Combinational Logic

CMPT 295 Week 10.1

Hardware Design

- Understand how processors work
 - Requires digital systems knowledge
- Understand how code is actually executed on a computer to analyze:
 - Reliability
 - Performance
 - Security
- Layered abstractions
 - Transistors → Combinational Logic → Sequential Logic → Processors → Machine Language → Assembly → High-level Programming Languages → Application programs
 - At each step we can "abstract away" the lower layers

Synchronous Digital Systems (SDS)

Hardware of a processor (e.g., RISC-V) is an example of a Synchronous Digital System

Synchronous:

- All operations coordinated by a central clock
 - "Heartbeat" of the system (processor frequency)

Digital:

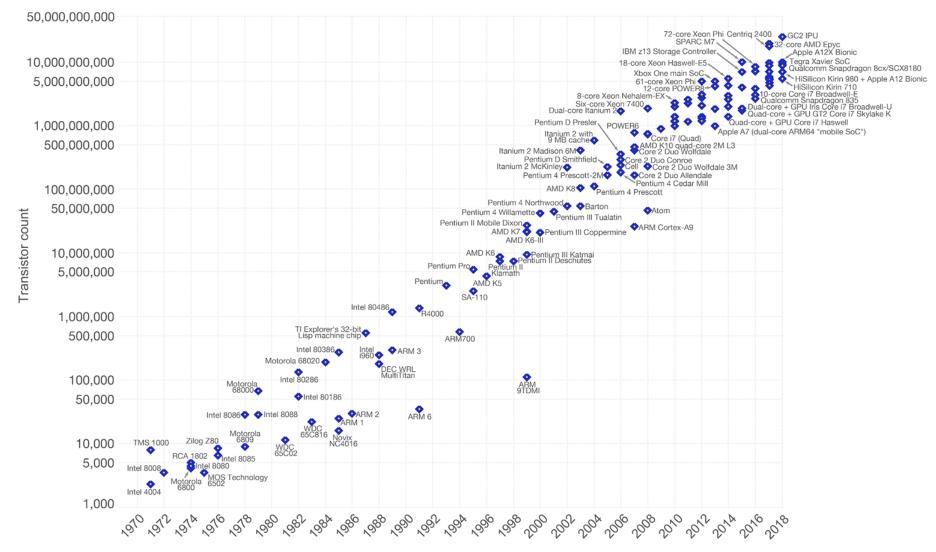
- Represent all values with two discrete values
- Electrical signals are treated as 1's and 0's
 - High/Low voltage represent True/False, 1/0

Moore's Law

- Original Version (1965): Since the integrated circuit was invented, the number of transistors in an integrated circuit has roughly doubled every year; this trend would continue for the foreseeable future
- 1975: Revised circuit complexity doubles every two years

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.



Moore's Law

- Original Version (1965): Since the integrated circuit was invented, the number of transistors in an integrated circuit has roughly doubled every year; this trend would continue for the foreseeable future
- 1975: Revised circuit complexity doubles every two years
- Hardware Trend: Hardware gets more powerful every year (due to technology advancement and the hard work of many engineers)
- Software Trend: Software gets faster and uses more resources (And has to keep up with ever-changing hardware)
- Digital circuits are used to build hardware

Combinational vs. Sequential Logic

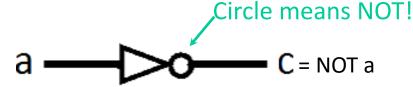
- Digital Systems consist of two basic types of circuits:
 - Combinational Logic (CL)
 - Output is a function of the inputs only, not the history of its execution
 - Example: add A, B (ALUs)
 - Sequential Logic (SL)
 - Circuits that "remember" or store information
 - Also called "State Elements"
 - Example: Memory and registers

Simple Logic Gates

Truth Table

Special names and symbols:

NOT



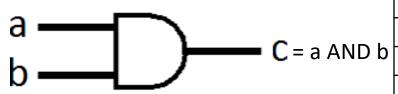
 a
 NOT a

 0
 1

 1
 0

True if input is false

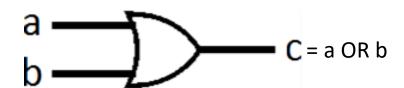
AND



True if both inputs are true

a	b	a AND b
0	0	0
0	1	0
1	0	0
1	1	1

OR

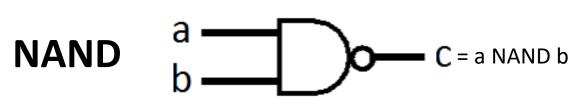


a	b	A OR b
0	0	0
0	1	1
1	0	1
1	1	1

True if at least one input is true

More Simple Logic Gates

Inverted versions are easier to implement in CMOS



True if at least one input is false

NOR	a —— b ——	C = a NOR b
-----	--------------	--------------------

True if both inputs are false

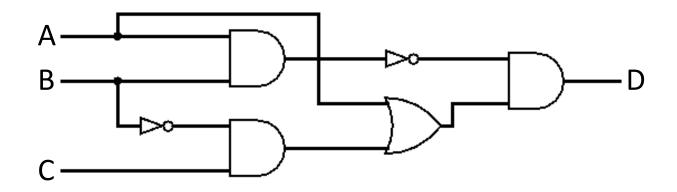
True if exactly one input is true

а	b	a NAND b
0	0	1
0	1	1
1	0	1
1	1	0

а	b	a NOR b			
0	0	1			
0	1	0			
1	0	0			
1	1	0			

а	b	a XOR b
0	0	0
0	1	1
1	0	1
1	1	0

Combining Multiple Logic Gates



D = (NOT(A AND B)) AND (A OR (NOT B AND C))

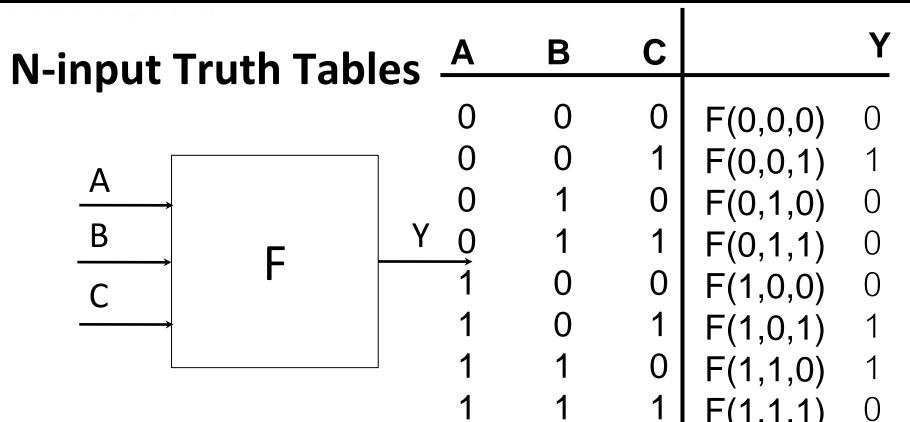
How to Represent Combinational Logic?

- √ Text Description
- √ Circuit Diagram
 - Transistors and wires
 - Logic Gates
- ✓ Truth Table
- √ Boolean Expression

√ All are equivalent

Truth Tables

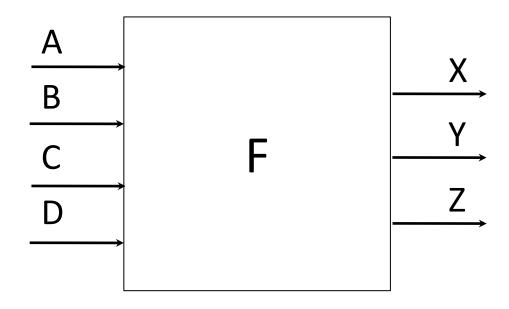
- Table that relates the inputs to a combinational logic circuit to its output
 - Output only depends on current inputs
 - Use abstraction of 0/1 (F/T) instead of high/low Voltage
 - Shows output for every possible combination of inputs
- How big is a truth table with N inputs?
 - O or 1 for each of N inputs, so 2^N rows



For N inputs, how many distinct functions F do we have?

Function maps each row to 0 or 1, so 2^{2^N} possible functions

Truth Tables with Multiple Outputs



- For 3 outputs, just three indep. functions:
 X(A,B,C,D), Y(A,B,C,D), and Z(A,B,C,D)
 - Can show functions in separate columns (no additional rows)

Question: Which of the columns A-D is the correct output of the Truth Table for: (X XOR Y) OR (NOT Z)

X	Y	Z	(A)	(B)	(C)	(D)
0	0	0	1	1	1	1
0	0	1	0	0	0	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	1	0	1
1	1	0	1	1	1	0
1	1	1	1	0	1	1

Question: Which of the columns A-D is the correct output of the Truth Table for: (X XOR Y) OR (NOT Z)

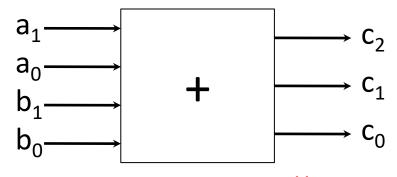
X	Υ	Z	(A)	(B)	(C)	(D)
0	0	0	1	1		1	1
0	0	1	0	0		0	0
0	1	0	1	1		1	1
0	1	1	1	1		1	1
1	0	0	0	1		1	1
1	0	1	1	1		0	1
1	1	0	1	1		1	0
1	1	1	1	0		1	1

More Complex Truth Tables

3-Input Majority

a	b	C	у
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2-bit Adder



How many

rows?

Α		E	3	С		
a ₁	a_0	b_1	b_0	C_2	C ₁	c_0
		 	•			
		 	•			
		 	•			

- Truth tables are huge
 - Write out EVERY combination of inputs and outputs (thorough, but inefficient)
 - Finding a particular combination of inputs involves scanning a large portion of the table
- Boolean Algebra is a shorter way to represent combinational logic

Boolean Algebra

- Represent inputs and outputs as variables
 - Each variable can only take on the value 0 or 1
- Overbar or ¬ is NOT: "logical complement"
 - e.g. if A is 0, \overline{A} is 1. If A is 1, then $\neg A$ is 0
- Plus (+) is 2-input OR: "logical sum"
- Product (⋅) is 2-input AND: "logical product"
 - Sometimes omitted
- All other gates and logical expressions can be built from combinations of these
 - $\overline{AB} + A\overline{B} == (NOT(A AND B)) OR (A AND (NOT B))$

Laws of Boolean Algebra

These laws allow us to simplify Boolean expressions:

$$x \cdot \overline{x} = 0$$

$$x \cdot \overline{x} = 1$$

$$x \cdot 0 = 0$$

$$x + 1 = 1$$

$$x \cdot 1 = x$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

$$(xy)z = x(yz)$$

$$x(y + z) = xy + xz$$

$$x + y = y + x$$

$$(xy + z) = xy + xz$$

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x(y + z) = xy + xz$$

$$x + yz = (x + y)(x + z)$$

$$xy + x = x$$

$$(x + y)x = x$$

complementarity laws of 0's and 1's identities idempotent law commutativity associativity distribution uniting theorem uniting theorem v.2 DeMorgan's Law

Converting Truth Table to Boolean Expression

- Read off of table
 - For 1, write variable name
 - For 0, write complement of variable

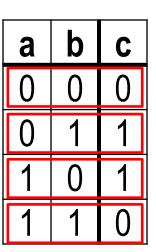
 Take rows with 1's in output column, sum products of inputs

$$-c = ab + ab \leftarrow$$

We can show that these are equivalent!

- Product of Sums (PoS)
 - Take rows with 0's in output column, product the sum of the complements of the inputs

$$-c = (a + b) \cdot (\overline{a} + \overline{b})$$



Simplifying Boolean Expressions

- Logic Delay: Everything we are dealing with is just an abstraction of transistors and wires
 - Inputs propagating to the outputs are voltage signals passing through transistor networks
 - There is always some delay before a CL's output updates to reflect the inputs
 - Critical Path is longest delay from any input to output.
 Could be represented as "n gate delays"
- Simpler Boolean expressions
 → smaller transistor networks
 → smaller circuit delays
 → faster hardware

Simplifying Boolean Expressions: Example

$$y = ab + a + c$$

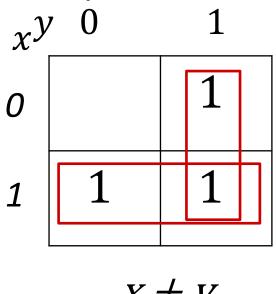
. .

.

Karnaugh Maps

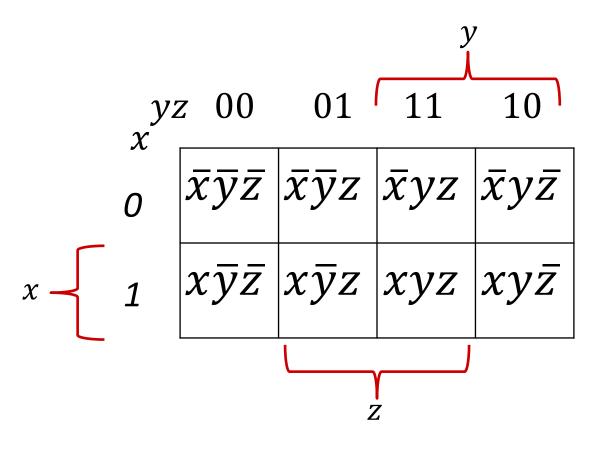
- Used to simplify Boolean expressions of 2-4 variables
- Table composed of squares each representing a unique combination of all variable (1 if true, else blank)
- Two variable Map:

Example: Boolean Expression?



$$X + y$$

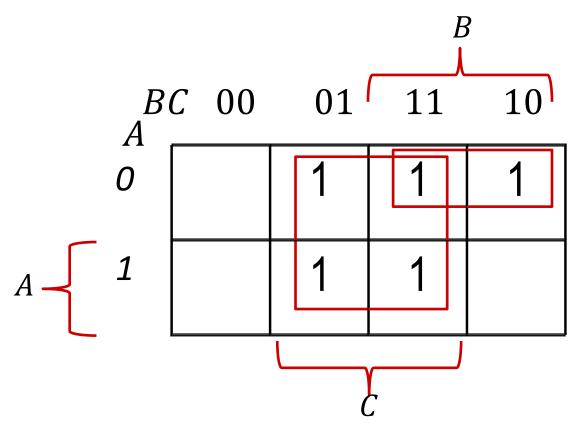
Three Variable Karnaugh Maps



Question: Simplify $\bar{A}C + \bar{A}B + A\bar{B}C + BC$

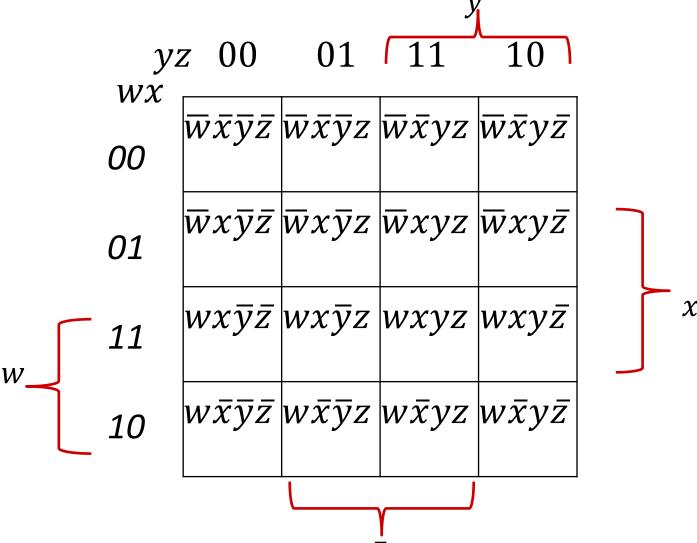
Example: Simplify 3-Variable Expression

Question: Simplify $\bar{A}C + \bar{A}B + A\bar{B}C + BC$



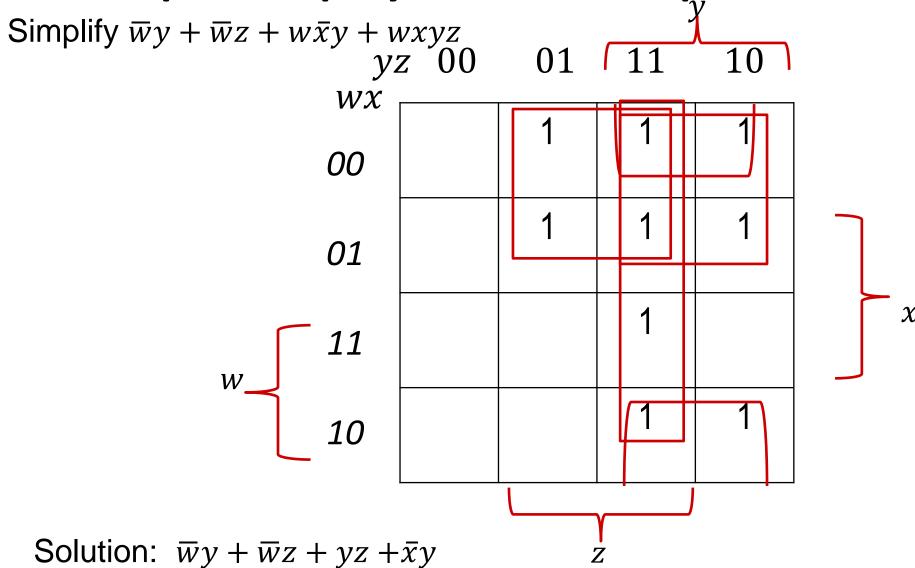
Answer: $C + \bar{A}B$

Four Variable Karnaugh Maps



Question: Simplify $\overline{w}y + \overline{w}z + w\overline{x}y + wxyz$

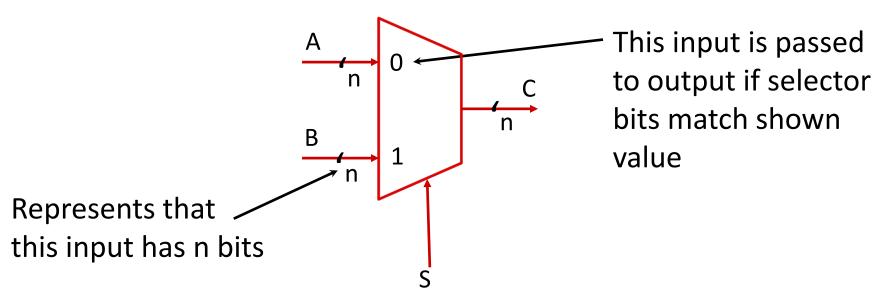
Example: Simplify 4-Variable Expression



Useful Combinational Circuits

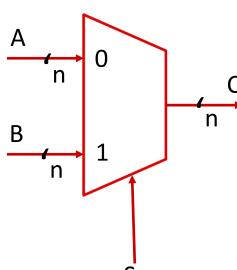
Data Multiplexor (MUX)

- Multiplexor ("MUX") is a selector
 - Place one of multiple inputs onto output (N-to-1)
- Shown below is an n-bit 2-to-1 MUX
 - Input S selects between two inputs of n bits each



Implementing a 1-bit 2-to-1 MUX

Schematic:



• Truth Table:

S	а	b	С
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Boolean Algebra:

$$c = \overline{s}a\overline{b} + \overline{s}ab + s\overline{a}b + sab$$

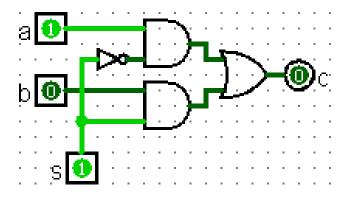
$$= \overline{s}(a\overline{b} + ab) + s(\overline{a}b + ab)$$

$$= \overline{s}(a(\overline{b} + b)) + s((\overline{a} + a)b)$$

$$= \overline{s}(a(1) + s((1)b))$$

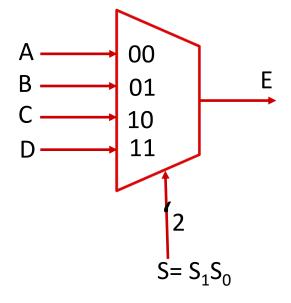
$$= \overline{s}a + sb$$

Circuit Diagram:



1-bit 4-to-1 MUX

• Schematic:

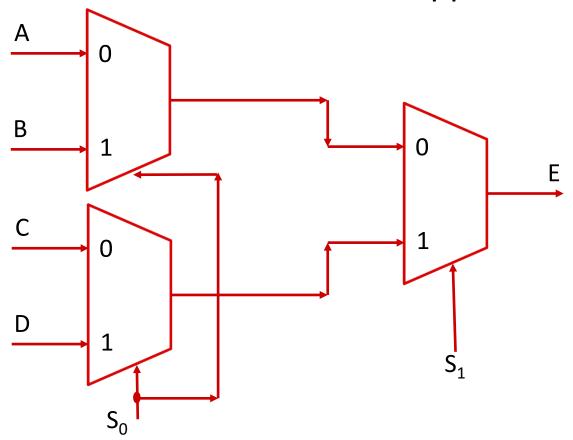


- Truth Table: How many rows? 26
- Boolean Expression:

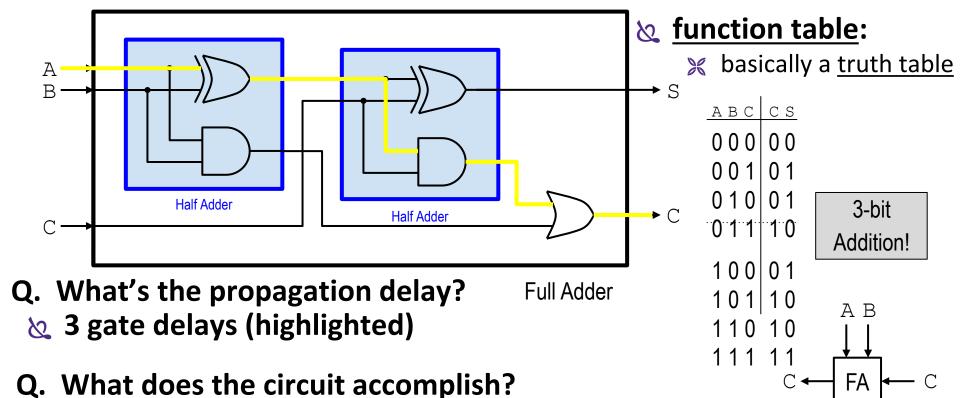
$$E = \overline{S_1 S_0} A + \overline{S_1 S_0} B + S_1 \overline{S_0} C + S_1 S_0 D$$

Another Design for 4-to-1 MUX

- Can we leverage what we've previously built?
 - Alternative hierarchical approach:



Full Adder



 $C = AB + C (A \oplus B)$

 \triangle Algebra: $S = A ^B ^;CC = (A \& B) | (C \& (A ^B))$

 $S = A \oplus B \oplus C$