ pr12R then setting
C(y) = ∃z(pr12R(z, y)∧Ca(z)) we have b, e ∈ C and
C /= pr2R. Thus R′(x, y, z) = R(x, y, z) ∧ C(y) is
smaller than R and is not 2-decomposable. The same is
true for a and pr3R, and for b and pr3R. Since every
binary projection of R is a thick mapping this implies
that pr12R = pr1R × pr2R, pr23R = pr2R × pr3R,
and pr13R = pr1R × pr3R.
For each i ∈ {1, 2, 3} and every x ∈ priR, the rela-

tion Rx
i (xj , xk) = ∃xi(R(x1, x2, x3) ∧ Cx(xi)), where

{j, k} = {1, 2, 3} \ {i}, is definable in R and therefore
is a thick mapping with respect to, say, ηx

ij , η
x
ik . Our next

step is to show that R can be chosen such that ηx
ij does

not depend on the choice of x and i.
If one of these relations, say, Rx

1 , equals pr2R ×
pr3R, while another one, sayRy

1 does not, then consider
Rc

3. We have {x} × pr2R ⊆ Rc
3. Moreover, since by

the choice of R relation Ry
1 is a non-trivial thick map-

ping there is z ∈ pr2R such that (z, c) /∈ Ry
1 , hence

(y, z) /∈ Rc
3. Therefore Rc

3 is not a thick mapping, a
contradiction. Since Ra

1 does not equal pr2R × pr3R,
every ηx

ij is non-trivial. Let

ηi =
∨

j∈{1,2,3}\{i}
x∈prjR

ηx
ji =

⋃

j∈{1,2,3}\{i}
x∈prjR

ηx
ji.

As we observed before Lemma 11, ηi is pp-definable in
R and constant relations without equalities. Since all the
ηx

ji are non-trivial, ηi is also non-trivial. We set

R′(x, y, z) = ∃x′, y′, z′(R(x′, y′, z′) ∧ η1(x, x′) ∧

η2(y, y′) ∧ η3(z, z′)).

Let Qx
i be defined for R′ in the same way as Rx

i for
R. Observe that since (x, y, z) ∈ R′ if and only

9

if there is (a′, b′, c′) ∈ R such that 〈a, a′〉 ∈ η1,
〈b, b′〉 ∈ η2, 〈c, c′〉 ∈ η3, the relations Qx

1 , Q
y
2, Qz

3 for
x ∈ pr1R

′, y ∈ pr2R
′, z ∈ pr3R

′ are thick mappings
with respect to the equivalence relations η1, η2, relations
η2, η3, and relations η1, η3, respectively. Since all the bi-
nary projections of R′ equal to the direct product of the
corresponding unary projections and η1, η2, η3 are non-
trivial, R′ is not 2-decomposable, and we can replace R
withR′. Thus we have achieved that ηx

ij does not depend
on the choice of x and i.
Next we show thatR can be chosen such that pr1R =

pr2R = pr3R, η1 = η2 = η3, and for each i ∈ {1, 2, 3}
there is z ∈ priR such that Rz

i is a reflexive relation. If,
say, pr1R /= pr2R, or η1 /= η2, orRz

3 is not reflexive for
any z ∈ pr3R, consider the following relation

R′(x, y, z) = ∃y′, z′(R(x, y′, z)∧R(y, y′, z′)∧Cd(z′)).

First, observe that prijR
′ = priR

′ × prjR
′ for any

i, j ∈ {1, 2, 3}. Then, for any fixed z ∈ pr3R
′ = pr3R

the relation Qz
3 = {(x, y) | (x, y, z) ∈ R′} is the

product Rz
3 ◦ (Rd

3)
−1, that is, a non-trivial thick map-

ping. Thus R′ is not 2-decomposable. Furthermore,
pr1R

′ = pr2R
′ = pr1R, for any z ∈ pr3R

′ the relation
Qz

3 is a thick mapping with respect to η1, η1, and Qd
3 is

reflexive. Repeating this procedure for the first and third
coordinate positions, we obtain a relation R′′ with the
required properties. Replacing R with R′′ if necessary,
we may assume that R also has all these properties.
Set B = pr1R = pr2R = pr3R and η = η1 = η2 =

η3. Let x ∈ B be such that Rx
1 is reflexive. Let also y ∈

B be such that 〈x, y〉 /∈ η. Then (x, x, x), (x, y, y) ∈ R
while (x, x, y) /∈ R. Choose z such that (z, x, y) ∈ R.
Then the restriction of R onto 3-element set {x, y, z} is
not 2-decomposable. Thus R can be assumed to be a
relation on a 3-element set.
If η is not the equality relation, say, 〈x, z〉 ∈ η,

then as the restriction of R onto {x, y} is still a not 2-
decomposable relation, R itself is a relation on the set
{x, y}. It is not hard to see that it is the affine relation
on {x, y}. The CSP with global cardinality constraints
for this relation is NP-complete by [9].
Suppose that η is the equality relation. Since each

of Rx
1 , Ry

1 , R
z
1 is a mapping and Rx

1 ∪ Ry
1 ∪ Rz

1 = B2,
it follows that the three relations are disjoint. As Rz

1 is
the identity mapping, Ry

1 and Rz
1 are two cyclic permu-

tations of (the 3-element set) B. Hence either (x, y) or
(y, x) belongs to Ry

1 . Let it be (x, y). Restricting R
onto {x, y} we obtain a relation R′ whose projection
pr23R

′ equals {(x, x), (y, y), (x, y)}, which is not a
thick mapping. A contradiction with the choice of R. !

References

[1] L. Barto, M. Kozik, and T. Niven. Graphs, polymor-
phisms and the complexity of homomorphism problems.
In STOC, pages 789–796, 2008.

[2] C. Bessière, E. Hebrard, B. Hnich, and T. Walsh. The
complexity of global constraints. In AAAI, pages 112–
117, 2004.

[3] V. Bodnarchuk, L. Kaluzhnin, V. Kotov, and B. Romov.
Galois theory for post algebras. i. Kibernetika, 3:1–10,
1969.

[4] S. Bourdais, P. Galinier, and G. Pesant. Hibiscus: A
constraint programming application to staff scheduling
in health care. In CP, pages 153–167, 2003.

[5] A. Bulatov. Tractable conservative constraint satisfac-
tion problems. In LICS, pages 321–330, 2003.

[6] A. A. Bulatov. A dichotomy theorem for constraint satis-
faction problems on a 3-element set. J. ACM, 53(1):66–
120, 2006.

[7] A. A. Bulatov, P. Jeavons, and A. A. Krokhin. Classi-
fying the complexity of constraints using finite algebras.
SIAM J. Comput., 34(3):720–742, 2005.

[8] M. Cooper. An optimal k-consistency algorithm. Artifi-
cial Intelligence, 41:89–95, 1989.

[9] N. Creignou, H. Schnoor, and I. Schnoor. Non-uniform
boolean constraint satisfaction problems with cardinality
constraint. In CSL, pages 109–123, 2008.

[10] T. Feder and M. Vardi. The computational structure of
monotone monadic SNP and constraint satisfaction: A
study through datalog and group theory. SIAM Journal
of Computing, 28:57–104, 1998.

[11] D. Geiger. Closed systems of function and predicates.
Pacific Journal of Mathematics, pages 95–100, 1968.

[12] G. Gottlob, L. Leone, and F. Scarcello. Hypertree de-
compositions: A survey. In MFCS, volume 2136 of
LNCS, pages 37–57. Springer-Verlag, 2001.

[13] M. Grohe. The complexity of homomorphism and con-
straint satisfaction problems seen from the other side. J.
ACM, 54(1), 2007.

[14] M. Grohe and D. Marx. Constraint solving via fractional
edge covers. In SODA, pages 289–298, 2006.

[15] P. Jeavons, D. Cohen, and M. Cooper. Constraints,
consistency and closure. Artificial Intelligence, 101(1-
2):251–265, 1998.

[16] P. Jeavons, D. Cohen, and M. Gyssens. Closure proper-
ties of constraints. J. ACM, 44:527–548, 1997.

[17] P. Jeavons, D. Cohen, and M. Gyssens. How to deter-
mine the expressive power of constraints. Constraints,
4:113–131, 1999.

[18] D. Marx. Parameterized complexity of constraint
satisfaction problems. Computational Complexity,
14(2):153–183, 2005.

[19] J.-C. Régin and C. P. Gomes. The cardinality matrix
constraint. In CP, pages 572–587, 2004.

10

A Proof of Lemma 3

Lemma 3 Let Γ be a constraint language. Then ev-
ery relation R ∈ 〈〈Γ〉〉 without redundancies belongs
to 〈〈Γ〉〉′.

Proof: Consider a pp-definition of R in Γ. Suppose
that the definition contains an equality relation on the
variables x and y. If none of x and y is bound by
an existential quantifier, then the relation R has two
coordinates that are always equal, i.e., R is redundant.
Thus one of the variables, say x, is bound by an
existential quantifier. In this case, replacing x with y
everywhere in the definition defines the same relationR
and decreases the number of equalities used. Repeating
this step, we can arrive to a equality free definition of
R. !

B Proof of Lemma 5

Lemma 5 Let P = (V, C) be an instance of CSP(Γ).
Then

(a) the problem obtained from P by applying 2-
CONSISTENCY is 2-consistent;

(b) on every step of 2-CONSISTENCY for any pair
v, w ∈ V the relation Rv,w belongs to 〈〈Γ〉〉′.

Proof: (a) follows from [8].
(b) Since after the first phase of the algorithm

every relation Rv,w is an intersection of unary and
binary projections of relations from Γ, they belong to
〈〈Γ〉〉′. Then when considering a pair v, w ∈ V and
u ∈ V \ {v, w}, the relation Rv,w is replaced with
Rv,w ∩ prv,wQ, where Q is the set of all solution of
the current instance on {v, w, u}. As every relation of
the current instance belongs to 〈〈Γ〉〉′, the relation Q is
pp-definable in Γ without equalities. Thus the updated
relation Rv,w also belongs to 〈〈Γ〉〉′. !

C Proofs of lemmas in Section 3

C.1 Proof of Observation 6

Observation 6 Binary relation R ⊆ A × B is a thick
mapping if and only if whenever (a, c), (a, d), (b, d) ∈
R, the pair (b, c) also belongs to R.

Proof: The only if part is easy to see: values a and
b are in the same equivalence class of α, values c and d
are in the same equivalence class of β, thus (a, d) ∈ R
implies (b, c) ∈ R.
For the other direction, it is convenient to think of

a thick relation in graph-theoretic terms. Consider the
bipartite graph G with bipartition A, B where a ∈ A
and b ∈ B are adjacent if and only if (a, b) ∈ R. Note
that there are no isolated vertices in G. Relation R is a
thick mapping if and only if every connected component
of G is a complete bipartite graph. Suppose that this is
not true, this means that some b ∈ A and x ∈ B are in
the same connected component, but not adjacent. Let b,
d, a, c be the first 4 vertices on a shortest path from b to
x (note that this path has to contain an even number of
vertices). Now (b, d), (a, d), (a, c) ∈ R, but the fact that
this is a shortest path implies (b, c) /∈ R. !

C.2 Proof of Lemma 8

Lemma 8 Let R1, R2 be a pair of thick mappings.

(1) R = R1 ∩ R2 is a thick mapping. If R1, R2 is a
non-crossing pair then R, R1 and R, R2 are also non-
crossing pairs.

(2) If R1, R2 is a non-crossing pair then R′ = R1 ◦ R2

is a thick mapping.

Proof: Let R1, R2, where R1 ⊆ A1 ×A2 and R2 ⊆
B1 × B2, be thick mappings.
(1) To verify that R is a thick mapping it suffices

to apply Observation 6. However, to prove the second
claim of part (1) we need to find the parameters of this
thick mapping.
Let C1 = pr1R and C2 = pr2R. Let also α1

R, α2
R

be the restrictions of α1
R1

∩ α1
R2
on C1 and the restric-

tion of α2
R1

∩ α2
R2
on C2, respectively. We prove that

R is a thick mapping with respect to α1
R, α2

R and certain
mapping (.
If 〈a1, a2〉 ∈ α1

R and a1, a2 ∈ C1 then there
is b ∈ C2 such that (a1, b), (a2, b) ∈ R. There-
fore (a1, b), (a2, b) ∈ R1, R2, and 〈a1, a2〉 ∈ α1

R1
∩

α1
R2
. Conversely, if 〈a1, a2〉 ∈ α1

R1
∩ α1

R2
then

there are b1, b2 ∈ C2 such that (a1, b1), (a2, b2) ∈
R1 ∩ R2, and there are c1 ∈ A2 and c2 ∈ B2 such
that (a1, c1), (a2, c1) ∈ R1 and (a1, c2), (a2, c2) ∈
R2. Since R1, R2 are thick mappings, this means that
(a2, b1) ∈ R1 ∩ R2, i.e. 〈a1, a2〉 ∈ α1

R. For α2
R the

proof is similar.

11

Finally, we show that a pair R, Q is non-crossing for
any thick mappingQ such thatR1, Q andR2, Q are non-
crossing. Let Q ⊆ D1 × D2 be a thick mapping. Take
i, j ∈ {1, 2}, without loss of generality, let i = j = 1.
We need to show that for the restriction E1 of any α1

R-
class onto C′ = C1 ∩ pr1Q and the restriction E2 of
any α1

Q-class onto C′ such that E1 ∩ E2 /= ∅, either
E1 ⊆ E2 or E2 ⊆ E1. Let E1 = E′ ∩ E′′, where E′

and E′′ are classes of α1
R1
and α1

R2
, respectively. Then

E′ ∩ E2 /= ∅ and E′′ ∩ E2 /= ∅. If E′ ∩ pr1Q ⊆ E2 or
E′′ ∩ pr1Q ⊆ E2 then E1 ⊆ E2. Otherwise E2 ∩C1 ⊆
E′ and E2 ∩ C1 ⊆ E′′ implying E2 ⊆ E1.
(2) LetC3 = A2∩B1,C1 = {a | there is b ∈ C3 with

(a, b) ∈ R1} = pr1R, and C2 = {a | there is b ∈ C3

with (b, a) ∈ R2} = pr2R. Let also γ be the restriction
of α2

R1
∨α1

R2
ontoC3, letα1

R′ = {〈a, b〉 ∈ C2
1 | there are

a′, b′ ∈ C3 such that (a, a′), (b, b′) ∈ R1 and 〈a′, b′〉 ∈
γ} and α2

R′ = {〈a, b〉 ∈ C2
2 | there are a′, b′ ∈ C3 such

that (a′, a), (b′, b) ∈ R2 and 〈a′, b′〉 ∈ γ}. We prove
that R is a thick mapping with respect to α1

R′ , α2
R′ .

Suppose (a, b), (a, d), (c, b) ∈ R. Then there are
a′, b′, c′ ∈ C3 such that (a, a′), (a, b′), (c, c′) ∈ R1 and
(a′, b), (b′, d), (c′, b) ∈ R2. Then 〈a′, b′〉 ∈ α2

R1
and

〈a′, c′〉 ∈ α1
R2
. Since R1, R2 is a non-crossing pair, all

three elements a′, b′, c′ are in the same class of either
α2

R1
or of α1

R2
. If 〈b′, c′〉 ∈ α2

R1
then (c, c′) ∈ R1 and

(c, d) ∈ R. If 〈b′, c′〉 ∈ α1
R2
then (c′, d) ∈ R2 again

implying (c, d) ∈ R. !

C.3 Proof of Lemma 11

Lemma 11 Let A = {a, b, c} ⊆ D and η1 =
EgΓ,A({〈a, b〉}), η2 = EgΓ,A({〈b, c〉}), η3 =
EgΓ,A({〈c, a〉}). Then η1, η2, η3 are all comparable.

Proof: Observe first that for any sets D1, D2 ⊆ A2

if D1 ⊆ EgΓ,A(D2) then EgΓ,A(D1) ⊆ EgΓ,A(D2).
Now, consider, say, η1, η2. Let B be the η1-class con-
taining b (and hence a), and C the η2-class containing b
(and hence c). Then either B ⊆ C or C ⊆ B. Suppose
without loss of generality that B ⊆ C. This means
〈a, b〉 ∈ η2, and so η1 ⊆ η2. !

C.4 Proof of Lemma 12

Lemma 12 Operationm is a majority operation and is
a polymorphism of Γ.

Proof: Clearly, m(a, a, a) = a for any a ∈ D. For
any a, b ∈ D, a /= b, and the triple (a, a, b) [or (b, a, a),
or (a, b, a)], we have η1 ⊆ η2, η3 [respectively, η2 ⊂
η1, η3, or η3 ⊂ η1, η2]. By definition m(a, a, b) = a
[respectively,m(b, a, a) = m(a, b, a) = a]. Thus m is
a majority operation.
Take R ∈ Γ. Let A = pr1R and A′ = pr2R.

Take (a, a′), (b, b′), (c, c′) ∈ R. If a, b, c are in
the same α1

R-class then a′, b′, c′ are in the same α2
R-

class. Since m(a, b, c) ∈ {a, b, c} and m(a′, b′, c′) ∈
{a′, b′, c′}, it follows that (m(a, b, c), m(a′, b′, c′)) ∈
R. If 〈a, b〉 ∈ α1

R, but 〈a, c〉, 〈b, c〉 /∈ α1
R then

〈a′, b′〉 ∈ α2
R, but 〈a′, c′〉, 〈b′, c′〉 /∈ α2

R. In this case
(m(a, b, c), m(a′, b′, c′)) = (a, a′) ∈ R.
Finally consider the case when all a, b, c [and so all

a′, b′, c′] are in different α1
R-classes [α2

R-classes]. Let
η′1, η

′
2, η

′
3 be equivalence relations defined for a′, b′, c′ in

the same way as η1, η2, η3 for a, b, c. If η1 ⊆ η2, η3 and
η′1 ⊆ η′2, η

′
3 [or η2 ⊂ η1, η2 ⊆ η3 and η′2 ⊂ η′1, η′2 ⊆ η′3,

or η3 ⊂ η1, η2, η′3 ⊂ η′1, η
′
2] then it is straightforward

that (m(a, b, c), m(a′, b′, c′)) ∈ R.
Suppose that η1 ⊆ η2, η3, but η′2 ⊂ η′1, η′2 ⊆ η′3. Let

θ′ = η′2 ∨ α2
R and θ = {〈x, y〉 ∈ (SgΓ({a, b, c}))2 |

there are x′, y′ such that (x, x′), (y, y′) ∈ R and
〈x′, y′〉 ∈ θ′}. Since R gives rise to a one-to-one cor-
respondence between A/α and A′/β and 〈a

′, b′〉 /∈ θ′,
it follows that 〈a, b〉 /∈ θ, but 〈b, c〉 ∈ θ. The relation
R ◦ θ′ is a thick mapping with respect to θ, θ′ and it
belongs to Γ. Therefore θ ∈ EqvΓ(SgΓ({a, b, c}), a
contradiction, because η1 ∨ θ /= η1 ∪ θ. The remaining
cases are similar. !

C.5 Proof of Lemma 13

Corollary 13 Let ∆ be a non-crossing set of thick map-
pings and Γ is a set of ∆-non-crossing decomposable
relations. Then Γ has a majority polymorphism.

Proof: To prove the corollary it suffices to observe
that any ∆-non-crossing decomposable relation R is
representable in the form

R(x1, . . . , xn) =
∧

1≤i<j≤n

pri,jR(xi, xj).

Thus R is pp-definable in ∆, and has all the poly-
morphisms of ∆. To complete the proof just use
Lemma 12. !

12

D Proofs of lemmas from Section 4

D.1 Proof of Lemma 14

Lemma 14 Let ∆ be a non-crossing set of thick map-
pings, and let Γ be a set of ∆-non-crossing decompos-
able relations.
(1) Any R pp-definable in Γ is Γ-non-crossing decom-
posable.
(2) If P is a 2-consistent instance of CCSP(Γ) then
bin(P) has the same solutions as P .

Proof: To prove (1), we proceed by induction on
the structure of a pp-definition of R. The base case of
inductionR ∈ Γ is obvious. To prove the induction step
we consider two cases.

CASE 1. R(x) = R1(x′)∧R2(x′′), where x′,x′′ are
subtuples of x.
Observe that by adding ‘fictitious’ variables we may

assume that x′ = x′′ = x, and so R is just the inter-
section R1 ∩ R2. To show that R is 2-decomposable
is easy. Indeed, take a such that pri,ja ∈ pri,jR
for any i, j. Then pri,ja ∈ pri,jR ⊆ pri,jR1 and
pri,ja ∈ pri,jR ⊆ pri,jR2. Therefore a ∈ R1 and
a ∈ R2. We need to prove that pri,jR ∈ ∆.
Let us consider instance P = ({1, . . . , n}, C) of

CSP(∆), where for each i, j, 1 ≤ i < j ≤
n, the set C contains constraints 〈(i, j), pri,jR1〉
and 〈(i, j), pri,jR2〉. Then we apply algorithm 2-
CONSISTENCY to P . Let P ′ = ({1, . . . , n}, C′) be
the resulting instance. Constraints of P ′ have the
form 〈(i, j), Qij〉. Observe that for any i, j, Qi,j ∈
∆. Indeed, on each step of 2-CONSISTENCY ei-
ther constraints 〈(i, j), Q〉, 〈(i, j), Q′〉 are replaced with
〈(i, j), Q∩Q′〉, or constraint 〈(i, j), Q〉 is replaced with
〈(i, j), Q′〉 where Q′ = Q ∩ (Q′′ ◦ Q′′′) for some k
and current constraints 〈(i, k), Q′′〉 and 〈(k, j), Q′′′〉. Fi-
nally since Γ has a majority polymorphism, by Theo-
rem 3.5 of [15] for any i, j, 1 ≤ i < j ≤ n and
any (ai, aj) ∈ Qij there is a solution ψ of P ′ such
that ψ(i) = ai and ψ(j) = aj . This means that
pri,jR = Qij ∈ ∆.

CASE 2. R(x) = ∃yR′(x, y).
As R is pp-definable in Γ it has a majority poly-

morphism that implies that R is 2-decomposable. It is
also straightforward that pri,jR = pri,jR

′ for any i, j,
1 ≤ i < j ≤ n.

To prove (2) we denote by R, R′ the |V |-ary re-
lation consisting of all solutions of P and bin(P),

respectively. Relations R, R′ are pp-definable in
Γ without equalities, and R ⊆ R′. To show that
R = R′ we use the result from [15] stating that,
since by Corollary 13 Γ has a majority polymorphism
for any v, w ∈ V and any (a, b) ∈ Rv,w we have
(a, b) ∈ prv,wR, i.e. prv,wR = prv,wR′. Since by
Lemma 14(1) R is 2-decomposable if a ∈ R′, that
is prv,wa ∈ Rv,w = prv,wR for all v, w ∈ V then
a ∈ R. !

D.2 Proof of Lemma 16

Lemma 16 Let R, R′ be a non-crossing pair of non-
trivial thick mappings such that pr2R = pr1R

′. Then
R ◦ R′ is also non-trivial.

Proof: Let R, R′ be thick mappings. Let
γ′′ = α1

R′ ∨ α2
R and A′′ = pr2R = pr1R

′, and
let γ = {〈a, b〉 | there are a′, b′ ∈ A′′ such that
(a, a′), (b, b′) ∈ R and 〈a′, b′〉 ∈ γ′′}, γ′ = {〈a, b〉 |
there are a′, b′ ∈ A′′ such that (a′, a), (b′, b) ∈ R′ and
〈a′, b′〉 ∈ γ′′}. By Lemma 8(2) R ◦ R′ is a thick map-
ping with respect to γ, γ′. Since α1

R′ ∨α2
R = α1

R′ ∪α2
R,

equivalence γ′′ is non-trivial, and so are γ, γ′. !

D.3 Proof of Lemma 17

Lemma 17 (1) For any w ∈ V −{v} equivalence rela-
tion α1

Rvw
is non-trivial.

(2) ηv is non-trivial.

Proof: (1) follows from Lemma 16.
(2) Since

ηv =
∨

w∈V −{v}

α1
Rvw

=
⋃

w∈V −{v}

α1
Rvw

,

every ηv-class is a class of some α1
Rvw

. As all the α1
Rvw

are non-trivial, so is ηv. !

D.4 Proof of Lemma 18

Lemma 18 SupposeG(P) is connected.

(1) For any v, w ∈ V there is a one-to-one corre-
spondence ψvw between Sv/ηv

and Sw/ηw
such that

13

for any solution ϕ of P if ϕ(v) ∈ A ∈ Sv/ηv
, then

ϕ(w) ∈ ψvw(A) ∈ Sw/ηw
.

(2) The mappings ψvw are consistent, i.e. for any
u, v, w ∈ V we have ψuw = ψuv ◦ ψvw.

Proof: (1) Let Rvw be a thick mapping with respect
to a mapping (, and α = α1

R, α′ = α2
R. Recall that

(is a one-to-one mapping from Sv/α to Sw/α′. Sup-
pose that (does not induce a one-to-one mapping be-
tween Sv/ηv

and Sw/ηw
. Then without loss of gen-

erality there are a, b ∈ Sv such that 〈a, b〉 ∈ ηv , but
for certain a′, b′ ∈ Sw we have (a, a′), (b, b′) ∈ R and
〈a′, b′〉 /∈ ηw. Since α′ ⊆ ηw, 〈a′, b′〉 /∈ α′, hence
〈a, b〉 /∈ α. There is u ∈ V such that Rv,u is a thick
mapping with respect to β, β′ and 〈a, b〉 ∈ β. There-
fore for some c ∈ Su we have (a, c), (b, c) ∈ Rvu.
Since Rvu ⊆ Rvw ◦ Rwu, there exist d1, d2 ∈ Sw

satisfying the conditions (a, d1), (b, d2) ∈ Rvw and
(d1, c), (d2, c) ∈ Rwu. The first pair of inclusions im-
ply that 〈a′, d1〉, 〈b′, d2〉 ∈ α′, while the second one im-
plies that 〈d1, d2〉 ∈ ηw. Since α′ ⊆ ηw, we obtain
〈a′, b′〉 ∈ ηw, a contradiction.
(2) If for some u, v, w ∈ V there is a class

A ∈ Su/ηu
such that ψvw(ψuv(A)) /= ψuw(A) then

Ruw /⊆ Ruv ◦ Rvw, a contradiction. !

E Proofs of theorems from Section 5

E.1 Proof of Theorem 19

Theorem 19 Let Γ be a constraint language over setD
and R a relation pp-definable in Γ without equalities.
Then CCSP(Γ ∪ {R}) is polynomial-time reducible to
CCSP(Γ).

Proof: We proceed by induction on the structure of
pp-formulas. The base case of induction is given byR ∈
Γ. We need to consider two cases.

CASE 1. R(x1, . . . , xn) = R1(x1, . . . , xn) ∧
R2(x1, . . . , xn).
Observe that by introducing ‘fictitious’ variables

for predicates R1, R2 we may assume that all the re-
lations involved have the same arity. A reduction
from CCSP(Γ ∪ {R}) to CCSP(Γ) is trivial: in a
given instance of the first problem replace each con-
straint of the form 〈(v1, . . . , vn), R〉 with two con-
straints 〈(v1, . . . , vn), R1〉 and 〈(v1, . . . , vn), R2〉.

CASE 2. R(x1, . . . , xn) = ∃xR′(x1, . . . , xn, x).

Let P = (V, C) be a CCSP(Γ∪{R}) instance. With-
out loss of generality let C1, . . . , Cq be the constraints
that involve R. Instance P ′ of CCSP(Γ) is constructed
as follows.

• Variables: Replace every variable v from V with
a set Wv of variables of size q|D| and introduce a
set of |D| variables for each constraint involvingR.
More formally,

W =
⋃

v∈V

Wv∪{w1, . . . , wq}∪
q

⋃

i=1

{w1
i , . . . , w|D|−1

i }.

• Non-R constraints: For every Ci =
〈(v1, . . . , v#), Q〉 with i > q, introduce all
possible constraints of the form 〈(u1, . . . , u#), Q〉,
where uj ∈ Wvj

for j ∈ {1, . . . , '}.

• R constraints: For every Ci = 〈(v1, . . . , v#), R〉,
i ≤ q, introduce all possible constraints of the
form 〈(u1, . . . , u#, wi), R′〉, where uj ∈ Wvj

, j ∈
{1, . . . , '}.

CLAIM 1. If P has a solution satisfying cardinality
constraint π then P ′ has a solution satisfying the cardi-
nality constraint π′ = |Wv| · π + q.
Let ϕ be a solution ofP satisfying π. It is straightfor-

ward to verify that the followingmappingψ is a solution
of P ′ and satisfies π′:

• for each v ∈ V and each u ∈ Wv set ψ(u) = ϕ(v);

• for each wi, where Ci = 〈(v1, . . . , vn), R〉,
set ψ(wi) to be a value such that
(ϕ(v1), . . . , ϕ(vn), ψ(wi)) ∈ R′.

• for each i ≤ q and j ≤ |D| − 1 set ψ(wj
i) to be

such that {ψ(wi), ψ(w1
i), . . . , ψ(w|D|−1|

i)} = D.

CLAIM 2. If P ′ has a solution ψ satisfying the cardi-
nality constraint π′ = |Wv| ·π+q, then P has a solution
satisfying constraint π.
Let a ∈ D and Ua(ψ) = ψ−1(a) = {u ∈ W |

ψ(u) = a}. Observe first that if ϕ : V → D is a map-
ping such that Uϕ(v)(ψ) ∩ Wv /= ∅ for every v ∈ V
(i.e., ϕ(v) appears on at least one variable v′ ∈ Wv

in ψ), then ϕ satisfies all the constraints of P . In-
deed, consider a constraint C = 〈s, Q〉 of P where
Q /= R. Let s = (v1, . . . , v#). For every vi, there is
a v′i ∈ Wvi

such that ϕ(vi) = ψ(v′i). By the way P ′ is
defined, it contains a constraintC′ = 〈s′, Q〉where s′ =

14

(v′1, . . . , v
′
#). Now the fact that ψ satisfies C′ immedi-

ately implies that ϕ satisfies C: (ϕ(v1), . . . , ϕ(v#)) =
(ψ(v′1), . . . , ψ(v′#)) ∈ Q . The argument is similar if
Q = R.
We show that it is possible to construct such a ϕ that

also satisfies the cardinality constraint π. Since |Wv| =
q|D|, even if set Ua(ψ) contains all q|D| variables of the
form wi and wj

i , it has to intersect at least π(a) setsWv

(as (π(a) − 1)q|D|+ q|D| < π′(a) = π(a) · q|D|+ q).
Consider the bipartite graph G = (T1 ∪ T2, E), where
T1, T2 is a bipartition and

• T1 is the set of variables V ;

• T2 is the set of values from D that contains π(a)
copies of each value a ∈ D;

• edge (v, a′), where a′ is a copy of a from T1, be-
longs to E if and only ifWv ∩ Ua(ψ) /= ∅.

Note that |T1| = |T2| and a perfect matching E′ ⊆ E
corresponds to a required mapping ϕ: ϕ(v) = a if
(v, a′) ∈ E′ for some copy a′ or a.
Take any subset S ⊆ T2, let S contains some copies

of a1, . . . , as. Then by the observation above, S has at
least π(a1) + . . . + π(as) neighbours in T1. Since S
contains at most π(ai) copies of ai,

π(a1) + . . . + π(as) ≥ |S|.

By Hall’s Theorem on perfect matchings in bipartite
graphs, G has a perfect matching, concluding the proof
that the required ϕ exists. !

E.2 Proof of Theorem 20

For a multi-valued morphism f and set A ⊆ D, we
define f(A) :=

⋃

a∈A f(a). The product of two multi-
valuedmorphisms f1 and f2 is defined by (f1◦f2)(a) :=
f1(f2(a)) for every a ∈ D. We denote by f i the i-th
power of f , with the convention that f0 maps a to {a}
for every a ∈ A.

Theorem 20 Let Γ be a finite constraint language over
a set D. Then CCSP(Γ ∪ {Ca | a ∈ D}) ≤ CCSP(Γ).

Proof: LetD = {d1, . . . , dk} and a = d1. We show
that CCSP(Γ ∪ {Ca}) ≤ CCSP(Γ). This clearly im-
plies the result. We make use of the following multi-
valued morphism gadget MVM(Γ, n) (i.e. a CSP in-
stance). Observe that it is somewhat similar to the in-
dicator problem [17].

• The set of variables is V (n) =
k
⋃

i=1

Vdi
, where Vdi

contains n|D|+1−i elements. All sets Vdi
are as-

sumed to be disjoint.

• The set of constraints is constructed as follows: For
every (say, r-ary) R ∈ Γ and every (a1, . . . , ar) ∈
R we include all possible constraints of the
form 〈(v1, . . . , vr), R〉 where vi ∈ Vdi

for i ∈
{1, . . . , k}.

Now, given an instance P = (V, C) of CCSP(Γ ∪
{Ca}), we construct an instance P ′ = (V ′, C′) of
CCSP(Γ).

• Let W ⊆ V be the set of variables, on which the
constant relation Ca is imposed, that is, C contains
the constraint 〈(v), Ca〉. Set n = |V |. The set V ′ of
variables of P ′ is the disjoint union of the set V (n)
of variables ofMVM(Γ, n) and V \ W .

• The set C′ of constraints of P ′ consists of three
parts:

(a) C′
1, the constraints ofMVM(Γ, n);

(b) C′
2, the constraints of P that do not include
variables fromW ;

(c) C′
3, for any constraint 〈(v1, . . . , vn), R〉 ∈ C
whose scope contains variables con-
strained by Ca (without loss of gener-
ality let v1, . . . , v# be such variables),
C′
3 contains all constraints of the form

〈(w1, . . . , wk, v#+1, . . . , vn), R〉, where
w1, . . . , w# ∈ Va.

We show thatP has a solution satisfying a cardinality
constraint π if and only if P ′ has a solution satisfying
cardinality constraint π′ given by

π′(di) =

{

π(a) + (|Va| − |W |), if i = 1,
π(di) + |Vdi

|, otherwise.

Suppose that P has a right solution ϕ. Then a re-
quired solution for P ′ is given by

ψ(v) =

{

ϕ(v), if v ∈ V \ W,
di, if v ∈ Vdi

.

It is straightforward that ψ is a solution to P ′ and that it
satisfies π′.
Suppose that P ′ has a solution ψ that satisfies π′.

Since π′(a) > |V ′ \ Va|, there is v ∈ Va such that
ψ(v) = a. Thus the assignment

ϕ(v) =

{

ψ(v), if v ∈ V \ W,
a if v ∈ W

15

is a satisfying assignment P , but it might not satisfy π.
Our goal is to show that P ′ has a solution ψ, where ϕ
obtained this way satisfies π. Observe that what we need
is that in ψ value di appears on exactly π′(di) − |Vdi

|
variables of V \ W .

CLAIM 1. Mapping f taking every di ∈ D to the set
{ψ(v) | v ∈ Vdi

} is a multi-valued morphism of Γ.
Indeed, let (a1, . . . , an) ∈ R, R is an (n-ary) rela-

tion from Γ. Then by the construction of MVM(Γ, n)
the instance contains all the constraints of the form
〈(v1, . . . , vn), R〉 with vi ∈ Vdi

, i ∈ {1, . . . , k}. There-
fore,

{ψ(v1) | v1 ∈ Va1
} × . . . × {ψ(v1) | v1 ∈ Va1

}

= f(a1) × . . . × f(an) ⊆ R.

CLAIM 2. Let f be the mapping defined in Claim 1.
Then f∗ defined by f∗(b) := f(b)∪{b} for every b ∈ D
is also a multi-valued morphism of Γ.
We show that for every di ∈ D, there is an ni ≥ 1

such that di ∈ f j(di) for every j ≥ n0. Taking the max-
imum n of all these integers, we get that di ∈ fn+1(di)
and f(di) ⊆ fn+1(di) (since di ∈ fn(di)) for every i,
proving the claim.
The proof is by induction on i. If di ∈ f(di), then

we are done as we can set ni = 1 (note that this is al-
ways the case for i = 1, since we observed above that
value d1 has to appear on a variable of Vd1

)). So let us
suppose that di /∈ f(di). Let Di = {d1, . . . , di} and let
gi : Di → 2Di defined by gi(dj) := f(dj) ∩ Di. Ob-
serve that gi(dj) is well-defined, i.e., gi(dj) /= ∅: the set
Vdj

contains n|D|+1−j ≥ n|D|+1−i variables, while the
number of variables where values not fromDi appear is
∑k

#=i+1 π
′(d#) ≤ n +

∑k
#=i+1 n|D|+1−# < n|D|+1−i.

Let T :=
⋃

#≥1 gi(di). We claim that di ∈ T . Sup-
pose that di /∈ T . By the definition of T and the assump-
tion di /∈ f(di), for every b ∈ T ∪ {di}, the variables
in Vb can have values only from T and from D \ Di.
The total number of variables in Vb, b ∈ T ∪ {di} is
∑

b∈T∪{di}
n|D|+1−b, while the total cardinality con-

straint of the values from T ∪ (D \ Di) is

∑

b∈T∪(D\Di)

π′(b) = n +
∑

b∈T

n|D|+1−b

+
k

∑

#=i+1

n|D|+1−# <
∑

b∈T

n|D|+1−b + n|D|+1−i

=
∑

b∈T∪{di}

n|D|+1−b,

a contradiction. Thus di ∈ T , that is, there is a value
j < i such that dj ∈ f(di) and di ∈ fs(dj) for some
s ≥ 1. By the induction hypothesis, dj ∈ fn(dj) for
every n ≥ nj , thus we have that di ∈ fn(di) if n is
at least ni := 1 + nj + s. This concludes the proof of
Claim 2.

LetD+ (resp.,D−) be the set of those values di ∈ D
that appear more than (resp., less than) π′(i) − |V (di)|
variables of V \ W . It is clear that if |D+| = |D−| =
0, then ϕ obtained from ψ satisfies π. Futhermore, if
|D+| = 0, then |D−| = 0 as well. Thus suppose that
D+ /= ∅ and let S :=

⋃

b∈D+,s≥1 fs(b).

CLAIM 3. S ∩ D− /= ∅.
Every b ∈ S ⊆ D \ D− appears on at least

π(b) − |V (b)| variables in V \ W , implying that every
such b appears on at most |V (b)| variables in the gadget
MVM(Γ, n). Thus the total number of variables in the
gadget having value from S is at most

∑

b∈S |V (b)|; in
fact, it is strictly less than that since D+ is not empty.
By the definition of S, only values from S can appear in
Vb for every b ∈ S. However, the total number of these
variables is exactly

∑

b∈S |V (b)|, a contradiction.

By Claim 3, there is a value d− ∈ S ∩ D−, which
means that there is a d+ ∈ D+ and a sequence of distinct
values b0 = d+, b1, . . . , b# = d− such that bi+1 ∈ f(bi)
for every 0 ≤ i < '. Let v ∈ V \ W be an arbitrary
variable with value d+. We modifyψ the followingway:

1. The value of v is changed from d+ to d−.

2. For every 0 ≤ i < ', one variable in Vbi
with value

bi+1 is changed to bi.

Note that these changes do not modify the cardinalities
of the values: the second step increases only the cardi-
nality of b0 = d+ (by one) and decreases only the car-
dinality of b# = d− (by one). We have to argue that
the transformed assignment still satisfies the constraints
of P ′. Since d− ∈ f #(d+), the multi-valued morphism
f∗ of Claim 2 implies that chaning d+ to d− on a sin-
gle variable and not changing anything else also gives a
satisfying assignment. To see that the second step does
not violate the constraints, observe first that constraints
of type (b) are not affected and constraints of type (c)
cannot be violated (since variables in Vd1

are changed
only to d1, and there is already at least one variable with
value d1 in Vd1

). To show that constraints of type (a)
are not affected, it is sufficient to show that the map-
ping f ′ described by the gadget after the trasformation
is still a multi-valued morphism. This can be easily seen

16

as f ′(b) ⊆ f(b) ∪ {bi} = f∗(b), where f∗ is the multi-
valued morphism of Claim 2.
Thus the modified assignment is still a solution of

P ′ satisfying π′. It is not difficult to show that repeating
this operation, in a finite number of steps we reach
a solution where D+ = D− = ∅, i.e., every value
b ∈ D(b) appears exactly π′(b) − |V (b)| times on the
variables of V \ W . As observed above, this implies
that P has a solution satisfying π. !

F Proof of lemmas from Section 6

F.1 Proof of Lemma 22

Lemma 22 For any constraint language Γ over a set D
and any D′ ⊆ D, the problem CCSP(Γ|D′) is polyno-
mial time reducible to CCSP(Γ).

Proof: For an instance P ′ = (V, C′) of CCSP(Γ|D′)
with a global cardinality constraint π′ : D′ → N we
construct an instance P = (V, C) of CCSP(Γ) such that
for each 〈s, R|D′〉 ∈ C′ we include 〈s, R〉 into C. The
cardinality constraint π′ is replaced with π : D → N

such that π(a) = π′(a) for a ∈ D′, and π(a) = 0 for
a ∈ D \ D′. It is straightforward that P has a solution
satisfying π if and only if P ′ has a solution satisfying
π′. !

F.2 Proof of Lemma 23

Lemma 23 Let R be a binary relation which is not a
thick mapping. Then CCSP({R}) is NP-complete.

Proof: Since R is not a thick mapping, there
are (a, c), (a, d), (b, d) ∈ R such that (b, c) /∈ R.
By Lemma 22 the problem CCSP(R′), where R′ =
R|{a,b,c,d}, is polynomial time reducible to CCSP(R).
Replacing R with R′ if necessary we can assume that
R is a relation over D = {a, b, c, d} (note that some of
those elements can be equal). We suppose that R is a
‘smallest’ relation that is not a thick mapping, that is,
for any R′ definable in R with R′ ⊂ R, the relation R′

is a thick mapping, and for any subset D′ of D the re-
striction of R ontoD′ is a thick mapping.
Since the unary relation B = {x | (a, x) ∈ R} is

definable inR, by settingR′(x, y) = R(x, y)∧B(y) we
get a binary relation R′ that is not thick mapping. Thus

by the minimality of R, we may assume that (a, x) ∈ R
for any x ∈ pr2R, and symmetrically, (y, d) ∈ R for
any y ∈ pr1R.
CASE 1. |{a, b, c, d}| = 4.
We claim that |pr1R| = |pr2R| = 2. Suppose, with-

out loss of generality that x ∈ {a, b} appears in pr2R.
If (b, x) ∈ R, then the restriction R|{a,b,c} is not a thick
mapping, contradicting the minimality ofR (herewe use
that (a, x) ∈ R). Similarly, if (b, x) /∈ R, then R|{a,b,d}

is not a thick mapping. Thus we have pr1R = {a, b}
and pr2R = {c, d}.
Let G = (V, E), V1, V2, k1, k2 be an instance of BIS.

Construct an instance P = (V, C) by including into C
for every edge (v, w) of G the constraint 〈(v, w), R〉,
and defining a cardinality constraint as π(a) = |V1| −
k1, π(b) = k1, π(c) = k2, π(d) = |V2| − k2. It is
straightforward that for any solutionϕ ofP the set Sϕ =
{v ∈ V | ϕ(v) ∈ {b, c}} is an independent set, Sϕ ∩
V1 = {v | ϕ(v) = b}, Sϕ ∩ V2 = {v | ϕ(v) = c}.
Set Sϕ satisfies the required conditions if and only if ϕ
satisfies π. Conversely, for any independent set S ⊆ V
mapping ϕ given by

ϕS(v) =















a, if v ∈ V1 \ S,
b, if v ∈ V1 ∩ S,
c, if v ∈ V2 ∩ S,
d, if v ∈ V2 \ S,

is a solution ofP that satisfies π if and only if |S∩V1| =
k1 and S ∩ V2| = k2.
CASE 2. |{a, b, c, d}| = 2.
Then R is a binary relation with 3 tuples in it over a

2-element set. By [9] CCSP(R) is NP-complete.
Thus in the remaining cases, we can assume that

|{a, b, c, d}| = 3. We claim that one of the projec-
tions pr1R or pr2R contains only 2 elements. Let
pr2R = {c, d, x}, x ∈ {a, b} (as R is over a 3-element
set). We consider two cases. Suppose first c /∈ {a, b}
(implying d ∈ {a, b}). If (b, x) /∈ R, then the re-
striction of R onto {a, b} contains (a, d), (b, d), (a, x),
but does not contain (b, x). Thus it is not a thick map-
ping, a contradiction. If (b, x) ∈ R then the set B =
{a, b} = {x | (b, x) ∈ R} is definable in R. Observe
that R′(x, y) = R(x, y) ∧ B(x) is not a thick mapping
and definable in R. A contradiction with the choice of
R.
Now suppose that d /∈ {a, b} (implying c ∈ {a, b}).

If (b, x) ∈ R, then the restriction R|{a,b} is not a thick
mapping, as (a, c), (a, x), (b, x) ∈ R and (b, c) /∈ R.
Otherwise let (b, x) /∈ R. By the assumption made
|pr1R| = 3, that is, d ∈ pr1R. We consider 4 cases

17

depending on whether (d, c) and (d, x) are contained in
R. If (d, c), (d, x) /∈ R, then, as a ∈ {x, c}, the relation
R|{a,d} is not a thick mapping (recall that (d, d) ∈ R).
If (d, c), (d, x) ∈ R, then we can restrict R on {d, b}
(note that b ∈ {c, x}). Finally, if (d, c) ∈ R, (d, x) /∈ R
[or (d, x) ∈ R, (d, c) /∈ R], then the relationB = {d, c}
[respectively, B = {d, x}] is definable in R. It remains
to observe thatR′(x, y) = R(x, y)∧B(x) is not a thick
mapping. This concludes the proof of the claim.
Thus we can assume that one of the projections pr1R

or pr2R contains only 2 elements. Without loss of gen-
erality, let pr1R = {a, b}. In the remaining cases, we
assume pr2R = {c, d, x}, where x ∈ {a, b} and x may
not be present.
CASE 3. {a, b} ∩ {c, d} /= ∅ and either

• c /∈ {a, b} (SUBCASE 3A), or

• d /∈ {a, b} and (b, x) /∈ R (SUBCASE 3B).

In this case, given an instance G =
(V, E), V1, V2, k1, k2 of BIS, we construct an in-
stance P = (V ′, C) of CCSP(R) as follows.

• V ′ = V2 ∪
⋃

w∈V1

V w, where all the sets V2 and V w,

w ∈ V1 are disjoint, and |V w| = 2|V |.

• For any (u, w) ∈ E the set C contains all con-
straints of the form 〈(v, w), R〉 where v ∈ V u.

• The cardinality constraint π is given by the follow-
ing rules:

– Subcase 3a: π(c) = k2, π(a) = (|V1| − k1) ·
2|V |, π(b) = k1 · 2|V |+(|V2|− k2) if d /= a,
and π(c) = k2, π(a) = (|V1| − k1) · 2|V | +
(|V2| − k2), π(b) = k1 · 2|V | if d = a.

– Subcase 3b: π(d) = |V2|−k2, π(a) = (|V1|−
k1) ·2|V |, π(b) = k1 ·2|V |+k2 if c /= a, and
π(d) = |V2|−k2, π(a) = (|V1|−k1) ·2|V |+
k2, π(b) = k1 · 2|V | if c = a.

If G has a required independent set S, then consider a
mapping ϕ : V ′ → D given by

ϕ(v) =















a, if v ∈ Ww and w ∈ V1 \ S,
b, if v ∈ Ww and w ∈ V1 ∩ S,
c, if v ∈ V2 ∩ S,
d, if v ∈ V2 \ S,

For any 〈(u, v), R〉 ∈ C, u ∈ V w, either w /∈ S or v /∈
S. In the first case ϕ(u) = a and so (ϕ(u), ϕ(v)) ∈ R.
In the second case ϕ(u) = b and ϕ(v) = d. Again,

(ϕ(u), ϕ(v)) ∈ R. Finally it is straightforward that ϕ
satisfies the cardinality constraint π.
Suppose thatP has a solutionϕ that satisfies π. Since

pr1R = {a, b} and we can assume thatG has no isolated
vertices, for any u ∈ V w, w ∈ V1, we have ϕ(u) ∈
{a, b}. Also if for some u ∈ V w it holds that ϕ(u) = b
and ϕ(v) = c for v ∈ V2 then (w, v) /∈ E. We include
into S ⊆ V all vertices w ∈ V1 such that there is u ∈
V w with ϕ(u) = b. By the choice of the cardinality
of V w and π(b) there are at least k1 such vertices. In
Subcase 3a, we include in S all vertices v ∈ V2 with
ϕ(v) = c. There are exactly k2 vertices like this, and
by the observation above S is an independent set. In
Subcase 3b, we include in S all vertices v ∈ V2 with
ϕ(v) ∈ {a, b}. By the choice of π(d), there are at least
k2 such vertices. To verify that S is an independent set
it suffices to recall that in this case (b, x) /∈ R, and so
(b, a), (b, b) /∈ R.
CASE 4. d /∈ {a, b} and (b, x) ∈ R.
In this case {c, x} = {a, b} and (a, c), (a, x), (b, x) ∈

R while (b, c) /∈ R. Therefore R|{a,b} is not a thick
mapping. A contradiction with the choice of R. !

G Counting problems

In this section we observe that algorithm CARDI-
NALITY can be modified so that it also solves counting
CSPs with global constraints, provided Γ satisfies the
conditions of Theorem 9. Since the counting problem
#CCSP(Γ) is more difficult than the decision problem
CCSP(Γ) we obtain the following

Theorem 24 For a constraint language Γ the counting
problem #CCSP(Γ) is solvable in polynomial time if
Γ is 2-non-crossing decomposable and NP-hard other-
wise.

Observe that Theorem 24 does not give a complexity
dichotomy, as we do not decide the exact complexity of
the NP-hard problems. They, however, belong to #P.
The counting algorithm for the polynomial time solv-

able cases works very similar to algorithm CARDINAL-
ITY, except that instead of the set of satisfiable cardinal-
ity constraints it keeps track of the number of solutions
that satisfy every cardinality constraint possible. It con-
siders the same 3 cases. In the trivial case of a problem
with one variable and one possible value for this vari-
able, the algorithm assigns 1 to the cardinality constraint
satisfied by the only solution of the problem and 0 to all
other cardinality constraints. In the case of disconnected

18

graphG(P) if a cardinality constraint can be represented
in the form π = π1 + . . .+πk then solutions on the con-
nected components of G(P) satisfying π1, . . . , πk, re-
spectively, contribute the product of their numbers into
the number of solutions satisfied by π. Finally, if G(P)
is connected, then the different restrictions have disjoint
solutions, hence the numbers of solutions add up.

Algorithm #CARDINALITY

INPUT: An instance P = (V, C) of CCSP(Γ), and
a cardinality constraint π

OUTPUT: The number of solutions of P that satisfy π

Step 1. apply 2-CONSISTENCY to P
Step 2. set (:=#CARDINALITY-VECTOR(P)

% ((π′) is the number of solutions of P
% satisfying cardinality constraint π′

Step 3. output ((π)

Algorithm #CARD-VECTOR

INPUT: A 2-consistent instance P = (V, C) of
CCSP(Γ)

OUTPUT: Function (that assigns to every cardinality
constraint π the number ((π) of solutions
of P that satisfy π

Step 1. construct the graphG(P) = (V, E)
Step 2. if |V | = 1 and the domain of this variable

is a singleton {a} then do
Step 2.1 set ((π) := 1 where π(x) = 0 except

π(a) = 1, and ((π′) := 0 for all π′ /= π
with

∑

x∈D π′(x) = 1
Step 3. else if G(P) is disconnected and

G1 = (V1, E1), . . . , Gk = (Vk, Ek) are its
connected components do

Step 3.1 set Π := {π : D → N |
∑

a∈D π(a) = 0},
((π) := 1 for π ∈ Π

Step 3.2 for i = 1 to k do
Step 3.2.1 set (′ :=#CARD-VECTOR(P|Vi

)
Step 3.2.2 set Π′′ := {π : D → N |

∑

a∈D π(a) = |V1| + . . . + |Vi|},
((π) := 0 for π ∈ Π′′

Step 3.2.3 for each π ∈ Π and π′ ∈ Π′ set
(′′(π + π′) := (′′(π + π′) + ((π) · ((π′)

Step 3.2.4 set Π := Π′′, (:= (′′

endfor
endif

Step 4. else do
Step 4.1 for each v ∈ V find ηv

Step 4.2 fix v0 ∈ V and set ((π) := 0 for π with

∑

a∈D π(a) = |V |
Step 4.3 for each ηv0

-class A do
Step 4.3.1 set PA := (V, CA) where for every

v, w ∈ V the set CA includes the constraint
〈(v, w), Rvw ∩ (ψv0v(A) × ψv0w(A))〉

Step 4.3.2 set (′ :=#CARD-VECTOR(PA)
Step 4.3.3 set ((π) := ((π) + (′(π)

endfor
enddo

Step 4. output (

19

