
CMPT 295Combinational Logic

CMPT 295 Week 10.1

CMPT 295Combinational Logic

Hardware Design

• Understand how processors work
– Requires digital systems knowledge

• Understand how code is actually executed on a
computer to analyze:
– Reliability

– Performance

– Security

• Layered abstractions
– Transistors → Combinational Logic → Sequential Logic → Processors →

Machine Language → Assembly → High-level Programming Languages
→ Application programs

– At each step we can “abstract away” the lower layers

2

CMPT 295Combinational Logic

Synchronous Digital Systems (SDS)

Synchronous:
• All operations coordinated by a central clock

‒ “Heartbeat” of the system (processor frequency)

Digital:
• Represent all values with two discrete values

• Electrical signals are treated as 1’s and 0’s

‒ High/Low voltage represent True/False, 1/0

Hardware of a processor (e.g., RISC-V) is an example of a
Synchronous Digital System

3

CMPT 295Combinational Logic

Moore’s Law

❖ Original Version (1965): Since the integrated circuit was
invented, the number of transistors in an integrated circuit has
roughly doubled every year; this trend would continue for the
foreseeable future

❖ 1975: Revised - circuit complexity doubles every two years

4

CMPT 295Combinational Logic

5

CMPT 295Combinational Logic

Moore’s Law

❖ Original Version (1965): Since the integrated circuit was
invented, the number of transistors in an integrated circuit has
roughly doubled every year; this trend would continue for the
foreseeable future

❖ 1975: Revised - circuit complexity doubles every two years

❖ Hardware Trend: Hardware gets more powerful every year
(due to technology advancement and the hard work of many
engineers)

❖ Software Trend: Software gets faster and uses more resources
(And has to keep up with ever-changing hardware)

❖ Digital circuits are used to build hardware

6

CMPT 295Combinational Logic

Combinational vs. Sequential Logic

• Digital Systems consist of two basic types of
circuits:

• Combinational Logic (CL)
– Output is a function of the inputs only, not the history

of its execution

– Example: add A, B (ALUs)

• Sequential Logic (SL)
– Circuits that “remember” or store information

– Also called “State Elements”

– Example: Memory and registers

7

CMPT 295Combinational Logic

Simple Logic Gates

• Special names and symbols:

NOT

AND

OR

a b a AND b

0 0 0

0 1 0

1 0 0

1 1 1

a b A OR b

0 0 0

0 1 1

1 0 1

1 1 1

a NOT a

0 1

1 0

Circle means NOT!

8

= NOT a

= a AND b

= a OR b

True if input is false

True if both inputs are true

True if at least one input is true

Truth
Table

CMPT 295Combinational Logic

More Simple Logic Gates

Inverted versions are easier to implement in CMOS

NAND

NOR

XOR

a b a NOR b

0 0 1

0 1 0

1 0 0

1 1 0

a b a XOR b

0 0 0

0 1 1

1 0 1

1 1 0

a b a NAND b

0 0 1

0 1 1

1 0 1

1 1 0

9

= a NAND b

= a NOR b

= a XOR b

True if both inputs are false

True if exactly one input is true

True if at least one input is false

CMPT 295Combinational Logic

10

A

B

C

D

Combining Multiple Logic Gates

D = (NOT(A AND B)) AND (A OR (NOT B AND C))

CMPT 295Combinational Logic

How to Represent Combinational Logic?

✓Text Description

✓Circuit Diagram

– Transistors and wires

– Logic Gates

✓Truth Table

✓Boolean Expression

✓All are equivalent

11

CMPT 295Combinational Logic

Truth Tables

• Table that relates the inputs to a combinational logic
circuit to its output

– Output only depends on current inputs

– Use abstraction of 0/1 (F/T) instead of high/low Voltage

– Shows output for every possible combination of inputs

• How big is a truth table with N inputs?
– 0 or 1 for each of N inputs, so 2N rows

12

CMPT 295Combinational Logic

N-input Truth Tables

F
Y

A

B

C

For N inputs, how many distinct
functions F do we have?

Function maps each row to 0 or 1, so possible functions

13

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Y

F(0,0,0)

F(0,0,1)

F(0,1,0)

F(0,1,1)

F(1,0,0)

F(1,0,1)

F(1,1,0)

F(1,1,1)

22
𝑁

CMPT 295Combinational Logic

Truth Tables with Multiple Outputs

• For 3 outputs, just three indep. functions:
X(A,B,C,D), Y(A,B,C,D), and Z(A,B,C,D)

– Can show functions in separate columns (no
additional rows)

F Y

A

B

C

D

X

Z

14

CMPT 295Combinational Logic

Question: Which of the columns A-D is the correct
output of the Truth Table for: (X XOR Y) OR (NOT Z)

X Y Z (A) (B) (C) (D)

0 0 0 1 1 1 1

0 0 1 0 0 0 0

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 0 1 1 1

1 0 1 1 1 0 1

1 1 0 1 1 1 0

1 1 1 1 0 1 1

15

CMPT 295Combinational Logic

X Y Z (A) (B) (C) (D)

0 0 0 1 1 1 1

0 0 1 0 0 0 0

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 0 1 1 1

1 0 1 1 1 0 1

1 1 0 1 1 1 0

1 1 1 1 0 1 1

16

Question: Which of the columns A-D is the correct
output of the Truth Table for: (X XOR Y) OR (NOT Z)

CMPT 295Combinational Logic

More Complex Truth Tables

3-Input Majority

a b c y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

2-bit Adder

A B C
a1 a0 b1 b0 c2 c1 c0

.

.

.

+ c1

a1

a0

b1

b0

c2

c0

How many
rows?

17

CMPT 295Combinational Logic

Truth Tables Don’t Scale

• Truth tables are huge

– Write out EVERY combination of inputs and
outputs (thorough, but inefficient)

– Finding a particular combination of inputs involves
scanning a large portion of the table

• Boolean Algebra is a shorter way to represent
combinational logic

18

CMPT 295Combinational Logic

Boolean Algebra
• Represent inputs and outputs as variables

– Each variable can only take on the value 0 or 1

• Overbar or ¬ is NOT: “logical complement”

– e.g. if A is 0, A is 1. If A is 1, then ¬A is 0

• Plus (+) is 2-input OR: “logical sum”

• Product (·) is 2-input AND: “logical product”

– Sometimes omitted

• All other gates and logical expressions can be built
from combinations of these

AB + AB == (NOT(A AND B)) OR (A AND (NOT B))

19

CMPT 295Combinational Logic

Laws of Boolean Algebra

These laws allow us to simplify Boolean expressions:

20

CMPT 295Combinational Logic

We can show that these
are equivalent!

Converting Truth Table to Boolean Expression

• Read off of table

– For 1, write variable name

– For 0, write complement of variable

• Sum of Products (SoP)
– Take rows with 1’s in output column,

sum products of inputs

– c=

• Product of Sums (PoS)
– Take rows with 0’s in output column, product the sum of

the complements of the inputs

– c =

a b c

0 0 0

0 1 1

1 0 1

1 1 0

21

a b + a b

(a + b) · (a + b)

CMPT 295Combinational Logic

Simplifying Boolean Expressions

• Logic Delay: Everything we are dealing with is just
an abstraction of transistors and wires

– Inputs propagating to the outputs are voltage signals
passing through transistor networks

– There is always some delay before a CL’s output updates
to reflect the inputs

– Critical Path is longest delay from any input to output.
Could be represented as “n gate delays”

• Simpler Boolean expressions ↔ smaller transistor
networks ↔ smaller circuit delays ↔ faster
hardware

22

CMPT 295Combinational Logic

Simplifying Boolean Expressions: Example

23

CMPT 295Combinational Logic

Karnaugh Maps

• Used to simplify Boolean expressions of 2-4 variables

• Table composed of squares each representing a unique
combination of all variable (1 if true, else blank)

• Two variable Map:

24

ҧ𝑥 ത𝑦 ҧ𝑥𝑦

𝑥 ത𝑦 𝑥𝑦

𝑥

0

1

𝑦 0 1

1

1 1

𝑥

0

1

𝑦 0 1

x + y

Example: Boolean Expression?

CMPT 295Combinational Logic

Three Variable Karnaugh Maps

25

ҧ𝑥 ത𝑦 ҧ𝑧 ҧ𝑥 ത𝑦𝑧 ҧ𝑥𝑦𝑧 ҧ𝑥𝑦 ҧ𝑧

𝑥 ത𝑦 ҧ𝑧 𝑥 ത𝑦𝑧 𝑥𝑦𝑧 𝑥𝑦 ҧ𝑧

𝑥

0

1

𝑦𝑧 00 01 11 10

Question: Simplify ҧ𝐴𝐶 + ҧ𝐴𝐵 + 𝐴 ത𝐵𝐶 + 𝐵𝐶

𝑥

𝑧

𝑦

CMPT 295Combinational Logic

Example: Simplify 3-Variable Expression

26

1 1 1

1 1

𝐴
0

1

𝐵𝐶 00 01 11 10

Question: Simplify ҧ𝐴𝐶 + ҧ𝐴𝐵 + 𝐴 ത𝐵𝐶 + 𝐵𝐶

𝐴

𝐶

𝐵

Answer: 𝐶 + ҧ𝐴𝐵

CMPT 295Combinational Logic

Four Variable Karnaugh Maps

27

ഥ𝑤 ҧ𝑥 ത𝑦 ҧ𝑧 ഥ𝑤 ҧ𝑥 ത𝑦𝑧 ഥ𝑤 ҧ𝑥𝑦𝑧 ഥ𝑤 ҧ𝑥𝑦 ҧ𝑧

ഥ𝑤𝑥 ത𝑦 ҧ𝑧 ഥ𝑤𝑥 ത𝑦𝑧 ഥ𝑤𝑥𝑦𝑧 ഥ𝑤𝑥𝑦 ҧ𝑧

𝑤𝑥 ത𝑦 ҧ𝑧 𝑤𝑥 ത𝑦𝑧 𝑤𝑥𝑦𝑧 𝑤𝑥𝑦 ҧ𝑧

𝑤 ҧ𝑥 ത𝑦 ҧ𝑧 𝑤 ҧ𝑥 ത𝑦𝑧 𝑤 ҧ𝑥𝑦𝑧 𝑤 ҧ𝑥𝑦 ҧ𝑧

𝑤𝑥

00

01

11

10

𝑦𝑧 00 01 11 10

𝑥

𝑧

𝑤

𝑦

Question: Simplify ഥ𝑤𝑦 + ഥ𝑤𝑧 + 𝑤 ҧ𝑥𝑦 + 𝑤𝑥𝑦𝑧

CMPT 295Combinational Logic

Example: Simplify 4-Variable Expression

28

1 1 1

1 1 1

1

1 1

𝑤𝑥

00

01

11

10

𝑦𝑧 00 01 11 10

𝑥

𝑧

𝑤

𝑦
Simplify ഥ𝑤𝑦 + ഥ𝑤𝑧 + 𝑤 ҧ𝑥𝑦 + 𝑤𝑥𝑦𝑧

Solution: ഥ𝑤𝑦 + ഥ𝑤𝑧 + 𝑦𝑧 + ҧ𝑥𝑦

CMPT 295Combinational Logic

Useful Combinational Circuits

29

CMPT 295Combinational Logic

Data Multiplexor (MUX)

• Multiplexor (“MUX”) is a selector

– Place one of multiple inputs onto output (N-to-1)

• Shown below is an n-bit 2-to-1 MUX

– Input S selects between two inputs of n bits each

30

This input is passed
to output if selector
bits match shown
value

Represents that
this input has n bits

A

B

S

0

1

C‘n

‘n

‘n

CMPT 295Combinational Logic

Implementing a 1-bit 2-to-1 MUX

• Schematic:

• Truth Table:

• Boolean Algebra:

• Circuit Diagram:

31

s a b c

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

A

B

S

0

1

C‘n

‘n

‘n

CMPT 295Combinational Logic

1-bit 4-to-1 MUX

• Schematic:

• Truth Table: How many rows?

• Boolean Expression:
E = S1S0A + S1S0B + S1S0C + S1S0D

32

26

A

D

S= S1S0

00

11

E

‘2

01
10

B
C

CMPT 295Combinational Logic

Another Design for 4-to-1 MUX

• Can we leverage what we’ve previously built?

– Alternative hierarchical approach:

33

A

B

0

1

C

D

S0

0

1
S1

0

1

E

CMPT 295Combinational Logic

S = A⊕ B⊕ C; C = AB + C(A⊕ B)

0

1

1

0

1

0

0

1

 function table:
 basically a truth table

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

0

0

1

0

1

1

1

3-bit

Addition!

Full Adder

A
B

C

Q. What’s the propagation delay?

C

S

 3 gate delays (highlighted)

Q. What does the circuit accomplish?
 Algebra: S = A ^ B ^ C; C = (A & B) | (C & (A ^ B))

S = A⊕ B⊕ C

C S

Full Adder

Half Adder
Half Adder

FA

S

C C

A B

