Complexity of Non-Uniform CSP

Andrei A. Bulatov
Simon Fraser University

NSAC, 2017



2/44

Constraint Satisfaction Problem

Definition: CSP(A)
Instance: (V;A,C) where
¢ V isafinite set of variables
¢ Ais afinite set of similar finite algebras
¢ C isasetofconstraints {R,(sy),...,R q(Sq)} where each
R, is a subalgebra of a direct product of algebras from A

Question: whether there is h: V— \U A such that, for any i,
R.(h(s,)) istrue
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Constraint Satisfaction Problem

Definition:
Instance: (V;A,C) where
¢ V is afinite set of variables
¢ Ais aset of finite domains
¢ C isasetof constraints {R (s1),..., Rq(sq)} where each

R, is arelation over a Cartesian product of sets from A

Question: whether there is h: V— \U A such that, for any i,
R;(h(s,)) Is true
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CSP and Friends

CSP
Non-Uniform CSP

homomorphism
problems
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Homomorphism Problems

Homomorphism Problem:
Given relational structures G and H of the same type,
decide, whetherornot G — H

Equivalent to CSP:
- G: elements are variables, tuples are constraint scopes
- H: elements are elements, relations are (constraint)
relations

H-Coloring: (H is a fixed structure)
Given G, decide whether G — H
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Example: Graph Homomorphism, H-Coloring

k-Coloring:
Instance: Agraph G.

Objective: Is there a k-coloring of G?

s there a homomorphism from G to K7

Sl
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Homomorphism Problems |l

Instead of fixing H, restrict possible G
Example: Problems on planar graphs

Vardi:
- Query complexity: fix H
- Data complexity: restrict G
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CSP and Friends

databases CSP
Datalog Non-Uniform CSP
homomorphism

problems
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Databases

(Relational) Database:
A bunch of relations

Query:
Alogic formula ®. Enumerate all models of & in the
database

Conjunctive query:

Ri(x,y) ARy (z,x,x) ...

Conjunctive queries = (enumeration) CSP
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Databases: Query Containment and Equivalence

Conjunctive query is a homomorphism problem
- B
How about C.Q. &4, ®,?
We say @, iscontainedin &, (d; < d,) Iif every answer to
d, Isananswerto o,
Queries @, ®, are equivalentif d; < &, and ¢, < P,

Chandra-Merlin:
Cbl S CDZ |ffq)1 — CDZ
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Datalog

Datalog is "logic language’” simulating the "least fixed point’
operator

Datalog gives CSPs solvable by local propagation algorithms

Barto-Kozik:  For non-uniform CSPs being solvable by Datalog
IS equivalent to a nice algebraic condition
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CSP and Friends

databases CSP
Datalog Non-Uniform CSP
the other
side homomorphism

problems
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The Other Side

Let G be a class of structures
CSP(G,*):
Given Ge G and any H, decide whether G — H

Grohe: Foraclass G of structures of bounded arity
CSP(6G,*) is poly time iff the cores of structures from &
have bounded treewidth (mod some complexity assumptions)

This condition can also be expressed through some logic
games, homomorphism duality, etc.
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The Other Side I

Marx: Foraclass G of structures CSP(6,*)

-is poly time if G has bounded fractional hypertree width

- is “fixed parameter tractable’ if G has bounded submodular
width

- "very hard’ otherwise (mod some complexity assumptions)
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CSP and Friends

databases CSP
Datalog Non-Uniform CSP \ Logic:
- dichotomies
- logic for P
the other
side homomorphism

problems
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CSP vs. NP

Fagin: NP is the class of problems expressible in the existential
second order logic (ESO)
If P NP there are infinitely many intermediate complexity
classes (no dichotomy)
How much do we need to restrict NP to have a dichotomy?

Valiant, Cai: for counting problems
Marx: combinatorial conditions
Feder/Vardi: MMSNP

Feder/Vardi, Kun:
MMSNP is poly time equivalent to CSP
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Logic for P

No Fagin’s theorem for P
FO is very weak
LFP(FO) (think Datalog)
Gurevich: expresses all in P provided structures are ordered

otherwise does not work for linear algebra

LFP(FO)+counting quantifiers
Still does not express matrix rank

LFP(FO)+counting+rank operator



18/44

CSP and Friends

valued
CSPs
databases CSP
Datalog Non-Uniform CSP \ Logic:
- dichotomies
- logic for P
the other
side homomorphism

problems
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Valued CSPs

MaxCSP/MinCSP:
Given a CSP instance, satisfy as many constraints as
possible / unsatisfy as few as possible

Valued CSPs:

Same as MinCSP, except every tuple in a constraint has a
(numerical) value, and we need to minimize the total value of
such tuples produced by an assignment
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Valued CSP: Complexity

Zivny/Thapper:

Without crisp constraints, the only poly time algorithm is
linear programming

Kolmogorov/Krokhin/Rolinek:

With crisp constraints, LP+whatever algorithm for CSP is the
best that can be done
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CSP and Friends

approximation valued
UGC CSPs
databases CSP
Datalog Non-Uniform CSP \ Logic:
- dichotomies
- logic for P
the other
side homomorphism

problems
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Approximation

Approximation algorithms and complexity is a big area

Often we are talking about approximating a MaxCSP or a Valued
CSP
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Approximation: Unique Games Conjecture

Consider a CSP with binary constraints
Ri(x,y) AR, (z,x) A...

where each relation is the graph of a permutation

Unique Games Conjecture (Khot):
Such a CSP is absolutely impossible to approximate

Raghavendra:
Assuming UGC, an optimal approximation algorithm for any
CSP without crisp constraint
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CSP and Friends

approximation valued Alot of othgr stuff:
UGC CSPs - social choice
- long codes
decay of correlations
see abstracts of this conf
databases CSP
Datalog Non-Uniform CSP \ .
Logic:
- dichotomies
- logic for P
the other
side homomorphism

problems
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Now the talk begins
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Dichotomy conjecture and theorem

Theorem
For any finite class A of finite similar algebras the problem

CSP(A) is either solvable in polynomial time or NP-complete.

It suffices to prove the theorem for idempotent algebras

Theorem

For any finite class A of finite similar idempotent algebras
the problem CSP(A) is solvable in polynomial time if A has
a WNU. Itis NP-complete otherwise.
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Two Main Algorithms

@ Local propagation algorithms: Datalog (Vardi, Kolaitis,
Dalmau, Barto, Kozik, B., ...)

@ Few subalgebras: edge term, generating set for solutions
(B., Dalmau, Berman, |dziak, Markovi¢, McKenzie, Valeriote,
Kearns, Szendreli)
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Ingredients

@ Separation of prime congruence intervals
@ Semilattice edges

@ Algorithm
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Separation of prime congruence intervals

Let R be a subdirect product of 4; X --- X A,,,
let i,j €{1,...,n} and a < B, y < & prime intervals in
Con(A;) and Con(A;), respectively

We say that @ < 8 can be separated from y < §, ifthereis
a polynomial f of R suchthat f(8) € a while f(6) Sy
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Coherent Sets

Let P =(V,A,C) be an instance.
Llet veV and a < f aprimeintervalin Con(A,)

Theset W =W (v,a,B) ofal w eV suchthat Con(4,,)
contains y < § suchthat a < 8,y < & cannot be separated
Is called a coherent set
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Coherent Sets |

Let P =(V,A,C) be an instance.

P, is arestricted problem (W,A,Cly):
R(s) = prsawR(s N W)

Condition (QC): some commutator-like condition of a prime
interval in a congruence lattice

Theorem

If « < [ does not satisfy Condition (QC) then Py, can be
decomposed into a constant number of instances over smaller
domains
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Splitting Instances

Let Py, be asbeforeand a,, < B, prime interval in
Con(A,,) such that a,, < B,, cannot be separated from
a, < B, foranyu,w e W

There are 6, € Con(4,,) —
such that Py, is O-linked,

that is, for any u, w € Wand
a,bePr,, if

(a,, by,) € 6, then

(aW’ bW) € HW

0,,-blocks

0,,-blocks
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Ingredients

@ Separation of prime congruence intervals
@ Semilattice edges

@ Algorithm
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Semilattice Edges

Let A be an algebra.
Apair a,b € A is said to be a semilattice edge if there is a
term operation - of A which is semilattice on {a, b}, i.e.
- a‘a=—a
-a-b=b-a=b-b=5>

Operation - can be chosen such that it is semilattice on all
semilattice edges of all algebras from A

Algebra A is semilattice free if it does not have a semilattice
edge
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Ingredients

@ Separation of prime congruence intervals
@ Semilattice edges

@ Algorithm
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Algorithm: Assumptions

Let P=(V,A,C) be aninstance
We will assume:

- every non-semilattice free domain of P is subdirectly
Irreducible,
let u,, denote the monolith of A,
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Algorithm: Max and Center

Let P=(V,A,C) be aninstance

max(P) is the maximal size of domains of P with a semilattice
edge

Max(P) € V s the set of variables whose domains are not
semilattice free and have size max(P)

Center(P) € V s the set of variables v € V' such that
0, < u, satisfies Condition (QC)
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Algorithm: Cases

Let P=(V,A,C) be aninstance

Recursion on max(P)

We consider 3 cases

(A) All the domains in P are semilattice free
(B) Max(P) n Center(P) = &

(C) Max(P) n Center(P) # &
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Algorithm: Case (A)

Theorem
Let A be a semilattice free algebra. Then A has few
subpowers

Suppose all the domains in P are semilattice free
Then P can be solved by the few subpowers algorithm
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Quotient Problem

Let P=(V,A,C) be aninstance
Py, /i isthe problem (V,A/i,C/it), where

R(s) = R/j(s)
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Algorithm: Block-Minimality

Let P=(V,A,C) be aninstance
It is called block-minimal, if
forevery v €V andevery a < f € Con(4,)

- If @ < B does not satisfy Condition (QC), Py,
W=W(w,a,f), Is mnimal

- Ifa < B satisfies Condition (QC), then Py, /i is minimal

Observation: Establishing block minimality is done by solving
polynomially many smaller instances
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Algorithm: Case (B) - Empty Center

Theorem
Let P=(V,A,C) be a block-minimal instance.
If Max(P) m Center(P) = & then P has a solution.
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Algorithm: Case (C) - Nonempty Center

Let a;, be u, if v € Max(P) N Center(P), and 0,
otherwise

Theorem
Let P=(V,A,C) be a block-minimal instance.

(1) There is a solution ¢ of P'=P/a* such that for every
v € V for which A, is not semilattice free, there is a
a,-block B, suchthat B,, ¢ (v) Is a semilattice edge.

(2) Instance P’ =P- ¢ isequivalentto P and such that
max(P”) < max(P)




Thank you!



Ingredients

Separation of prime congruence intervals
Quasi-Centralizers

Semilattice edges

Strategies
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Separation of prime congruence intervals

Let A beanalgebraand a < 8, y < é prime intervals in
Con(A)

We say that @ < 8 can be separated from y < §, ifthereis
a polynomial f of A suchthat f(8) € a while f(6) Sy

Let R be a subdirect product of 4; X --- X A,,,

let i,j €{1,...,n} and a < B, y < & prime intervals in
Con(A;) and Con(A;), respectively

We say that @ < 8 can be separated from y < §, ifthereis
a polynomial f of R suchthat f(8) € a while f(6) Sy
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Collapsing polynomials

Let R be a subdirect product of 4; X --- X A,,,

let @« < [ be aprime interval in Con(A,) be such that

a < [ can be separated from EVERY interval y < § from
Con(A;) for EVERY j # 1

Then there is a polynomial f of R such that

- f(B) Ea
- |F(4;)] =1 forevery j # 1

f
—>

o—0—0—0
 aEa aEa amn
 aEn amn AEA
o010 ®
AL X an.
9O 1O®
L .\.——.
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Quasi-Centralizers

Let A be analgebraand a <  prime intervals in Con(A)
x(a, B) denotes the binary relation on A given by:

(a,b) € y(a,B) iffforanyterm f(x,vy,z,,...,2,) and any
ci,-,ch €EA. g(f) CSa © h(f) € a,

where g(x) = f(x,a,cq, ...,c,) and

h(x) = f(x,b,cq, ..., Cp)

It is a congruence of A
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Splitting Relations

Let R be a subdirect productof 4; X A, and a < B,y <6
prime intervals in Con(A4,), Con(4,), respectively, such that
they cannot be separated from each other.

Also, let 68, = y(a,B),0, = x(v,6)

Then R is O-linked, thatis, forany (a,b),(c,d) € R if
(a,c) € 6, then (b,d) € 6, and the other way round

7% 6,-blocks
ﬁgg 82-b|OCkS
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Splitting Relations ||

Let R be a subdirect productof A, X --- X A,, and a; < B;
prime interval in Con(A;) such that a; < f; cannot be
separated from «a; < ; foranyi,j.

Also, let 8; = y(a;, Bi), 6,-blocks

Then R is 6-linked, that s 7%

forany @, b € R ff

(Cli, bl) € Qi then / /
(a;,b;) € 0; forany i,j ﬁgg

0,,-blocks
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Coherent Sets

Let P =(V,A,C) be a (2,3)-minimal instance.

Llet v €V and a < [ aprimeinterval in Con(A4,)

Theset W =W (v,a,B) ofal w eV suchthat Con(4,,)
contains a prime interval y < 6 and a < 3,y < & cannot be
separated from each other.

Theorem

If ¥(a, B) is not the full congruence, Py, can be
decomposed into a constant number of instances over smaller
domains
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Semilattice Edges

Let A be an algebra.
Apair a,b € A is said to be a semilattice edge if there is a
term operation - of A which is semilattice on {a, b}, i.e.
- a‘a=—a
-a-b=b-a=b-b=5>

Operation - can be chosen such that it is semilattice on all
semilattice edges of all algebras from A

Forany a,b € A either a-b=a or a,a-b isa
semilattice pair



Semilattice Edges |I
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Theorem

Let A beanalgebraand a < f € Con(A) such that
B < x(a,pB). Forany a,b,c € A suchthat (b,c) € 8
and (a,b) € y(a,p), itholds (a-b,a-c) € a.

[ >@

semilattice edges in A/«
o /
O >0

\ B-blocks B,C such that B,C
s a semi.edgein A/f
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Algorithm: Standard Reductions

Let P=(V,A,C) be aninstance
We will assume:

- P is (2,3)-minimal
- every its domain is subdirectly irreducible
let u,, denote the monolith of A,
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Algorithm: Max and Center

Let P=(V,A,C) be aninstance
max(P) is the maximal size of semilattice free domains of P

Max(P)S V' is the set of variables whose domains are
semilattice free and have size max(P)

Center(P) € V s the set of variables v € V' such that
x (0, u,) is the full congruence
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Algorithm: Cases

Let P=(V,A,C) be aninstance

We consider 3 cases

(A) All the domains in P are semilattice free
(B) Max(P) m Center(P) = &

(C) Max(P) n Center(P) # &
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Algorithm: Case (A)

Theorem
Let A be a semilattice free algebra. Then A has few
subpowers

Suppose all the domains in P are semilattice free
Then P can be solved by the few subpowers algorithm
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Algorithm: Block-Minimality

Let P=(V,A,C) be aninstance
It is called block-minimal, if
forevery v €V andevery a < f € Con(4,)

- If y(a, B) is notthe full congruence, Py,
W=W(w,a,f), Is mnimal

- if y(a, B) is the full congruence, then Py, /i is minimal

Observation: Establishing block minimality is done by solving
polynomially many smaller instances
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Algorithm: Case (B) - Empty Center

Theorem
Let P=(V,A,C) be a block-minimal instance.
If Max(P) n Center(P) =& then P has a solution.
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Algorithm: Case (C) - Nonempty Center

Let a;, be u, if v € Max(P) N Center(P), and 0,
otherwise

Theorem
Let P=(V,A,C) be a block-minimal instance.

(1) If P=P/a* is 1-minimal then there is a solution ¢ of
P’ such that for every v € V such that A, is not semilattice
free thereis a a,,-block B, suchthat B, ¢(v) isa

semilattice edge.
(2) Instance P" =P- ¢ isequivalentto P and such that

max(P”) < max(P)
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Strategies |

Theorem

Let P=(V,A,C) be a block-minimal instance.
If Max(P) m Center(P) =& then P has a solution.

We show that for any B, € Con(A,) there is a solution of
P/B.

If B, Iisthe full congruence, such a solution exists

If B, = 0, then we have a solution of P
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Strategies |I

Let B, € Con(A,) and B, a B,-block

W () is the setof triples (v, a, B),wherev €V, a < B <
b, € Con(4,)

Let R be a collection of relations R, o5 for each constraint
C=(s,R)EC and (v,a,B) € W(B)

Let S(C,v,af) =snNnW((v,a,B) bethe setofits
coordinate positions

Atuple a € [],ex A, for X €V is said to be R-compatible
ifforany C = (s,R) € C and (v,a,B) € W(B)

prra € prrRey, 05, Where T =X NS(C,v,ap)
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Strategies |l

R is said to be a 3-strategy with respect to B if for every
C =(s,R)€C and (v,a,B) € W(B) the following
conditions hold (W = W (v, af)):

(S1) the relations R*¥*, X €V, |X| < 2, consisting of
R-compatible tuples from R#*, form a nonempty (2,3)-strategy
for P

(S2) forevery (w,y,8) € W(B) (let U =W (v, a,f))and
every a € prsawnuRep,ap tUPle a extends to an
R-compatible solution of Py,
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Strategies |V

(S3) RNl By # @ andforany I € s any R-compatible
tuple a € pr;R extends to an R-compatible tuple from R
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Tightening Strategies

Theorem
Let R be a B-strategy with respectto B.
Let (v, a,B) € W(B) besuchthat a|z # Blp, and
B =By, Set B, =a and By, = B,
Let B, € B,, be an a-block.
Then there is a B’-strategy with respect to B’




