
THE SUBPOWER MEMBERSHIP PROBLEM FOR SEMIGROUPS

ANDREI BULATOV, MARCIN KOZIK, PETER MAYR, AND MARKUS STEINDL

Abstract. Fix a finite semigroup S and let a1, . . . , ak, b be tuples in a direct

power Sn. The subpower membership problem (SMP) asks whether b can be

generated by a1, . . . , ak. If S is a finite group, then there is a folklore algorithm
that decides this problem in time polynomial in nk. For semigroups this prob-

lem always lies in PSPACE. We show that the SMP for a full transformation

semigroup on 3 or more letters is actually PSPACE-complete, while on 2 letters
it is in P. For commutative semigroups, we provide a dichotomy result: if a

commutative semigroup S embeds into a direct product of a Clifford semigroup

and a nilpotent semigroup, then SMP(S) is in P; otherwise it is NP-complete.

1. Introduction

Deciding membership is a basic problem in computer algebra. For permutation
groups given by generators, it can be solved in polynomial time using Sims’ stabilizer
chains [1]. For transformation semigroups, membership is PSPACE-complete by a
result of Kozen [5].

In this paper we study a particular variation of the membership problem that
was proposed by Willard in connection with the study of constraint satisfaction
problems (CSP) [3, 10]. Fix a finite algebraic structure S with finitely many basic
operations. Then the subpower membership problem (SMP) for S is the following
decision problem:

SMP(S)
Input: {a1, . . . , ak} ⊆ Sn, b ∈ Sn

Problem: Is b in the subalgebra 〈a1, . . . , ak〉 of Sn generated by
{a1, . . . , ak}?

For example, for a one-dimensional vector space S over a field F , SMP(S) asks
whether a vector b ∈ Fn is spanned by vectors a1, . . . , ak ∈ Fn.

Note that SMP(S) has a positive answer iff there exists a k-ary term function t
on S such that t(a1, . . . , ak) = b, that is

(1) t(a1i, . . . , aki) = bi for all i ∈ {1, . . . , n}.

Hence SMP(S) is equivalent to the following problem: Is the partial operation t that
is defined on an n element subset of Sk by (1) the restriction of a term function on
S?

Note that the input size of SMP(S) is essentially n(k + 1). Since the size of
〈a1, . . . , ak〉 is limited by |S|n, one can enumerate all elements in time exponential
in n using a straightforward closure algorithm. This means that SMP(S) is in
EXPTIME for each algebra S. Kozik constructed a class of algebras which actually
have EXPTIME-complete subpower membership problems [6].

Date: August 11, 2016.

2000 Mathematics Subject Classification. Primary: 20M99; Secondary: 68Q25.
Key words and phrases. semigroup, direct power, membership problem.
The first author was supported by an NSERC Discovery grant, the second author was partially

supported by the National Science Centre Poland: UMO-2014/13/B/ST6/01812, the last two by
the Austrian Science Fund (FWF): P24285.

1

2 ANDREI BULATOV, MARCIN KOZIK, PETER MAYR, AND MARKUS STEINDL

Still for certain structures the SMP might be considerably easier. For S a vector
space, the SMP can be solved by Gaussian elimination in polynomial time. For
groups the SMP is in P as well by an adaptation of permutation group algorithms
[1, 11]. Even for certain generalizations of groups and quasigroups the SMP can be
shown to be in P [7].

In the current paper we start the investigation of algorithms for the SMP of finite
semigroups and its complexity. We will show that the SMP for arbitrary semigroups
is in PSPACE in Theorem 2.1 For the full transformation semigroups Tn on n letters
we will prove the following in Section 2.

Theorem 1.1. SMP(Tn) is PSPACE-complete for all n ≥ 3, while SMP(T2) is
in P.

This is the first example of a finite algebra with PSPACE-complete SMP. As a
consequence we can improve a result of Kozen from [5] on the intersection of regular
languages in Corollary 2.4.

Moreover the following is the smallest semigroup and the first example of an
algebra with NP-complete SMP.

Example 1.2. Let Z1
2 := {0, a, 1} denote the 2-element null semigroup adjoined

with a 1, i.e., Z1
2 has the following multiplication table:

Z1
2 0 a 1
0 0 0 0
a 0 0 a
1 0 a 1

Then SMP(Z1
2) is NP-complete. NP-hardness follows from Lemma 5.2 by encoding

the exact cover problem. The NP-easiness for commutative semigroups is proved in
Lemma 5.1.

Generalizing from this example we obtain the the following dichotomy for com-
mutative semigroups.

Theorem 1.3. Let S be a finite commutative semigroup. Then SMP(S) is in P if
one of the following equivalent conditions holds:

(1) S is an ideal extension of a Clifford semigroup by a nilpotent semigroup;
(2) the ideal generated by the idempotents of S is a Clifford semigroup;
(3) for every idempotent e ∈ S and every a ∈ S where ea = a the element a

generates a group;
(4) S embeds into the direct product of a Clifford semigroup and a nilpotent

semigroup.

Otherwise SMP(S) is NP-complete.

Theorem 1.3 is proved in Section 5. Our way towards this result starts with
describing a polynomial time algorithm for the SMP for Clifford semigroups in
Section 4. In fact in Corollary 4.10 we will show that SMP(S) is in P for every (not
necessarily commutative) ideal extension of a Clifford semigroup by a nilpotent
semigroup.

Throughout the rest of the paper, we write [n] := {1, . . . , n} for n ∈ N. Also a
tuple a ∈ Sn is considered as a function a : [n] → S. So the i-th coordinate of this
tuple is denoted by a(i) rather than ai.

2. Full transformation semigroups

First we give an upper bound on the complexity of the subpower membership
problem for arbitrary finite semigroups.

Theorem 2.1. The SMP for a finite semigroup is in PSPACE.

THE SUBPOWER MEMBERSHIP PROBLEM FOR SEMIGROUPS 3

Proof. Let S be a finite semigroup. We show that

(2) SMP(S) is in nondeterministic linear space.

To this end, let A ⊆ Sn, b ∈ Sn be an instance of SMP(S). If b ∈ 〈A〉, then there
exist a1, . . . , am ∈ A such that b = a1 · · · am.

Now we pick the first generator a1 ∈ A nondeterministically and start with
c := a1. Pick the next generator a ∈ A nondeterministically, compute c := c ·a, and
repeat until we obtain c = b. Clearly all computations can be done in space linear
in n · |A|. This proves (2). By a result of Savitch [9] this implies that SMP(S) is in
deterministic quadratic space. �

Theorem 2.2. SMP(T3) is PSPACE-complete.

Proof. Kozen [5] showed that the following decision problem is PSPACE-complete:
input n and functions f, f1, . . . , fm : [n]→ [n] and decide whether f can be obtained
as a composition1 of fi’s. The size of the input for this problem is (m+ 1)n log n.

To encode this problem into SMP(T3) let T3 be the full transformation semigroup
of 0, 1 and ∞. We identify g, an element of T3, with the triple (g(0), g(1), g(∞))
and name a number of elements of T3:

• 0 = (0, 0,∞) and 1 = (1, 1,∞) are used to encode the functions [n]→ [n];
• id = (0, 1,∞),0 7→ 0 = (0,∞,∞),0 7→ 1 = (1,∞,∞) and 1 7→ 0 =

(∞, 0,∞) are used to model the composition.

We call an element of T3 bad if it sends 0 or 1 to ∞; and we call a tuple of elements
bad if it is bad on at least one position. Note that all the named elements send
∞ to ∞ so multiplying, on the right, a bad element by any of the named elements
produces a bad element.

Let k and f, f1, . . . fm be an input to the Kozen’s composition problem. We will
encode it as SMP on n2 +mn positions. We start with an auxiliary notation. Every
function f ′ : [n]→ [n] can be encoded (on these n2 + nm positions) as follows: the
first n positions are all 0 except for the f ′(1)-th one which is 1, among positions
{n+ 1, . . . , 2n} only (n+ f(1))-th one is 1 and the rest is 0 and so on. Finally the
remaining nm positions are all 0. We call such a tuple the mapping tuple for f ′.
Note that none of the mapping tuples are bad.

We introduce the generators of the subpower gradually. The first generator is
the mapping tuple for the identity on [n].

Next, for each fi we add the choice tuple which is id on the first n2 positions; is
0 7→ 1 on positions {n2 + (i− 1)n+ 1, . . . , n2 + (i− 1)n+n} and 0 7→ 0 elsewhere.
Multiplying (on the right) the mapping tuple for f ′ by the choice tuple for fi,
corresponds to deciding that f ′ will be composed with fi.

Finally, for each fi and j, k ∈ [n] we add the application tuple with the semantics:

apply fi on coordinate j to k

which is all id except for the position n(j − 1) + k which is 1 7→ 0, position
n(j − 1) + fi(k) which is 0 7→ 1 and position n2 + (i − 1)n + j which is 1 7→ 0.
Multiplication by the application tuples computes the composition decided by the
choice tuples.

It remains to choose an element which will be generated by all these tuples if
and only if f is a composition of fi’s. This final element is the mapping tuple for f .

Lets analyze, from left to right, a product of the generators which produces a
tuple which is not bad. Leftmost element of the product needs to be the mapping
tuple of the identity – the only generator which itself is not bad.

The second element from the left can be the same, but then the product is the
mapping tuple of identity again and we can disregard this case. The second element

1We will assume that the identity function can be obtained even from an empty set of functions.
This little twist does not change the complexity of the problem.

4 ANDREI BULATOV, MARCIN KOZIK, PETER MAYR, AND MARKUS STEINDL

cannot be an application tuple as the 1 7→ 0 on one of the last nm positions would
turn the result bad. Thus the only meaningful option is the choice tuple for some
function fi. Multiplication by this tuple turns n positions (among the last nm
positions) of the mapping tuple for identity to 1.

Consider the next n elements of the product. Any one of them can be the
mapping tuple of the identity, but then the product resets as any tuple which is not
bad multiplied by the mapping tuple of the identity produces the mapping tuple
of the identity. Yet again we disregard this case. None of the n elements can be a
choice tuple: a multiplication by a choice tuple produces bad result unless the last
nm positions of the left tuple are all 0.

Thus all n elements need to be application tuples, and focusing again on the last
nm positions we find for each j ∈ [n] exactly one tuple with semantics “apply fi
on coordinate j”. Focusing on the first n2 position we immediately get that the
semantics needs to be “apply fi on coordinate j to j”.

It is easy to see that, after multiplying by these n tuples, we get the mapping
tuple for fi. Continuing the reasoning with the mapping tuple for fi (instead of
identity) and, say, fj (instead of fi) we get a mapping tuple for fj ◦ fi and so on.
In the end we get a mapping tuple for f if and only if f can be obtained as a
composition of the fi’s and the identity.

The number of tuples we input into SMP is mn2 +m+ 2, so the total size of the
input is C(mn2 +m+ 2)(n2 + nm) which is polynomial with respect to the size of
the input of the original problem. �

The next theorem states that the bound it tight, that is that already for T2 the
SMP is solvable in a polynomial time.

Theorem 2.3. SMP(T2) is in P.

Proof. Let the underlying set of T2 be {0, 1} and the constants of T2 be denoted
by 0 and 1 and the non-constants by id and not. For a tuple a ∈ T k

2 the constant
part (or cp) of a are the i’s such that ai ∈ T2 is a constant, the non-constant part (or
ncp) are the remaining i’s.

Let a1, . . . , an, b ∈ T k
2 be the input of the SMP(T2). Before starting the algorithm

we preprocess the instance, by removing all the ai’s with cp not included in cp of
b. It is clear that the removed tuples cannot participate in a product producing b.
Next we call the function SMP(a1, . . . , an, b) from Algorithm 1.

The following easy observation is the key ingredient of the algorithm: if for some
i the tuple ai and b agree on the cp of ai then the original problem is equivalent
to SMP(a′1, . . . , a

′
n, b
′) where the primed version of elements are obtained from the

unprimed by projecting to ncp of ai. Indeed we have b′ = a′i1 · · · a
′
il

if and only if
b = ai1 · · · ailaiai (note that we need ai twice since we need to compose not with
itself to obtain id on coordinates from ncp of ai).

We analyze the Algorithm 1 line by line. Note that if b has empty cp then, by
the preprocessing, each ai has empty cp as well and the problem reduces to SMP
over Z2 (which is solvable in P). This is the essence behind line 3 of the algorithm:
the function returns TRUE in line 4 or ignores the loop starting in line 6 (as l = n)
and returns FALSE in line 18.

If b has non-empty cp we reason almost exactly as in the easy observation above.
The loop in line 6 verifies if, modulo multiplication by the tuples with empty cp,
ai can play the role of ai from the easy observation. If so, i.e. the check in line 10
returned true, then the recursive call in line 15 is justified by the equivalence of the
projected problem from the easy observation.

The remaining part of the proof is structure as follows: First we show that, if b
can be obtained as product of ai’s, then the recursive call in line 15 will happen.
Then we assume, by induction on the size of cp of b, that the recursive call returns

THE SUBPOWER MEMBERSHIP PROBLEM FOR SEMIGROUPS 5

Algorithm 1
Function SMP(a1, . . . , an, b) solving SMP(T2).

Input: a1, . . . , an, b ∈ T k
2

Output: TRUE or FALSE
1: let a1, . . . , al be the ai’s with empty cp
2: and al+1, . . . , an with non-empty cp
3: if b has empty cp and SMPZ2(a1, . . . , al, b) then
4: return TRUE
5: end if
6: for i = l + 1 . . . n do
7: . checks if ai can be the last element of the product with non-empty cp
8: let a′1, . . . , a

′
l be projections of a1, . . . , al to cp of ai

9: let b′ (defined on cp of ai) be b′(j) = id if ai(j) = b(j) and b′(j) = not else
10: if SMPZ2

(a′1, . . . , a
′
l, b
′) then

11: . we found aj ’s with empty cp’s which change ai to b on cp of ai
12: let j1, . . . , jm be the sequence of indices from the call of SMPZ2

13: set b′′ = bajm · · · aj1
14: let a′′1 , . . . , a

′′
n, b
′′′ be projections of a1, . . . , an, b

′′ to ncp of ai
15: return SMP(a′′1 , . . . , a

′′
n, b
′′′)

16: end if
17: end for
18: return FALSE

a correct answer to the projected problem. We conclude the proof by showing that
it is the answer to the original problem as well.

To see the first fact let b = aj1 · · · ajm and let ajp be the last element of the
product with non-empty cp. The suffix aj(p+1)

· · · ajm consists of elements of empty
cp which multiply ajp , on its cp, to b. This means that the condition on line 10
will be satisfied for some i (maybe with i = jp, but maybe with some other i).

It remains to show that the answer to the recursive call in line 15 is the same
as the answer to the original instance. For one direction: if the recursive call in
line 15, in the loop iteration at i, answers TRUE with indices i1, . . . , ip then

b = ai1 · · · aipaiaiaj1 · · · ajm .

Indeed on indices from the cp of ai only the last m + 2 elements matter and they
provide proper values by the choice of the sequence j1, . . . , jm computed by the
algorithm. For the ncp of ai the recursive call provides b′′. Since aiai is id on ncp
of ai and ajm · · · aj1aj1 · · · ajm is a tuple of id’s (since all the tuples in the product
have empty cp’s) we obtain b on ncp of ai as well.

For the other direction: we show that if the original question was TRUE then
the recursive call will answer TRUE as well. This would be the case if i = jp two
paragraphs above but obtaining it directly would require backtracking. Fortunately
if b is a product of ai’s then so is b′′ = bajm · · · aj1 (for any sequence computed in a
successful test in line 10) and b′′′ is just a projection of b′′.

The complexity of the algorithm is clearly polynomial: The function SMP works
in a polynomial time, and the depth of recursion is bounded by k as during each
recursive call we loose at least one coordinate. �

6 ANDREI BULATOV, MARCIN KOZIK, PETER MAYR, AND MARKUS STEINDL

For proving that membership for transformation semigroups is PSPACE-complete,
Kozen first showed that the following decision problem is PSPACE-complete [5].

AUTOMATA INTERSECTION PROBLEM
Input: deterministic finite state automata F1, . . . , Fn with common

alphabet Σ
Problem: Is there a word in Σ∗ that is accepted by all of F1, . . . , Fn?

Using the wellknown connection between automata and transformation semigroups
we obtain the following stronger version of Kozen’s result

Corollary 2.4. The Automata Intersection Problem restricted to automata with 3
states is PSPACE-complete.

Proof. The Automata Intersection Problem is in PSPACE by [5]. For PSPACE-
hardness we adapt our proof of Theorem 2.2. Lets fix n, f, f1, . . . , fm as in the
proof Theorem 2.2.

To imitate the tuples of elements in T3 (which appeared in the proof) we intro-
duce, for each position i ≤ n2 +nm, three automata: F 0

i , F
1
i and F∞i each with the

set of states {0, 1,∞}. These automata are responsible for storing the result of the
function, on position i, on 0, 1 and ∞ respectively.

The initial state of the automaton F j
i is obtained by applying to j the function

on the i-th position of the mapping tuple for the identity. The accepting state is
obtained similarly from the mapping tuple for f . The language of the automata
consists of all the generators of the subpower: on a letter (which is a mapping,

a choice or an application tuple) the automat F j
i changes state according to the

function on the i-th position in the tuple.
It is clear that all the 3n2 +3nm automata accept a common word if, and only if,

the mapping tuple for the identity can be multiplied on the right to a mapping tuple
for f . This is exactly what we needed in the proof of Theorem 2.2 and thus the
Automata Intersection Problem for automata with 3 states is PSPACE-hard. �

3. Nilpotent semigroups

Definition 3.1. A semigroup S is called d-nilpotent for d ∈ N if

∀x1, . . . , xd, y1, . . . , yd ∈ S : x1 · · ·xd = y1 · · · yd.
It is called nilpotent if it is d-nilpotent for some d ∈ N. We let 0 := x1 · · ·xd denote
the zero element of a d-nilpotent semigroup S.

Definition 3.2. An ideal extension of a semigroup I by a semigroup Q with zero
is a semigroup S such that I is an ideal of S and the Rees quotient semigroup S/I
is isomorphic to Q.

Theorem 3.3. Let T be an ideal extension of a semigroup S by a d-nilpotent
semigroup N . Then Algorithm 2 reduces SMP(T) to SMP(S) in polynomial time.

Proof. Correctness of Algorithm 2. Let A ⊆ Tn, b ∈ Tn be an instance of SMP(T).
Case b 6∈ Sn. Since T/S is d-nilpotent, a product that is equal to b cannot have

more than d− 1 factors. Thus Algorithm 2 verifies in lines 2 to 8 whether there are
` < d and a1, . . . , a` ∈ A such that b = a1 · · · a`. In line 5, Algorithm 2 returns true
if such factors exist. Otherwise false is returned in line 9.

Case b ∈ Sn. Let B be as defined in line 11. We claim that

(3) b ∈ 〈A〉 iff b ∈ 〈B〉.
The “if”-direction is clear. For the converse implication assume b ∈ 〈A〉. Then we
have ` ∈ N and a1, . . . , a` ∈ A such that b = a1 · · · a`. If ` < 2d, then b ∈ B and
we are done. Assume ` ≥ 2d in the following. Let q ∈ N and r ∈ {0, . . . , d − 1}

THE SUBPOWER MEMBERSHIP PROBLEM FOR SEMIGROUPS 7

Algorithm 2
Reduce SMP(T) to SMP(S) for an ideal extension T of S by d-nilpotent N .

Input: A ⊆ Tn, b ∈ Tn.
Output: Is b ∈ 〈A〉?

1: if b 6∈ Sn then
2: for ` ∈ [d− 1] do
3: for a1, . . . , a` ∈ A do
4: if b = a1 · · · a` then
5: return true
6: end if
7: end for
8: end for
9: return false

10: else
11: B := {a1 · · · ak ∈ Sn | k < 2d, a1, . . . , ak ∈ A}
12: return b ∈ 〈B〉 . instance of SMP(S)
13: end if

such that ` = qd + r. For 0 ≤ j ≤ q − 2 define bj := ajd+1 · · · ajd+d. Further
bq−1 := a(q−1)d+1 · · · a`. Since T/S is d-nilpotent, any product of d or more elements
from A is in Sn. In particular b0, . . . , bq−1 are in B. Since

b = b0 · · · bq−1,
we obtain b ∈ 〈B〉. Hence (3) is proved.

Since Algorithm 2 returns b ∈ 〈B〉 in line 12, its correctness follows from (3).
Complexity of Algorithm 2. In lines 2 to 8, the computation of each product

a1 · · · a` requires n(` − 1) multiplications in S. There are |A|` such products of

length `. Thus the number of multiplications in S is at most
∑d−1

`=2 n(` − 1)|A|`.
This expression is bounded by a polynomial of degree d−1 in the input size n(|A|+1).

Similarly the size of B and the effort for computing its elements is bounded by
a polynomial of degree 2d− 1 in n(|A|+ 1). Hence Algorithm 2 runs in polynomial
time. �

Corollary 3.4. The SMP for every finite nilpotent semigroup is in P.

Proof. Immediate from Theorem 3.3 �

4. Clifford semigroups

Clifford semigroups are also known as semilattices of groups. In this section
we show that their SMP is in P. First we state some well-known facts on Clifford
semigroups and establish some notation.

Lemma 4.1 (cf. [2, p. 12, Proposition 1.2.3]). In a finite semigroup S, each s ∈ S
has an idempotent power sm for some m ∈ N, i.e., (sm)2 = sm.

Definition 4.2. A semigroup S is completely regular if every s ∈ S is contained in
a subsemigroup of S which is a also a group. A semigroup S is a Clifford semigroup
if it is completely regular and its idempotents are central. The latter condition may
be expressed by

∀e, s ∈ S : (e2 = e⇒ es = se).

Definition 4.3. Let 〈I,∧〉 be a semilattice. For i ∈ I let 〈Gi, ·〉 be a group. For
i, j, k ∈ I with i ≥ j ≥ k let φi,j : Gi → Gj be group homomorphisms such that

φj,k ◦ φi,j = φi,k and φi,i = idGi
. Let S :=

⋃̇
i∈IGi, and

for x ∈ Gi, y ∈ Gj let x ∗ y := φi,i∧j(x) · φj,i∧j(y).

8 ANDREI BULATOV, MARCIN KOZIK, PETER MAYR, AND MARKUS STEINDL

Then we call 〈S, ∗〉 a strong semilattice of groups.

Theorem 4.4 (Clifford, cf. [2, p. 106–107, Theorem 4.2.1]). A semigroup is a
strong semilattice of groups iff it is a Clifford semigroup.

Note that the operation ∗ extends the multiplication of Gi for each i ∈ I. It is
easy to see that {Gi | i ∈ I} are precisely the maximal subgroups of S. Moreover,
each Clifford semigroup inherits a preorder ≤ from the underlying semilattice.

Definition 4.5. Let S be a Clifford semigroup constructed from a semilattice I
and disjoint groups Gi for i ∈ I as in Definition 4.3. For x, y ∈ S define

x ≤ y if ∃i, j ∈ I : i ≤ j, x ∈ Gi, y ∈ Gj .

Lemma 4.6. Let S be a Clifford semigroup and x, y, z ∈ S. Then

(1) x ≤ yz iff x ≤ y and x ≤ z,
(2) xyz ≤ y, and
(3) x ≤ y and y ≤ x iff x and y are in the same maximal subgroup of S.

Proof. Straightforward. �

The following mapping will help us solve the SMP for Clifford semigroups.

Definition 4.7. Let S be a finite Clifford semigroup constructed from a semilattice
I and disjoint groups Gi for i ∈ I as in Definition 4.3. Let

γ : S →
∏
i∈I

Gi such that γ(s)(i) :=

{
s if s ∈ Gi,

1Gi
otherwise

for s ∈ S and i ∈ I.

Here
∏

denotes the direct product and 1Gi
the identity of the group Gi for i ∈ I.

Note that the mapping γ is not necessarily a homomorphism.

Algorithm 3

For a Clifford semigroup S =
⋃̇

i∈IGi, reduce SMP(S) to SMP(
∏

i∈I Gi).

Input: A ⊆ Sn, b ∈ Sn.
Output: True if b ∈ 〈A〉, false otherwise.

1: Set {a1, . . . , ak} := {a ∈ A | ∀i ∈ [n] : a(i) ≥ b(i)}
2: Set e to the idempotent power of b.
3: if ∃i ∈ [n] : e(i) /∈ 〈a1(i), . . . , ak(i)〉 then
4: return false
5: end if
6: return γ(b) ∈ 〈γ(a1e), . . . , γ(ake)〉 . instance of SMP(

∏
i∈I Gi)

Theorem 4.8. Let S be a finite Clifford semigroup with maximal subgroups Gi for
i ∈ I. Then Algorithm 3 reduces SMP(S) to SMP(

∏
i∈I Gi) in polynomial time.

The latter is the SMP of a group.

Proof. Correctness of Algorithm 3. Assume S = 〈
⋃̇

i∈IGi, ·〉 as in Definition 4.3.
Fix an instance A ⊆ Sn, b ∈ Sn of SMP(S). Let a1, . . . , ak be as defined in line 1
of Algorithm 3.

First we claim that

(4) b ∈ 〈A〉 iff b ∈ 〈a1, . . . , ak〉.
To this end, assume that b = c1 · · · cm for c1, . . . , cm ∈ A. Fix j ∈ [m]. Lemma
4.6(1) implies that b(i) ≤ cj(i) for all i ∈ [n]. Thus cj ∈ {a1, . . . , ak}. Since j was
arbitrary, we have c1, . . . , cm ∈ {a1, . . . , ak} and (4) follows.

THE SUBPOWER MEMBERSHIP PROBLEM FOR SEMIGROUPS 9

Let e be the idempotent power of b. If the condition in line 3 of Algorithm 3 is
fulfilled, then neither e nor b are in 〈a1, . . . , ak〉. In this case false is returned in line
4. Now assume the condition in line 3 is violated, i.e.,

∀i ∈ [n] : e(i) ∈ 〈a1(i), . . . , ak(i)〉.

We claim that

(5) e ∈ 〈a1, . . . , ak〉.

For each i ∈ [n] let di ∈ 〈a1, . . . , ak〉 such that di(i) = e(i). Further let f be the
idempotent power of d1 · · · dn. We show f = e. Fix i ∈ [n]. Since di(i) = e(i), we
have f(i) ≤ e(i) by Lemma 4.6(2). On the other hand, e(i) ≤ b(i) ≤ aj(i) for all
j ≤ k. Hence e(i) ≤ f(i) by multiple applications of Lemma 4.6(1). Thus f(i) and
e(i) are idempotent and are in the same group by Lemma 4.6(3). So e(i) = f(i).
This yields e = f and thus (5) holds.

Next we show

(6) b ∈ 〈a1, . . . , ak〉 iff b ∈ 〈a1e, . . . , ake〉.

If b = c1 · · · cm for c1, . . . , cm ∈ {a1, . . . , ak}, then b = be = c1 · · · cme = (c1e) · · · (cme)
since idempotents are central in Clifford semigroups. This proves (6).

Next we claim that

(7) b ∈ 〈a1e, . . . , ake〉 iff γ(b) ∈ 〈γ(a1e), . . . , γ(ake)〉.

Fix i ∈ [n]. By Lemma 4.6(3) the elements a1e(i), . . . , ake(i), and b(i) all lie in the
same group, say Gl. Note that γ|Gl

: Gl →
∏

i∈I Gi is a semigroup monomorphism.
This means that the componentwise application of γ to 〈a1e, . . . , ake, b〉, namely

γ|〈a1e,...,ake,b〉 : 〈a1e, . . . , ake, b〉 → (
∏
i∈I

Gi)
n,

is also a semigroup monomorphism. This implies (7).
In line 6, the question whether γ(b) ∈ 〈γ(a1e), . . . , γ(ake)〉 is an instance of

SMP(
∏

i∈I Gi), which is the SMP of a group. By (4), (6) and (7), Algorithm 3
returns true iff b ∈ 〈A〉.

Complexity of Algorithm 3. Line 1 requires at most O(n|A|) calls of the relation
≤. For line 2, let (s1, . . . , s|S|) be a list of the elements of S and let v ∈ N minimal
such that (s1, . . . , s|S|)

v is idempotent. Then e = bv. Since v only depends on S
but not on n or |A|, computing e takes O(n) steps. Line 3 requires O(n|A|) steps.
Altogether the time complexity of Algorithm 3 is O(n|A|). �

Corollary 4.9. The SMP for finite Clifford semigroups is in P.

Proof. Let S be a finite Clifford semigroup. Fix an instance A ⊆ Sn, b ∈ Sn of
SMP(S). Algorithm 3 converts this instance into one of the SMP of a group with
maximal size of |S||S| in O(n|A|) time. Both instances have input size n(|A| + 1).
The latter can be solved by Willard’s modification [10] of the concept of strong
generators, known from the permutation group membership problem [1]. This re-
quires O(n3 + n|A|) time according to [11, p. 53, Theorem 3.4]. Hence SMP(S) is
decidable in O(n3 + n|A|) time. �

Corollary 4.10. Let S be a finite ideal extension of a Clifford semigroup by a
nilpotent semigroup. Then SMP(S) is in P.

Proof. By Theorem 3.3 and Corollary 4.9. �

In the next lemma we give some conditions equivalent to the fact that a semigroup
is an ideal extension of a Clifford semigroup by a nilpotent semigroup.

Lemma 4.11. Let S be a finite semigroup. Then the following are equivalent:

10 ANDREI BULATOV, MARCIN KOZIK, PETER MAYR, AND MARKUS STEINDL

(1) S is an ideal extension of a Clifford semigroup C by a nilpotent semigroup
N ;

(2) the ideal I generated by the idempotents of S is a Clifford semigroup;
(3) all idempotents in S are central, and for every idempotent e ∈ S and every

a ∈ S where ea = a the element a generates a group;
(4) S embeds into the direct product of a Clifford semigroup C and a nilpotent

semigroup N .

Proof. (1)⇒ (2): We show I = C. Since S\C cannot contain idempotent elements,
all idempotents are in the ideal C. Thus we have I ⊆ C. Now let c ∈ C. Let e ∈ I
be the idempotent power of c. Then c = ce ∈ I. So C ⊆ I.

(2)⇒ (3): First we claim that all idempotents are central in S. To this end, let
e ∈ S be idempotent and a ∈ S. Then

ae = (ae)e

= e(ae) since e, ae ∈ I and e is central in I,

= (ea)e

= e(ea) since e, ea ∈ I and e is central in I,

= ea.

Next assume that ea = a. Since ea ∈ I, we have that 〈a〉 = 〈ea〉 is a group.
(3)⇒ (4): Let k ∈ N such that xk is idempotent for each x ∈ S. For x ∈ S and

an idempotent e ∈ S we have

(8) ex = (ex)k+1 = exk+1

since 〈ex〉 is a group and idempotents are central. We claim that

(9) α : S → S, x 7→ xk+1 is a homomorphism with α2 = α.

For x, y ∈ S,

(xy)k+1 = (xy)kxy

= (xy)kxk+1y by (8) since (xy)k is idempotent,

= (xy)kxk+1yk+1 by (8) since xk is idempotent,

= (xy)k+1xkyk since xk, yk are central,

= xyxkyk by (8) since xk is idempotent,

= xk+1yk+1 since xk, yk are central.

Also,

(xk+1)k+1 = xk
2+2k+1 = xk+1.

This proves (9). Let C := α(S). We claim that C is an ideal. For x, y ∈ S ∪ {1}
and zk+1 ∈ C,

xzk+1y= xzyzk since zk is central,

= (xzy)k+1zk by (8),

= (xzk+1y)k+1 since zk is central and idempotent,

∈ C.

Now consider the Rees quotient N := S/C. We claim that

(10) N is |N |-nilpotent.

Let n1, . . . , n|N | ∈ S. First assume

(11) ∃i, j ∈ {1, . . . , |N |}, i < j : n1 · · ·ni = n1 · · ·nj .

THE SUBPOWER MEMBERSHIP PROBLEM FOR SEMIGROUPS 11

Then ni+1 · · ·nj is a right identity of n1 · · ·ni. Thus

n1 · · ·ni = n1 · · ·ni(ni+1 · · ·nj)k+1 ∈ C

since C is an ideal. So n1 · · ·n|N | ∈ C.
If (11) does not hold, then n1, n1n2, . . . , n1 · · ·n|N | are |N | distinct elements and

at least one of them is in C. Again n1 · · ·n|N | ∈ C by the ideal property of C. This
proves (10). Now let

β : S → C ×N, s 7→ (α(s), s/C).

Apparently β is a homomorphism. It remains to prove that β is injective. Assume
β(x) = β(y) for x, y ∈ S. If x /∈ C, then also y /∈ C. Now x/C = y/C implies
x = y. Assume x ∈ C. Then x = α(x) = α(y) = y since α2 = α. We proved item
(4) of Lemma 4.11.

(4) ⇒ (1): Assume S ≤ C × N . Then J := S ∩ (C × {0}) is an ideal of S. At
the same time J is a subsemigroup of a Clifford semigroup. By Definition 4.2 also
J is a Clifford semigroup. It is easy to see that the Rees quotient N1 := S/J is
nilpotent. Thus S is an ideal extension of the Clifford semigroup J by the nilpotent
semigroup N1. �

5. Commutative semigroups

The main result of Section 4 was that ideal extensions of Clifford semigroups
by nilpotent semigroups have the SMP in P. In this section we show that if a
commutative semigroup does not have this property, then its SMP is NP-complete.
This will complete the proof of our dichotomy result, Theorem 1.3.

First we give an upper bound on the complexity of the SMP for commutative
semigroups.

Lemma 5.1. The SMP for a finite commutative semigroup is in NP.

Proof. Let {a1, . . . , ak} ⊆ Sn, b ∈ Sn be an instance of SMP(S). Let x :=
(s1, . . . , s|S|) be a list of all elements of S, and r := |〈x〉|. Now 〈x〉 = {x1, . . . , xr},
and for each ` ∈ N there is some m ∈ [r] such that x` = xm. Since x contains all
elements of S, we have

∀y ∈ Sn ∀` ∈ N∃m ∈ [r] : y` = ym.

If b ∈ 〈a1, . . . , ak〉, then there is a witness (`1, . . . , `k) ∈ {0, . . . , r}k such that
b = a1

`1 · · · ak`k . The size of this witness is O(k log(r)). Note that r depends
only on S and not on the input size n(k + 1). Given `1, . . . , `k we can verify
b = a1

`1 · · · ak`k in time polynomial in n(k + 1). Hence SMP(S) is in NP. �

Lemma 5.2. Let S be a finite semigroup, e ∈ S be idempotent, and a ∈ S. Assume
that ea = ae = a and 〈a〉 is not a group. Then SMP(S) is NP-hard.

Proof. We reduce EXACT COVER to SMP(S). The former is one of Karp’s 21
NP-complete problems [4].

EXACT COVER
Input: n ∈ N, sets C1, . . . , Ck ⊆ [n]
Problem: Are there disjoint sets D1, . . . , Dm ∈ {C1, . . . , Ck} such that⋃m

i=1Di = [n]?

Fix an instance n,C1, . . . , Ck of EXACT COVER. Now we define characteristic
functions c1, . . . , ck, b ∈ Sn for C1, . . . , Ck, [n], respectively. For j ∈ [k], i ∈ [n], let

b(i) := a and cj(i) :=

{
a if i ∈ Cj ,

e otherwise.

12 ANDREI BULATOV, MARCIN KOZIK, PETER MAYR, AND MARKUS STEINDL

Now let {c1, . . . , ck} ⊆ Sn, b ∈ Sn be an instance of SMP(S). We claim that

b ∈ 〈c1, . . . , ck〉 iff ∃ disjoint D1, . . . , Dm ∈ {C1, . . . , Ck} :

m⋃
i=1

Di = [n].

”⇒”: Let d1, . . . , dm ∈ {c1, . . . , ck} such that b = d1 · · · dm. Let D1, . . . , Dm be
the sets corresponding to d1, . . . , dm, respectively. Then

⋃m
i=1Di = [n]. The union

is disjoint since a /∈ {a2, a3, . . .}.
”⇐”: Fix D1, . . . , Dm whose disjoint union is [n]. Let d1, . . . , dm ∈ {c1, . . . , ck}

be the characteristic functions of D1, . . . , Dm, respectively. Then b = d1 · · · dm. �

Corollary 5.3. Let S be a finite commutative semigroup that does not fulfill one
of the equivalent conditions of Lemma 4.11. Then SMP(S) is NP-hard.

Proof. The semigroup S violates condition (3) of Lemma 4.11. Since the idempo-
tents are central in S, there are e ∈ S idempotent and a ∈ S such that ea = ae = a
and 〈a〉 is not a group. Now the result follows from Lemma 5.2. �

Now we are ready to prove our dichotomy result for commutative semigroups.

Proof of Theorem 1.3. The conditions in Theorem 1.3 are the ones from Lemma
4.11 adapted to the commutative case. Thus they are equivalent. If one of them is
fulfilled, then SMP(S) is in P by Corollary 4.10.

Now assume the conditions are violated. Then SMP(S) is NP-complete by
Lemma 5.1 and Corollary 5.3. �

6. Conclusion

We showed that the SMP for finite semigroups is always in PSPACE and pro-
vided examples of semigroups S for which SMP(S) is in P, NP-complete, PSPACE-
complete, respectively. For the SMP of commutative semigroups we obtained a
dichotomy between the NP-complete and polynomial time solvable cases. Further
we showed that the SMP for finite ideal extensions of a Clifford semigroup by a
nilpotent semigroup is in P. For non-commutative semigroups there are several
open problems.

Problem 6.1. Is the SMP for every finite semigroup either in P, NP-complete or
PSPACE-complete?

Bands (idempotent semigroups) are well-studied. Still we do not know the fol-
lowing:

Problem 6.2. What is the complexity of the SMP for finite bands? More generally,
what is the complexity in case of completely regular semigroups?

References

[1] M. Furst, J. Hopcroft, and E. Luks. Polynomial-time algorithms for permutation groups. In

Foundations of Computer Science, 1980., 21st Annual Symposium on, pages 36–41, Oct 1980.

[2] J. Howie. Fundamentals of Semigroup Theory. Clarendon Oxford University Press, 1995.
[3] P. Idziak, P. Marković, R. McKenzie, M. Valeriote, and R. Willard. Tractability and learn-

ability arising from algebras with few subpowers. SIAM J. Comput., 39(7):3023–3037, 2010.

[4] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller, J. W. Thatcher,
and J. D. Bohlinger, editors, Complexity of Computer Computations, The IBM Research

Symposia Series, pages 85–103. Springer US, 1972.

[5] D. Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium on Foun-
dations of Computer Science (Providence, R.I., 1977), pages 254–266. IEEE Comput. Sci.,

Long Beach, Calif., 1977.
[6] M. Kozik. A finite set of functions with an EXPTIME-complete composition problem. Theo-

retical Computer Science, 407(1–3):330–341, 2008.

[7] P. Mayr. The subpower membership problem for Mal’cev algebras. International Journal of
Algebra and Computation, 22(07):1250075, 2012.

THE SUBPOWER MEMBERSHIP PROBLEM FOR SEMIGROUPS 13

[8] C. H. Papadimitriou. Computational complexity. Addison-Wesley Publishing Company, Read-

ing, MA, 1994.

[9] W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
J. Comput. System. Sci., 4:177–192, 1970.

[10] R. Willard. Four unsolved problems in congruence permutable varieties. Talk at International

Conference on Order, Algebra, and Logics, Vanderbilt University, Nashville (June 12–16,
2007), 2007.

[11] S. Zweckinger. Computing in direct powers of expanded groups. Master’s thesis, Johannes

Kepler Universität Linz, Austria, 2013.

(Andrei Bulatov) School of Computing Science, Simon Fraser University, Burnaby BC,

Canada

E-mail address: andrei.bulatov@gmail.com

(Marcin Kozik) Theoretical Computer Science, Faculty of Mathematics and Computer

Science, Jagiellonian University, Poland

E-mail address: marcin.kozik@uj.edu.pl

(Peter Mayr) Institute for Algebra, Johannes Kepler University Linz, Austria

E-mail address: peter.mayr@jku.at

(Markus Steindl) Institute for Algebra, Johannes Kepler University Linz, Austria

E-mail address: markus.steindl 1@jku.at

	1. Introduction
	2. Full transformation semigroups
	3. Nilpotent semigroups
	4. Clifford semigroups
	5. Commutative semigroups
	6. Conclusion
	References

