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Hardware Design

• Understand how processors work
– Requires digital systems knowledge

• Understand how code is actually executed on a 
computer to analyze:
– Reliability

– Performance

– Security

• Layered abstractions
– Transistors → Combinational Logic → Sequential Logic → Processors → 

Machine Language → Assembly → High-level Programming Languages 
→ Application programs

– At each step we can “abstract away” the lower layers
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Synchronous Digital Systems (SDS)

Synchronous:
• All operations coordinated by a central clock

‒ “Heartbeat” of the system (processor frequency)

Digital:
• Represent all values with two discrete values

• Electrical signals are treated as 1’s and 0’s

‒ High/Low voltage represent True/False, 1/0

Hardware of a processor (e.g., RISC-V) is an example of a 
Synchronous Digital System
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Moore’s Law

❖ Original Version (1965): Since the integrated circuit was 
invented, the number of transistors in an integrated circuit has 
roughly doubled every year; this trend would continue for the 
foreseeable future

❖ 1975: Revised - circuit complexity doubles every two years
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Moore’s Law

❖ Original Version (1965): Since the integrated circuit was 
invented, the number of transistors in an integrated circuit has 
roughly doubled every year; this trend would continue for the 
foreseeable future

❖ 1975: Revised - circuit complexity doubles every two years

❖ Hardware Trend: Hardware gets more powerful every year 
(due to technology advancement and the hard work of many 
engineers)

❖ Software Trend: Software gets faster and uses more resources 
(And has to keep up with ever-changing hardware)

❖ Digital circuits are used to build hardware
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Combinational vs. Sequential Logic

• Digital Systems consist of two basic types of 
circuits:

• Combinational Logic (CL)
– Output is a function of the inputs only, not the history 

of its execution

– Example: add A, B (ALUs)

• Sequential Logic (SL)
– Circuits that “remember” or store information

– Also called “State Elements”

– Example: Memory and registers 
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Simple Logic Gates

• Special names and symbols:

NOT

AND

OR

a b a AND b

0 0 0

0 1 0

1 0 0

1 1 1

a b A OR b

0 0 0

0 1 1

1 0 1

1 1 1

a NOT a

0 1

1 0

Circle means NOT!
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= NOT a

= a AND b

= a OR b

True if input is false

True if both inputs are true

True if at least one input is true

Truth 
Table
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More Simple Logic Gates

Inverted versions are easier to implement in CMOS

NAND

NOR

XOR

a b a NOR b

0 0 1

0 1 0

1 0 0

1 1 0

a b a XOR b

0 0 0

0 1 1

1 0 1

1 1 0

a b a NAND b

0 0 1

0 1 1

1 0 1

1 1 0
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= a NAND b

= a NOR b

= a XOR b

True if both inputs are false

True if exactly one input is true

True if at least one input is false
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A

B

C

D

Combining Multiple Logic Gates

D = (NOT(A AND B)) AND (A OR (NOT B AND C))
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How to Represent Combinational Logic?

✓Text Description

✓Circuit Diagram

– Transistors and wires

– Logic Gates

✓Truth Table

✓Boolean Expression

✓All are equivalent
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Truth Tables

• Table that relates the inputs to a combinational logic 
circuit to its output

– Output only depends on current inputs

– Use abstraction of 0/1 (F/T) instead of high/low Voltage

– Shows output for every possible combination of inputs

• How big is a truth table with N inputs?
– 0 or 1 for each of N inputs, so 2N rows
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N-input Truth Tables

F
Y

A

B

C

For N inputs, how many distinct 
functions F do we have? 

Function maps each row to 0 or 1, so       possible functions
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A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Y

F(0,0,0)

F(0,0,1)

F(0,1,0)

F(0,1,1)

F(1,0,0)

F(1,0,1)

F(1,1,0)

F(1,1,1)

22
𝑁
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Truth Tables with Multiple Outputs

• For 3 outputs, just three indep. functions: 
X(A,B,C,D), Y(A,B,C,D), and Z(A,B,C,D)

– Can show functions in separate columns (no 
additional rows)

F Y

A

B

C

D

X

Z
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Question: Which of the columns A-D is the correct 
output of the Truth Table for:  (X XOR Y) OR (NOT Z)

X Y Z (A) (B) (C) (D)

0 0 0 1 1 1 1

0 0 1 0 0 0 0

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 0 1 1 1

1 0 1 1 1 0 1

1 1 0 1 1 1 0

1 1 1 1 0 1 1
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X Y Z (A) (B) (C) (D)

0 0 0 1 1 1 1

0 0 1 0 0 0 0

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 0 1 1 1

1 0 1 1 1 0 1

1 1 0 1 1 1 0

1 1 1 1 0 1 1
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Question: Which of the columns A-D is the correct 
output of the Truth Table for:  (X XOR Y) OR (NOT Z)



CMPT 295Combinational Logic

More Complex Truth Tables

3-Input Majority

a b c y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

2-bit Adder

A B C
a1 a0 b1 b0 c2 c1 c0

.

.

.

+ c1

a1

a0

b1

b0

c2

c0

How many 
rows?
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Truth Tables Don’t Scale

• Truth tables are huge

– Write out EVERY combination of inputs and 
outputs (thorough, but inefficient)

– Finding a particular combination of inputs involves 
scanning a large portion of the table

• Boolean Algebra is a shorter way to represent 
combinational logic
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Boolean Algebra
• Represent inputs and outputs as variables

– Each variable can only take on the value 0 or 1

• Overbar or ¬ is NOT:  “logical complement”

– e.g. if A is 0, A is 1. If A is 1, then ¬A is 0

• Plus (+) is 2-input OR:  “logical sum”

• Product (·) is 2-input AND:  “logical product”

– Sometimes omitted 

• All other gates and logical expressions can be built 
from combinations of these 

AB + AB == (NOT(A AND B)) OR (A AND (NOT B))
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Laws of Boolean Algebra

These laws allow us to simplify Boolean expressions:

20
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We can show that these
are equivalent!

Converting Truth Table to Boolean Expression

• Read off of table

– For 1, write variable name

– For 0, write complement of variable

• Sum of Products (SoP)
– Take rows with 1’s in output column,

sum products of inputs

– c=

• Product of Sums (PoS)
– Take rows with 0’s in output column, product the sum of 

the complements of the inputs

– c = 

a b c

0 0 0

0 1 1

1 0 1

1 1 0

21

a b + a b 

(a + b) · (a + b)
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Simplifying Boolean Expressions

• Logic Delay:  Everything we are dealing with is just 
an abstraction of transistors and wires

– Inputs propagating to the outputs are voltage signals 
passing through transistor networks

– There is always some delay before a CL’s output updates 
to reflect the inputs

– Critical Path is longest delay from any input to output. 
Could be represented as “n gate delays”

• Simpler Boolean expressions ↔ smaller transistor 
networks ↔ smaller circuit delays ↔ faster 
hardware

22
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Simplifying Boolean Expressions: Example

23
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Karnaugh Maps

• Used to simplify Boolean expressions of 2-4 variables

• Table composed of squares each representing a unique 
combination of all variable (1 if true, else blank)

• Two variable Map:

24

ҧ𝑥 ത𝑦 ҧ𝑥𝑦

𝑥 ത𝑦 𝑥𝑦

𝑥

0

1

𝑦 0 1

1

1 1

𝑥

0

1

𝑦 0 1

x + y

Example: Boolean Expression?
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Three Variable Karnaugh Maps
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ҧ𝑥 ത𝑦 ҧ𝑧 ҧ𝑥 ത𝑦𝑧 ҧ𝑥𝑦𝑧 ҧ𝑥𝑦 ҧ𝑧

𝑥 ത𝑦 ҧ𝑧 𝑥 ത𝑦𝑧 𝑥𝑦𝑧 𝑥𝑦 ҧ𝑧

𝑥

0

1

𝑦𝑧 00 01 11 10

Question: Simplify ҧ𝐴𝐶 + ҧ𝐴𝐵 + 𝐴 ത𝐵𝐶 + 𝐵𝐶

𝑥

𝑧

𝑦
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Example: Simplify 3-Variable Expression

26

1 1 1

1 1

𝐴
0

1

𝐵𝐶 00 01 11 10

Question: Simplify ҧ𝐴𝐶 + ҧ𝐴𝐵 + 𝐴 ത𝐵𝐶 + 𝐵𝐶

𝐴

𝐶

𝐵

Answer: 𝐶 + ҧ𝐴𝐵
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Four Variable Karnaugh Maps
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ഥ𝑤 ҧ𝑥 ത𝑦 ҧ𝑧 ഥ𝑤 ҧ𝑥 ത𝑦𝑧 ഥ𝑤 ҧ𝑥𝑦𝑧 ഥ𝑤 ҧ𝑥𝑦 ҧ𝑧

ഥ𝑤𝑥 ത𝑦 ҧ𝑧 ഥ𝑤𝑥 ത𝑦𝑧 ഥ𝑤𝑥𝑦𝑧 ഥ𝑤𝑥𝑦 ҧ𝑧

𝑤𝑥 ത𝑦 ҧ𝑧 𝑤𝑥 ത𝑦𝑧 𝑤𝑥𝑦𝑧 𝑤𝑥𝑦 ҧ𝑧

𝑤 ҧ𝑥 ത𝑦 ҧ𝑧 𝑤 ҧ𝑥 ത𝑦𝑧 𝑤 ҧ𝑥𝑦𝑧 𝑤 ҧ𝑥𝑦 ҧ𝑧

𝑤𝑥

00

01

11

10

𝑦𝑧 00 01 11 10

𝑥

𝑧

𝑤

𝑦

Question: Simplify ഥ𝑤𝑦 + ഥ𝑤𝑧 + 𝑤 ҧ𝑥𝑦 + 𝑤𝑥𝑦𝑧
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Example: Simplify 4-Variable Expression

28

1 1 1

1 1 1

1

1 1

𝑤𝑥

00

01

11

10

𝑦𝑧 00 01 11 10

𝑥

𝑧

𝑤

𝑦
Simplify ഥ𝑤𝑦 + ഥ𝑤𝑧 + 𝑤 ҧ𝑥𝑦 + 𝑤𝑥𝑦𝑧

Solution:  ഥ𝑤𝑦 + ഥ𝑤𝑧 + 𝑦𝑧 + ҧ𝑥𝑦
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Useful Combinational Circuits

29
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Data Multiplexor (MUX)

• Multiplexor (“MUX”) is a selector

– Place one of multiple inputs onto output (N-to-1)

• Shown below is an n-bit 2-to-1 MUX

– Input S selects between two inputs of n bits each

30

This input is passed 
to output if selector 
bits match shown 
value

Represents that 
this input has n bits

A

B

S

0

1

C‘n

‘n

‘n
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Implementing a 1-bit 2-to-1 MUX 

• Schematic:

• Truth Table:

• Boolean Algebra:

• Circuit Diagram:

31

s a b c

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

A

B

S

0

1

C‘n

‘n

‘n
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1-bit 4-to-1 MUX

• Schematic:

• Truth Table: How many rows?

• Boolean Expression:
E = S1S0A + S1S0B + S1S0C + S1S0D

32

26

A

D

S= S1S0

00

11

E

‘2

01
10

B
C
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Another Design for 4-to-1 MUX

• Can we leverage what we’ve previously built?

– Alternative hierarchical approach:

33

A

B

0

1

C

D

S0

0

1
S1

0

1

E
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S = A⊕ B⊕ C; C = AB + C(A⊕ B)

0

1

1

0

1

0

0

1

 function table:
 basically a truth table

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

0

0

1

0

1

1

1

3-bit 

Addition!

Full Adder

A
B

C

Q.  What’s the propagation delay?

C

S

 3 gate delays (highlighted)

Q.  What does the circuit accomplish?
 Algebra: S = A ^ B ^ C; C = (A & B) | (C & (A ^ B))

S = A⊕ B⊕ C

C S

Full Adder

Half Adder
Half Adder

FA

S

C C

A B


