Complexity of Non-Uniform CSP

Andrei A. Bulatov Simon Fraser University

NSAC, 2017

Constraint Satisfaction Problem

Definition: CSP(A)

Instance: (V; A; C) where

- ♦ V is a finite set of variables
- ♠ A is a finite set of similar finite algebras
- C is a set of constraints $\{R_1(s_1), ..., R_q(s_q)\}$ where each R_i is a subalgebra of a direct product of algebras from A

Question: whether there is $h: V \to \bigcup A$ such that, for any i, $R_i(h(s_i))$ is true

Constraint Satisfaction Problem

Definition:

Instance: (V; A; C) where

- ♦ V is a finite set of variables
- A is a set of finite domains
- C is a set of constraints $\{R_1(s_1),...,R_q(s_q)\}$ where each R_i is a relation over a Cartesian product of sets from A

Question: whether there is $h: V \to \bigcup A$ such that, for any i, $R_i(h(s_i))$ is true

CSP and Friends

Homomorphism Problems

Homomorphism Problem:

Given relational structures G and H of the same type, decide, whether or not $G \rightarrow H$

Equivalent to CSP:

- G: elements are variables, tuples are constraint scopes
- H: elements are elements, relations are (constraint) relations

H-Coloring: (H is a fixed structure) Given G, decide whether $G \rightarrow H$

Example: Graph Homomorphism, H-Coloring

k-Coloring:

Instance: A graph G.

Objective: Is there a k-coloring of G?

Is there a homomorphism from G to K_k ?

Homomorphism Problems II

Instead of fixing H, restrict possible G Example: Problems on planar graphs

Vardi:

- Query complexity: fix H
- Data complexity: restrict G

CSP and Friends

Databases

(Relational) Database:

A bunch of relations

Query:

A logic formula Φ . Enumerate all models of Φ in the database

Conjunctive query:

$$R_1(x, y) \wedge R_2(z, x, x) \wedge \dots$$

Conjunctive queries = (enumeration) CSP

Databases: Query Containment and Equivalence

Conjunctive query is a homomorphism problem

$$\Phi \rightarrow B$$

How about C.Q. Φ_1 , Φ_2 ?

We say Φ_1 is contained in Φ_2 ($\Phi_1 \leq \Phi_2$) if every answer to Φ_1 is an answer to Φ_2

Queries Φ_1, Φ_2 are equivalent if $\Phi_1 \leq \Phi_2$ and $\Phi_2 \leq \Phi_1$

Chandra-Merlin:

$$\Phi_1 \le \Phi_2 \quad \text{iff } \Phi_1 \to \Phi_2$$

Datalog

Datalog is `logic language' simulating the `least fixed point' operator

$$P(x,y) := E(x,y)$$

 $P(x,y) := P(x,z), E(z,t), E(t,y)$
 $R(x) := P(x,x)$

Datalog gives CSPs solvable by local propagation algorithms

Barto-Kozik: For non-uniform CSPs being solvable by Datalog is equivalent to a nice algebraic condition

CSP and Friends

The Other Side

Let *G* be a class of structures CSP(*G*,*):

Given $G \in G$ and any H, decide whether $G \rightarrow H$

Grohe: For a class G of structures of bounded arity CSP(G,*) is poly time iff the cores of structures from G have bounded treewidth (mod some complexity assumptions)

This condition can also be expressed through some logic games, homomorphism duality, etc.

The Other Side II

Marx: For a class G of structures CSP(G,*)

- is poly time if G has bounded fractional hypertree width
- is `fixed parameter tractable' if G has bounded submodular width
 - 'very hard' otherwise (mod some complexity assumptions)

CSP and Friends

CSP vs. NP

Fagin: NP is the class of problems expressible in the existential second order logic (ESO)

If P≠NP there are infinitely many intermediate complexity classes (no dichotomy)

How much do we need to restrict NP to have a dichotomy?

Valiant, Cai: for counting problems

Marx: combinatorial conditions

Feder/Vardi: MMSNP

Feder/Vardi, Kun:

MMSNP is poly time equivalent to CSP

Logic for P

No Fagin's theorem for P

FO is very weak

LFP(FO) (think Datalog)

Gurevich: expresses all in P provided structures are ordered otherwise does not work for linear algebra

LFP(FO)+counting quantifiers

Still does not express matrix rank

LFP(FO)+counting+rank operator

CSP and Friends

Valued CSPs

MaxCSP/MinCSP:

Given a CSP instance, satisfy as many constraints as possible / unsatisfy as few as possible

Valued CSPs:

Same as MinCSP, except every tuple in a constraint has a (numerical) value, and we need to minimize the total value of such tuples produced by an assignment

Valued CSP: Complexity

Zivny/Thapper:

Without crisp constraints, the only poly time algorithm is linear programming

Kolmogorov/Krokhin/Rolinek:

With crisp constraints, LP+whatever algorithm for CSP is the best that can be done

CSP and Friends

Approximation

Approximation algorithms and complexity is a big area

Often we are talking about approximating a MaxCSP or a Valued CSP

Approximation: Unique Games Conjecture

Consider a CSP with binary constraints

$$R_1(x, y) \wedge R_2(z, x) \wedge \dots$$

where each relation is the graph of a permutation

Unique Games Conjecture (Khot):

Such a CSP is absolutely impossible to approximate

Raghavendra:

Assuming UGC, an optimal approximation algorithm for any CSP without crisp constraint

CSP and Friends

Now the talk begins

Dichotomy conjecture and theorem

Theorem

For any finite class **A** of finite similar algebras the problem CSP(A) is either solvable in polynomial time or NP-complete.

It suffices to prove the theorem for idempotent algebras

Theorem

For any finite class A of finite similar idempotent algebras the problem CSP(A) is solvable in polynomial time if A has a WNU. It is NP-complete otherwise.

Two Main Algorithms

 Local propagation algorithms: Datalog (Vardi, Kolaitis, Dalmau, Barto, Kozik, B., ...)

● Few subalgebras: edge term, generating set for solutions (B., Dalmau, Berman, Idziak, Markoviċ, McKenzie, Valeriote, Kearns, Szendrei)

Ingredients

- Separation of prime congruence intervals
- Semilattice edges
- Algorithm

Separation of prime congruence intervals

Let R be a subdirect product of $A_1 \times \cdots \times A_n$, let $i, j \in \{1, ..., n\}$ and $\alpha < \beta$, $\gamma < \delta$ prime intervals in $Con(A_i)$ and $Con(A_j)$, respectively

We say that $\alpha \prec \beta$ can be separated from $\gamma \prec \delta$, if there is a polynomial f of R such that $f(\beta) \nsubseteq \alpha$ while $f(\delta) \subseteq \gamma$

Coherent Sets

Let P = (V, A, C) be an instance. Let $v \in V$ and $\alpha < \beta$ a prime interval in $Con(A_v)$

The set $W = W(v, \alpha, \beta)$ of all $w \in V$ such that $Con(A_w)$ contains $\gamma \prec \delta$ such that $\alpha \prec \beta, \gamma \prec \delta$ cannot be separated is called a coherent set

Coherent Sets II

Let P = (V, A, C) be an instance.

$$P_W$$
 is a restricted problem $(W, A, C|_W)$:
 $R(s) \rightarrow pr_{s \cap W}R(s \cap W)$

Condition (QC): some commutator-like condition of a prime interval in a congruence lattice

Theorem

If $\alpha \prec \beta$ does not satisfy Condition (QC) then P_W can be decomposed into a constant number of instances over smaller domains

Splitting Instances

Let P_W be as before and $\alpha_w < \beta_w$ prime interval in $Con(A_w)$ such that $\alpha_w < \beta_w$ cannot be separated from $\alpha_u < \beta_u$ for any $u, w \in W$

There are $\theta_{w} \in Con(A_{w})$ such that P_{W} is $\bar{\theta}$ -linked, that is, for any $u, w \in W$ and $\bar{a}, \bar{b} \in P_{u,w}$ if $(a_{u}, b_{u}) \in \theta_{u}$ then $(a_{w}, b_{w}) \in \theta_{w}$

 θ_w -blocks

Ingredients

- Separation of prime congruence intervals
- Semilattice edges
- Algorithm

Semilattice Edges

Let **A** be an algebra.

A pair $a, b \in A$ is said to be a semilattice edge if there is a term operation \cdot of A which is semilattice on $\{a, b\}$, i.e.

- $-a \cdot a = a$
- $a \cdot b = b \cdot a = b \cdot b = b$

Operation · can be chosen such that it is semilattice on all semilattice edges of all algebras from *A*

Algebra **A** is semilattice free if it does not have a semilattice edge

Ingredients

- Separation of prime congruence intervals
- Semilattice edges
- Algorithm

Algorithm: Assumptions

Let P = (V, A, C) be an instance We will assume:

every non-semilattice free domain of P is subdirectly irreducible,

let μ_{v} denote the monolith of A_{v}

Algorithm: Max and Center

Let P = (V, A, C) be an instance

max(P) is the maximal size of domains of P with a semilattice edge

 $Max(P) \subseteq V$ is the set of variables whose domains are not semilattice free and have size max(P)

Center(P) $\subseteq V$ is the set of variables $v \in V$ such that $0_v \prec \mu_v$ satisfies Condition (QC)

Algorithm: Cases

Let P = (V, A, C) be an instance

Recursion on max(P)

We consider 3 cases

- (A) All the domains in P are semilattice free
- (B) $Max(P) \cap Center(P) = \emptyset$
- (C) $Max(P) \cap Center(P) \neq \emptyset$

Algorithm: Case (A)

Theorem

Let **A** be a semilattice free algebra. Then **A** has few subpowers

Suppose all the domains in P are semilattice free Then P can be solved by the few subpowers algorithm

Quotient Problem

Let P = (V, A, C) be an instance

 $P_W/\bar{\mu}$ is the problem $(V, A/\bar{\mu}, C/\bar{\mu})$, where

$$R(s) \rightarrow R/\bar{\mu}(s)$$

Algorithm: Block-Minimality

Let P = (V, A, C) be an instance It is called block-minimal, if for every $v \in V$ and every $\alpha < \beta \in Con(A_v)$

- if $\alpha \prec \beta$ does not satisfy Condition (QC), P_W , $W = W(v, \alpha, \beta)$, is minimal
- if $\alpha < \beta$ satisfies Condition (QC), then $P_W/\bar{\mu}$ is minimal

Observation: Establishing block minimality is done by solving polynomially many smaller instances

Algorithm: Case (B) - Empty Center

Theorem

Let P = (V, A, C) be a block-minimal instance. If $Max(P) \cap Center(P) = \emptyset$ then P has a solution.

Algorithm: Case (C) - Nonempty Center

Let α_v^* be μ_v if $v \in Max(P) \cap Center(P)$, and 0_v otherwise

Theorem

Let P = (V, A, C) be a block-minimal instance.

- (1) There is a solution φ of $P' = P/\overline{\alpha^*}$ such that for every $v \in V$ for which A_v is not semilattice free, there is a α_v^* -block B_v such that B_v , $\varphi(v)$ is a semilattice edge.
- (2) Instance $P'' = P \cdot \varphi$ is equivalent to P and such that max(P'') < max(P)

Thank you!

Ingredients

- Separation of prime congruence intervals
- Quasi-Centralizers
- Semilattice edges
- Strategies

Separation of prime congruence intervals

Let \boldsymbol{A} be an algebra and $\alpha < \beta$, $\gamma < \delta$ prime intervals in $Con(\boldsymbol{A})$

We say that $\alpha \prec \beta$ can be separated from $\gamma \prec \delta$, if there is a polynomial f of \mathbf{A} such that $f(\beta) \nsubseteq \alpha$ while $f(\delta) \subseteq \gamma$

Let R be a subdirect product of $A_1 \times \cdots \times A_n$, let $i, j \in \{1, ..., n\}$ and $\alpha < \beta$, $\gamma < \delta$ prime intervals in $Con(A_i)$ and $Con(A_j)$, respectively

We say that $\alpha \prec \beta$ can be separated from $\gamma \prec \delta$, if there is a polynomial f of R such that $f(\beta) \nsubseteq \alpha$ while $f(\delta) \subseteq \gamma$

Collapsing polynomials

Let R be a subdirect product of $A_1 \times \cdots \times A_n$, let $\alpha \prec \beta$ be a prime interval in $Con(A_1)$ be such that $\alpha \prec \beta$ can be separated from EVERY interval $\gamma \prec \delta$ from $Con(A_j)$ for EVERY $j \neq 1$

Then there is a polynomial f of R such that

- $f(\beta) \nsubseteq \alpha$
- $|f(A_j)| = 1$ for every $j \neq 1$

Quasi-Centralizers

Let A be an algebra and $\alpha \prec \beta$ prime intervals in Con(A) $\chi(\alpha,\beta)$ denotes the binary relation on A given by:

$$(a,b) \in \chi(\alpha,\beta)$$
 iff for any term $f(x,y,z_1,...,z_n)$ and any $c_1,...,c_n \in A$: $g(\beta) \subseteq \alpha \Leftrightarrow h(\beta) \subseteq \alpha$, where $g(x) = f(x,a,c_1,...,c_n)$ and $h(x) = f(x,b,c_1,...,c_n)$

It is a congruence of A

Splitting Relations

Let R be a subdirect product of $A_1 \times A_2$ and $\alpha < \beta, \gamma < \delta$ prime intervals in $Con(A_1)$, $Con(A_2)$, respectively, such that they cannot be separated from each other.

Also, let $\theta_1 = \chi(\alpha, \beta)$, $\theta_2 = \chi(\gamma, \delta)$ Then R is $\bar{\theta}$ -linked, that is, for any (a, b), $(c, d) \in R$ if $(a, c) \in \theta_1$ then $(b, d) \in \theta_2$ and the other way round

Splitting Relations II

Let R be a subdirect product of $A_1 \times \cdots \times A_n$ and $\alpha_i < \beta_i$ prime interval in $Con(A_i)$ such that $\alpha_i < \beta_i$ cannot be separated from $\alpha_i < \beta_i$ for any i, j.

Also, let $\theta_i = \chi(\alpha_i, \beta_i)$,

 θ_1 -blocks

Then R is $\bar{\theta}$ -linked, that is, for any $\bar{a}, \bar{b} \in R$ if $(a_i, b_i) \in \theta_i$ then $(a_j, b_j) \in \theta_j$ for any i, j

 θ_n -blocks

Coherent Sets

Let P = (V, A, C) be a (2,3)-minimal instance. Let $v \in V$ and $\alpha < \beta$ a prime interval in $Con(A_v)$ The set $W = W(v, \alpha, \beta)$ of all $w \in V$ such that $Con(A_w)$ contains a prime interval $\gamma < \delta$ and $\alpha < \beta, \gamma < \delta$ cannot be separated from each other.

Theorem

If $\chi(\alpha,\beta)$ is not the full congruence, P_W can be decomposed into a constant number of instances over smaller domains

Semilattice Edges

Let **A** be an algebra.

A pair $a, b \in A$ is said to be a semilattice edge if there is a term operation \cdot of A which is semilattice on $\{a, b\}$, i.e.

- $-a \cdot a = a$
- $a \cdot b = b \cdot a = b \cdot b = b$

Operation · can be chosen such that it is semilattice on all semilattice edges of all algebras from *A*

For any $a, b \in A$ either $a \cdot b = a$ or $a, a \cdot b$ is a semilattice pair

Semilattice Edges II

Theorem

Let A be an algebra and $\alpha \prec \beta \in Con(A)$ such that $\beta \leq \chi(\alpha, \beta)$. For any $a, b, c \in A$ such that $(b, c) \in \beta$ and $(a, b) \in \chi(\alpha, \beta)$, it holds $(a \cdot b, a \cdot c) \in \alpha$.

Algorithm: Standard Reductions

Let P = (V, A, C) be an instance We will assume:

- P is (2,3)-minimal
- every its domain is subdirectly irreducible let μ_{v} denote the monolith of A_{v}

Algorithm: Max and Center

Let P = (V, A, C) be an instance

max(P) is the maximal size of semilattice free domains of P

 $Max(P)\subseteq V$ is the set of variables whose domains are semilattice free and have size max(P)

Center(P) $\subseteq V$ is the set of variables $v \in V$ such that $\chi(0_v, \mu_v)$ is the full congruence

Algorithm: Cases

Let P = (V, A, C) be an instance

We consider 3 cases

- (A) All the domains in P are semilattice free
- (B) $Max(P) \cap Center(P) = \emptyset$
- (C) $Max(P) \cap Center(P) \neq \emptyset$

Algorithm: Case (A)

Theorem

Let **A** be a semilattice free algebra. Then **A** has few subpowers

Suppose all the domains in P are semilattice free Then P can be solved by the few subpowers algorithm

Algorithm: Block-Minimality

Let P = (V, A, C) be an instance It is called block-minimal, if for every $v \in V$ and every $\alpha \prec \beta \in Con(A_v)$

- if $\chi(\alpha, \beta)$ is not the full congruence, P_W , $W = W(v, \alpha, \beta)$, is minimal
- if $\chi(\alpha,\beta)$ is the full congruence, then $P_W/\bar{\mu}$ is minimal

Observation: Establishing block minimality is done by solving polynomially many smaller instances

Algorithm: Case (B) - Empty Center

Theorem

Let P = (V, A, C) be a block-minimal instance. If $Max(P) \cap Center(P) = \emptyset$ then P has a solution.

Algorithm: Case (C) - Nonempty Center

Let α_v^* be μ_v if $v \in Max(P) \cap Center(P)$, and 0_v otherwise

Theorem

Let P = (V, A, C) be a block-minimal instance.

- (1) If $P = P/\overline{\alpha^*}$ is 1-minimal then there is a solution φ of P' such that for every $v \in V$ such that A_v is not semilattice free there is a α_v^* -block B_v such that B_v , $\varphi(v)$ is a semilattice edge.
- (2) Instance $P'' = P \cdot \varphi$ is equivalent to P and such that max(P'') < max(P)

Strategies I

Theorem

Let P = (V, A, C) be a block-minimal instance. If $Max(P) \cap Center(P) = \emptyset$ then P has a solution.

We show that for any $\beta_v \in Con(A_v)$ there is a solution of $P/\bar{\beta}$.

If β_v is the full congruence, such a solution exists If $\beta_v = 0_v$ then we have a solution of P

Strategies II

```
Let \beta_v \in Con(A_v) and B_v a \beta_v-block
W(\beta) is the set of triples (v, \alpha, \beta), where v \in V, \alpha < \beta \le
\beta_v \in Con(A_v)
Let R be a collection of relations R_{C,\nu,\alpha\beta} for each constraint
C = \langle s, R \rangle \in \mathcal{C} and (v, \alpha, \beta) \in W(\beta)
Let S(C, v, \alpha\beta) = s \cap W(v, \alpha, \beta) be the set of its
coordinate positions
A tuple a \in \prod_{x \in X} A_x for X \subseteq V is said to be R-compatible
if for any C = \langle s, R \rangle \in \mathcal{C} and (v, \alpha, \beta) \in W(\beta)
pr_T a \in pr_T R_{C.v.\alpha\beta}, where T = X \cap S(C, v, \alpha\beta)
```

Strategies III

R is said to be a $\bar{\beta}$ -strategy with respect to \bar{B} if for every $C = \langle s, R \rangle \in C$ and $(v, \alpha, \beta) \in W(\bar{\beta})$ the following conditions hold $(W = W(v, \alpha\beta))$:

(S1) the relations $R^{X,\mathcal{R}}$, $X \subseteq V$, $|X| \leq 2$, consisting of R-compatible tuples from R^X , form a nonempty (2,3)-strategy for P

(S2) for every $(w, \gamma, \delta) \in W(\bar{\beta})$ (let $U = W(v, \alpha, \beta)$) and every $\boldsymbol{a} \in pr_{S \cap W \cap U}R_{C,v,\alpha\beta}$ tuple \boldsymbol{a} extends to an R-compatible solution of \boldsymbol{P}_U

Strategies IV

(S3) $R \cap \prod_w B_w \neq \emptyset$ and for any $I \subseteq s$ any R-compatible tuple $a \in pr_I R$ extends to an R-compatible tuple from R

Tightening Strategies

Theorem

Let **R** be a $\bar{\beta}$ -strategy with respect to \bar{B} .

Let $(v, \alpha, \beta) \in W(\bar{\beta})$ be such that $\alpha|_{B_v} \neq \beta|_{B_v}$ and

 $\beta = \beta_v$. Set $\beta'_v = \alpha$ and $\beta'_w = \beta_w$

Let $B_v' \subseteq B_v$ be an α -block.

Then there is a $\overline{\beta}'$ -strategy with respect to \overline{B}'