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Constraint Satisfaction Problem 

CSP(A)Definition:

Instance: (V;A;C)  where

♦ V  is a finite set of variables

♦ A is a finite set of similar finite algebras

♦ C is a set of constraints                                     where each

Question: whether there is h: V → ∪A such that, for any  i,

is true
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is a subalgebra of a direct product of algebras from A
i

R
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Constraint Satisfaction Problem 

Definition:

Instance: (V;A;C)  where

♦ V  is a finite set of variables

♦ A is a set of finite domains

♦ C is a set of constraints                                     where each

Question: whether there is h: V → ∪A such that, for any  i,

is true

)}( , ),({ 11 qq
sRsR K

))(( ii shR

is a relation over a Cartesian product of sets from A
i

R
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CSP and Friends

CSP

Non-Uniform CSP

homomorphism 

problems
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Homomorphism Problems

Homomorphism Problem:

Given relational structures  G  and  H  of the same type, 

decide, whether or not  G → H

Equivalent to CSP:

- G:  elements are variables, tuples are constraint scopes

- H:   elements are elements, relations are (constraint) 

relations

H-Coloring:  (H  is a fixed structure)

Given  G, decide whether  G → H
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k-Coloring: 

Instance:    A graph  �.  

Objective:   Is there a �-coloring of  �?

Is there a homomorphism from  � to  ��? 

Example:  Graph Homomorphism,  H-Coloring

G

?

K
k
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Homomorphism Problems II

Instead of fixing  H, restrict possible  G

Example:  Problems on planar graphs

Vardi:

- Query complexity: fix  H

- Data complexity:  restrict G
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CSP and Friends

CSP

Non-Uniform CSP

homomorphism 

problems

databases

Datalog
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Databases

(Relational) Database:  

A bunch of relations

Query:

A logic formula  Φ.  Enumerate all models of  Φ in the 

database

Conjunctive query:

Conjunctive queries  =  (enumeration) CSP  

K∧∧ ),,(),( 21 xxzRyxR
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Databases: Query Containment and Equivalence

Conjunctive query is a homomorphism problem

Φ → B

How about C.Q.  Φ�, Φ	?

We say  Φ� is contained in  Φ	 (Φ� ≤ Φ	)  if every answer to 

Φ� is an answer to  Φ	

Queries Φ�, Φ	 are equivalent if Φ� ≤ Φ	 and Φ	 ≤ Φ�

Chandra-Merlin:  

Φ� ≤ Φ	 iff Φ� → Φ	
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Datalog

Datalog is `logic language’  simulating the `least fixed point’ 

operator

P(x,y) :- E(x,y)

P(x,y) :- P(x,z), E(z,t), E(t,y)

R(x)    :- P(x,x)

Datalog gives CSPs solvable by local propagation algorithms

Barto-Kozik:    For non-uniform CSPs being solvable by Datalog

is equivalent to a nice algebraic condition
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CSP and Friends

CSP

Non-Uniform CSP

homomorphism 

problems

databases

Datalog

the other 

side

12/44



The Other Side

Let  G be a class of structures

CSP(G,*):

Given  G ∈ G and any  H, decide whether  G → H

Grohe:  For a class  G of structures of bounded arity

CSP(G,*)  is poly time  iff the cores of structures from  G

have bounded treewidth (mod some complexity assumptions)

This condition can also be expressed through some logic 

games, homomorphism duality, etc. 
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The Other Side  II

Marx:  For a class  G of structures CSP(G,*)  

- is poly time if  G  has bounded fractional hypertree width

- is `fixed parameter tractable’ if  G  has bounded submodular 

width

- `very hard’ otherwise (mod some complexity assumptions)
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CSP and Friends

CSP

Non-Uniform CSP

homomorphism 

problems

databases

Datalog

the other 

side

Logic:

- dichotomies

- logic for P
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CSP vs. NP

Fagin:  NP  is the class of problems expressible in the existential 

second order logic  (ESO)

If  P ≠ NP  there are infinitely many intermediate complexity 

classes (no dichotomy)

How much do we need to restrict NP to have a dichotomy?

Valiant, Cai:  for counting problems

Marx:   combinatorial conditions

Feder/Vardi:  MMSNP

Feder/Vardi, Kun:

MMSNP is poly time equivalent to CSP

16/44



Logic for P

No Fagin’s theorem for P

FO  is very weak

LFP(FO)  (think Datalog)

Gurevich: expresses all in P provided structures are ordered

otherwise does not work for linear algebra

LFP(FO)+counting quantifiers

Still does not express matrix rank

LFP(FO)+counting+rank operator     
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CSP and Friends

CSP

Non-Uniform CSP

homomorphism 

problems

databases

Datalog

the other 

side

Logic:

- dichotomies

- logic for P

valued

CSPs
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Valued CSPs

MaxCSP/MinCSP:

Given a CSP instance, satisfy as many constraints as 

possible / unsatisfy as few as possible

Valued CSPs:

Same as MinCSP, except every tuple in a constraint has a 

(numerical) value, and we need to minimize the total value of 

such tuples produced by an assignment
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Valued CSP: Complexity

Zivny/Thapper:

Without crisp constraints, the only poly time algorithm is 

linear programming

Kolmogorov/Krokhin/Rolinek:

With crisp constraints, LP+whatever algorithm for CSP is the 

best that can be done
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CSP and Friends

CSP

Non-Uniform CSP

homomorphism 

problems

databases

Datalog

the other 

side

Logic:

- dichotomies

- logic for P

valued

CSPs
approximation

UGC
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Approximation

Approximation algorithms and complexity is a big area

Often we are talking about approximating a MaxCSP or a Valued 

CSP
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Approximation: Unique Games Conjecture

Consider a CSP with binary constraints 

where each relation is the graph of a permutation

Unique Games Conjecture (Khot):

Such a CSP is absolutely impossible to approximate

Raghavendra:

Assuming UGC, an optimal approximation algorithm for any 

CSP without crisp constraint

K∧∧ ),(),( 21 xzRyxR
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CSP and Friends

CSP

Non-Uniform CSP

homomorphism 

problems

databases

Datalog

the other 

side

Logic:

- dichotomies

- logic for P

valued

CSPs
approximation

UGC

A lot of other stuff:

- social choice

- long codes 

- decay of correlations

- see abstracts of this conf
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Now the talk begins
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Dichotomy conjecture and theorem

Conjecture  (Feder, Vardi, 1993; Schaefer, 1978)

For any finite class  A of finite similar algebras the problem  

CSP(A)  is either solvable in polynomial time or NP-complete.

It suffices to prove the theorem for idempotent algebras

Theorem

For any finite class  A of finite similar idempotent algebras 

the problem  CSP(A)  is solvable in polynomial time if  A has 

a WNU.  It is NP-complete otherwise.

Theorem
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Two Main Algorithms

Local propagation algorithms:  Datalog (Vardi, Kolaitis, 

Dalmau, Barto, Kozik, B., …)

Few subalgebras: edge term, generating set for solutions  

(B., Dalmau, Berman, Idziak, Markoviċ, McKenzie, Valeriote, 

Kearns, Szendrei)
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Ingredients

Separation of prime congruence intervals

Semilattice edges

Algorithm
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Separation of prime congruence intervals

Let  R be a subdirect product of  �� × ⋯× ��,  

let  �, � ∈ {1, … , �} and  � ≺ �, � ≺ � prime intervals in 

���(� ) and  ���(�"),  respectively

We say that  � ≺ � can be separated from  � ≺ �,  if there is 

a polynomial  f of  R such that  # � ⊈ � while  # � ⊆ �
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Coherent Sets

Let  P = (V,A,C) be an instance.

Let  & ∈ ' and  � ≺ � a prime interval in  ���(�()

The set  ) = )(&, �, �) of all  + ∈ ' such that  ���(�,)
contains � ≺ � such that  � ≺ �, � ≺ � cannot be separated 

is called a coherent set
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Coherent Sets II

Let  P = (V,A,C) be an instance.

-. is a restricted problem  (),A,C|.):

0 1 → 		345∩.0(1 ∩ ))

Condition (QC): some commutator-like condition of a prime 

interval in a congruence lattice

Theorem

If � ≺ � does not satisfy Condition (QC) then -. can be 

decomposed into a constant number of instances over smaller 

domains 
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Splitting Instances

Let  -. be as before and  �, ≺ �, prime interval in 

��� �, such that �, ≺ �, 	cannot be separated from  

�7 ≺ �7 for any 8,+ ∈ )

There are  9, ∈ ��� �,

such that  -. is  9̅-linked,  

that is, for any 8,+ ∈ )and 

;<, =< ∈ -7,, if  

;7, =7 ∈ 97 then  

;, , =, ∈ 9,

9(-blocks

9,-blocks
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Ingredients

Separation of prime congruence intervals

Semilattice edges

Algorithm
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Semilattice Edges

Let  A be an algebra.  

A pair  ;, = ∈ � is said to be a semilattice edge  if there is a 

term operation  ⋅ of  A which is semilattice on  {;, =},  i.e.

- ; ⋅ ; = ;
- ; ⋅ = = = ⋅ ; = = ⋅ = = =

Operation  ⋅ can be chosen such that it is semilattice on all 

semilattice edges of all algebras from  A

Algebra  A is semilattice free if it does not have a semilattice 

edge 
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Ingredients

Separation of prime congruence intervals

Semilattice edges

Algorithm
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Algorithm: Assumptions

Let  P = (V,A,C)  be an instance

We will assume:

- every non-semilattice free domain of  P is subdirectly 

irreducible, 

let  ?( denote the monolith of  �(
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Algorithm: Max and Center

Let  P = (V,A,C)  be an instance

max(P)  is the maximal size of domains of  P with a semilattice 

edge

Max(P) ⊆ ' is the set of variables whose domains are not 

semilattice free and have size  max(P)

Center(P) ⊆ ' is the set of variables & ∈ ' such that  

0( ≺ ?( satisfies Condition (QC)
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Algorithm: Cases

Let  P = (V,A,C)  be an instance

Recursion on  max(P)

We consider 3 cases

(A) All the domains in  P are semilattice free

(B) Max(P) ∩ Center(P) = ∅

(C) Max(P) ∩ Center(P) ≠ ∅
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Algorithm: Case  (A)

Suppose all the domains in  P are semilattice free

Then  P can be solved by the few subpowers algorithm

Theorem

Let  A be a semilattice free algebra.  Then  A has few 

subpowers
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Quotient Problem

Let  P = (V,A,C)  be an instance

-./?̅ is the problem  (',A/?̅,C/?̅), where

0 1 	→ 			0/?̅(1)
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Algorithm: Block-Minimality

Let  P = (V,A,C)  be an instance

It is called  block-minimal, if 

for every  & ∈ ' and every  � ≺ � ∈ ���(�()

- if  � ≺ � does not satisfy Condition (QC),  B.,		
) = )(&, �, �),  is minimal

- if � ≺ � satisfies Condition (QC), then  B./?̅ is minimal

Observation: Establishing block minimality is done by solving 

polynomially many smaller instances
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Algorithm: Case (B) - Empty Center

Theorem

Let  P = (V,A,C)  be a block-minimal instance.

If  Max(P) ∩ Center(P) = ∅ then  P has a solution.
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Algorithm: Case (C) - Nonempty Center

Let  �(
∗ 		be  ?( if  & ∈ D;E B ∩ �F�GF4(B),  and 0(

otherwise 

43/44

Theorem

Let  P = (V,A,C)  be a block-minimal instance.

(1) There is a solution H of P’ = P/�∗ such that for every  

& ∈ ' for which  I( is not semilattice free, there is a          

�(
∗-block  J( such that  J(, H(&) is a semilattice edge.

(2)  Instance  P’’ = P⋅ H is equivalent to  P and such that  

max(P’’) < max(P)



Thank you!



Ingredients

Separation of prime congruence intervals

Quasi-Centralizers

Semilattice edges

Strategies
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Separation of prime congruence intervals

Let  A be an algebra and  � ≺ �, � ≺ � prime intervals in 

���(�)

We say that  � ≺ � can be separated from  � ≺ �,  if there is 

a polynomial  f of  A such that  # � ⊈ � while  # � ⊆ �

Let  R be a subdirect product of  �� × ⋯× ��,  

let  �, � ∈ {1, … , �} and  � ≺ �, � ≺ � prime intervals in 

���(� ) and  ���(�"),  respectively

We say that  � ≺ � can be separated from  � ≺ �,  if there is 

a polynomial  f of  R such that  # � ⊈ � while  # � ⊆ �
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Collapsing polynomials

Let  R be a subdirect product of  �� × ⋯× ��,  

let  � ≺ � be a prime interval in ���(��) be such that  

� ≺ � can be separated from EVERY interval  � ≺ � from

���(I") for EVERY  � ≠ 1

Then there is a polynomial  # of  0 such that 

- #(�) ⊈ �

- # I" = 1 for every  � ≠ 1

47/36
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Quasi-Centralizers

Let  A be an algebra and  � ≺ � prime intervals in ���(�)
L(�, �) denotes the binary relation on  A given by:

;, = ∈ L(�, �) iff for any term  #(E, M, N�, … , N�) and any

O�, … , O� ∈ I:    P � ⊆ �		 ⇔ ℎ � ⊆ �,

where  P E = #(E, ;, O�, … , O�) and 

h E = #(E, =, O�, … , O�)

It is a congruence of  �
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Splitting Relations

Let  R be a subdirect product of  �� × �	 and  � ≺ �, � ≺ �
prime intervals in ��� �� , ���(�	),  respectively, such that 

they cannot be separated from each other.

Also, let  9� = L �, � , 9	 = L(�, �)
Then  R is  9̅-linked,  that is, for any  ;, = , O, S ∈ 0 if  

;, O ∈ 9� then  =, S ∈ 9	 and the other way round

49/36

9�-blocks

9	-blocks



Splitting Relations II

Let  R be a subdirect product of  �� × ⋯× �� and  � ≺ � 

prime interval in ��� � such that � ≺ � 	cannot be 

separated from  �" ≺ �" for any �, �.

Also, let  9 = L � , � ,	

Then  R is  9̅-linked,  that is, 

for any ;<, =< ∈ 0 if  

; , = ∈ 9 then  

;" , =" ∈ 9" for any  �, �

50/36
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Coherent Sets

Let  P = (V,A,C) be a (2,3)-minimal instance.

Let  & ∈ ' and  � ≺ � a prime interval in  ���(�()
The set  ) = )(&, �, �) of all  + ∈ ' such that  ���(�,)
contains a prime interval  � ≺ � and  � ≺ �, � ≺ � cannot be 

separated from each other.

51/36

Theorem

If  L �, � is not the full congruence, B. can be 

decomposed into a constant number of instances over smaller 

domains 



Semilattice Edges

Let  A be an algebra.  

A pair  ;, = ∈ � is said to be a semilattice edge  if there is a 

term operation  ⋅ of  A which is semilattice on  {;, =},  i.e.

- ; ⋅ ; = ;
- ; ⋅ = = = ⋅ ; = = ⋅ = = =

Operation  ⋅ can be chosen such that it is semilattice on all 

semilattice edges of all algebras from  A

For any  ;, = ∈ � either  ; ⋅ = = ; or  ;, ; ⋅ = is a 

semilattice pair
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Semilattice Edges II
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Theorem

Let  A be an algebra and  � ≺ � ∈ ���(�) such that  

� ≤ L(�, �).  For any  ;, =, O ∈ I such that  =, O ∈ �
and  ;, = ∈ L �, � ,  it holds  ; ⋅ =, ; ⋅ O ∈ �.

�-blocks  B,C  such that  B,C 

is a semi. edge in  �/�

semilattice edges in �/�



Algorithm: Standard Reductions

Let  P = (V,A,C)  be an instance

We will assume:

- P  is (2,3)-minimal

- every its domain is subdirectly irreducible 

let  ?( denote the monolith of  �(
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Algorithm: Max and Center

Let  P = (V,A,C)  be an instance

max(P)  is the maximal size of semilattice free domains of  P

Max(P)⊆ ' is the set of variables whose domains are 

semilattice free and have size  max(P)

Center(P) ⊆ ' is the set of variables & ∈ ' such that  

L(0(, ?() is the full congruence
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Algorithm: Cases

Let  P = (V,A,C)  be an instance

We consider 3 cases

(A) All the domains in  P are semilattice free

(B) Max(P) ∩ Center(P) = ∅

(C) Max(P) ∩ Center(P) ≠ ∅
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Algorithm: Case  (A)

Suppose all the domains in  P are semilattice free

Then  P can be solved by the few subpowers algorithm
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Theorem

Let  A be a semilattice free algebra.  Then  A has few 

subpowers



Algorithm: Block-Minimality

Let  P = (V,A,C)  be an instance

It is called  block-minimal, if 

for every  & ∈ ' and every  � ≺ � ∈ ���(�()

- if  L(�, �) is not the full congruence,  B. ,		
) = )(&, �, �),  is minimal

- if  L �, � is the full congruence, then  B./?̅ is minimal

Observation: Establishing block minimality is done by solving 

polynomially many smaller instances
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Algorithm: Case (B) - Empty Center
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Theorem

Let  P = (V,A,C)  be a block-minimal instance.

If  Max(P) ∩ Center(P) = ∅ then  P  has a solution.



Algorithm: Case (C) - Nonempty Center

Let  �(
∗ 		be  ?( if  & ∈ D;E B ∩ �F�GF4(B),  and 0(

otherwise 

60/36

Theorem

Let  P = (V,A,C)  be a block-minimal instance.

(1)  If  P = P/�∗ is 1-minimal then there is a solution H of  

P’  such that for every  & ∈ ' such that  I( is not semilattice 

free there is a  �(
∗-block  J( such that  J(, H(&) is a 

semilattice edge.

(2)  Instance  P’’ = P⋅ H is equivalent to  P  and such that  

max(P’’) < max(P)



Strategies I

We show that for any  �( ∈ ���(�() there is a solution of  

P/�̅.

If  �( is the full congruence, such a solution exists

If  �( = 0( then we have a solution of  P

61/36

Theorem

Let  P = (V,A,C)  be a block-minimal instance.

If  Max(P) ∩ Center(P) = ∅ then  P has a solution.



Strategies II

Let  �( ∈ ��� �( and  J( a  �(-block

)(�̅) is the set of triples  &, �, � , where & ∈ ', � ≺ � ≤
�( ∈ ���(�()
Let  R be a collection of relations  0T,(,UV for each constraint 

� = 1, 0 ∈ C and  &, �, � ∈ )(�̅)
Let  W �, &, �� = 1 ∩ )(&, �, �) be the set of its 

coordinate positions

A tuple  X ∈ ∏ �ZZ∈[ for  \ ⊆ ' is said to be  R-compatible 

if for any � = 1, 0 ∈ C and  &, �, � ∈ )(�̅)
34]; ∈ 34]0T,(,UV,  where  ^ = \ ∩ W(�, &, ��)

62/36



Strategies III

R is said to be a  �̅-strategy with respect to J< if for every  

� = 1, 0 ∈ C  and  &, �, � ∈ )(�̅) the following 

conditions hold () = )(&, ��)):

(S1)  the relations  0[,ℛ , X ⊆ ', \ ≤ 2, consisting of  

R-compatible tuples from  0[, form a nonempty  (2,3)-strategy 

for  P

(S2)  for every  +, �, � ∈ )(�̅) (let  b = )(&, �, �) ) and 

every  X ∈ 345∩.∩c0T,(,UV tuple  X extends to an  

R-compatible solution of  -c
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Strategies IV

(S3)  0 ∩ ∏ J,, ≠ ∅ and for any  e ⊆ 1 any  R-compatible 

tuple  X ∈ 34f0 extends to an  R-compatible tuple from  R
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Tightening Strategies
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Theorem

Let  R be a  �̅-strategy with respect to  J< .

Let  &, �, � ∈ )(�̅) be such that  �|gh
≠ �|gh

and 

� = �(.  Set  �(
i = � and  �,

i = �,

Let  J(
i ⊆ J( be an  �-block.

Then there is a  �′k -strategy with respect to J′k


