
CMPT 295Combinational and Sequential Logic, CPU Datapath

CMPT 295 Week 10.2

CMPT 295Combinational and Sequential Logic, CPU Datapath

Simplifying Boolean Expressions

• Logic Delay: Everything we are dealing with is just
an abstraction of transistors and wires

– Inputs propagating to the outputs are voltage signals
passing through transistor networks

– There is always some delay before a CL’s output updates
to reflect the inputs

– Critical Path is longest delay from any input to output.
Could be represented as “n gate delays”

• Simpler Boolean expressions ↔ smaller transistor
networks ↔ smaller circuit delays ↔ faster
hardware

2

CMPT 295Combinational and Sequential Logic, CPU Datapath

Simplifying Boolean Expressions: Example

3

CMPT 295Combinational and Sequential Logic, CPU Datapath

Karnaugh Maps

• Used to simplify Boolean expressions of 2-4 variables

• Table composed of squares each representing a unique
combination of all variable (1 if true, else blank)

• Two variable Map:

4

ҧ𝑥 ത𝑦 ҧ𝑥𝑦

𝑥 ത𝑦 𝑥𝑦

𝑥

0

1

𝑦 0 1

1

1 1

𝑥

0

1

𝑦 0 1

x + y

Example: Boolean Expression?

CMPT 295Combinational and Sequential Logic, CPU Datapath

Three Variable Karnaugh Maps

5

ҧ𝑥 ത𝑦 ҧ𝑧 ҧ𝑥 ത𝑦𝑧 ҧ𝑥𝑦𝑧 ҧ𝑥𝑦 ҧ𝑧

𝑥 ത𝑦 ҧ𝑧 𝑥 ത𝑦𝑧 𝑥𝑦𝑧 𝑥𝑦 ҧ𝑧

𝑥

0

1

𝑦𝑧 00 01 11 10

Question: Simplify ҧ𝐴𝐶 + ҧ𝐴𝐵 + 𝐴 ത𝐵𝐶 + 𝐵𝐶

𝑥

𝑧

𝑦

CMPT 295Combinational and Sequential Logic, CPU Datapath

Example: Simplify 3-Variable Expression

6

1 1 1

1 1

𝐴
0

1

𝐵𝐶 00 01 11 10

Question: Simplify ҧ𝐴𝐶 + ҧ𝐴𝐵 + 𝐴 ത𝐵𝐶 + 𝐵𝐶

𝐴

𝐶

𝐵

Answer: 𝐶 + ҧ𝐴𝐵

CMPT 295Combinational and Sequential Logic, CPU Datapath

Four Variable Karnaugh Maps

7

ഥ𝑤 ҧ𝑥 ത𝑦 ҧ𝑧 ഥ𝑤 ҧ𝑥 ത𝑦𝑧 ഥ𝑤 ҧ𝑥𝑦𝑧 ഥ𝑤 ҧ𝑥𝑦 ҧ𝑧

ഥ𝑤𝑥 ത𝑦 ҧ𝑧 ഥ𝑤𝑥 ത𝑦𝑧 ഥ𝑤𝑥𝑦𝑧 ഥ𝑤𝑥𝑦 ҧ𝑧

𝑤𝑥ത𝑦 ҧ𝑧 𝑤𝑥 ത𝑦𝑧 𝑤𝑥𝑦𝑧 𝑤𝑥𝑦 ҧ𝑧

𝑤 ҧ𝑥 ത𝑦 ҧ𝑧 𝑤 ҧ𝑥 ത𝑦𝑧 𝑤 ҧ𝑥𝑦𝑧 𝑤 ҧ𝑥𝑦 ҧ𝑧

𝑤𝑥

00

01

11

10

𝑦𝑧 00 01 11 10

𝑥

𝑧

𝑤

𝑦

Question: Simplify ഥ𝑤𝑦 + ഥ𝑤𝑧 + 𝑤 ҧ𝑥𝑦 + 𝑤𝑥𝑦𝑧

CMPT 295Combinational and Sequential Logic, CPU Datapath

Example: Simplify 4-Variable Expression

8

1 1 1

1 1 1

1

1 1

𝑤𝑥

00

01

11

10

𝑦𝑧 00 01 11 10

𝑥

𝑧

𝑤

𝑦
Simplify ഥ𝑤𝑦 + ഥ𝑤𝑧 + 𝑤 ҧ𝑥𝑦 + 𝑤𝑥𝑦𝑧

Solution: ഥ𝑤𝑦 + ഥ𝑤𝑧 + 𝑦𝑧 + ҧ𝑥𝑦

CMPT 295Combinational and Sequential Logic, CPU Datapath

Useful Combinational Circuits

9

CMPT 295Combinational and Sequential Logic, CPU Datapath

Data Multiplexor (MUX)

• Multiplexor (“MUX”) is a selector

– Place one of multiple inputs onto output (N-to-1)

• Shown below is an n-bit 2-to-1 MUX

– Input S selects between two inputs of n bits each

10

This input is passed
to output if selector
bits match shown
value

Represents that
this input has n bits

A

B

S

0

1

C‘n

‘n

‘n

CMPT 295Combinational and Sequential Logic, CPU Datapath

Implementing a 1-bit 2-to-1 MUX

• Schematic:

• Truth Table:

• Boolean Algebra:

• Circuit Diagram:

11

s a b c

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

A

B

S

0

1

C‘n

‘n

‘n

CMPT 295Combinational and Sequential Logic, CPU Datapath

1-bit 4-to-1 MUX

• Schematic:

• Truth Table: How many rows?

• Boolean Expression:
E = S1S0A + S1S0B + S1S0C + S1S0D

12

26

A

D

S= S1S0

00

11

E

‘2

01
10

B
C

CMPT 295Combinational and Sequential Logic, CPU Datapath

Another Design for 4-to-1 MUX

• Can we leverage what we’ve previously built?

– Alternative hierarchical approach:

13

A

B

0

1

C

D

S0

0

1
S1

0

1

E

CMPT 295Combinational and Sequential Logic, CPU Datapath

Decoder
• Enable one of 2N outputs based on N input
• Example: 2-to-4 decoder

• Use case: Choose ALU operation based on instruction op-code
14

By BlueJester0101, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3668293

CMPT 295Combinational and Sequential Logic, CPU Datapath

Demultiplexer (Demux)

• Similar to decoder with an enable signal

15

By BlueJester0101, CC BY-SA 3.0,

https://commons.wikimedia.org/w/i

ndex.php?curid=3668293

CMPT 295Combinational and Sequential Logic, CPU Datapath

Single-Bit Binary Adder (Half Adder)
• Add A + B to get Sum (S) and Carry (C)
• Truth Table:
• Boolean Expressions:
• S = AB; C = AB

• Circuit:

16

By inductiveload - Own work, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=1023090

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

CMPT 295Combinational and Sequential Logic, CPU Datapath

S = A⊕ B⊕ C; C = AB + C(A⊕ B)

0

1

1

0

1

0

0

1

▪ Truth table:

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

0

0

1

0

1

1

1

3-bit

Addition!

What is this Circuit?

A
B

C

Q. What’s the propagation delay?

C

S

➢ 3 gate delays (highlighted)

Q. What does the circuit accomplish?
➢ Algebra:

S = A⊕ B⊕ C

C S

Full Adder

Half Adder
Half Adder

FA

S

C C

A B

CMPT 295Combinational and Sequential Logic, CPU Datapath

Definition: A combinational circuit computes a pure function, i.e.,
its outputs react only based on its inputs. There are no feedback
loops and no state information (memory) is maintained.

Theorem: Every Boolean function can be implemented with
NAND and NOT. Circuits are modular

Computing with Combinational Circuits

FAFAFAFA

A3B3 A2B2 A1B1 A0B0

S3 S2 S1 S0

C3 C2 C1
C0C4

… a 4-bit ripple carry adder!
➢ Adds by columns
➢ Propagation delay

= 9 (2n + 1)

Adder-4

A B
4 4

4

S

CC

CMPT 295Combinational and Sequential Logic, CPU Datapath

FS func

0001 A + B

0010 A − B

1000 A * B

0100 A ^ B

0101 A + 1

1101 B

32

Functional Unit
Hardware circuits are fixed

➢ Can’t adjust wires / gates while running
➢ Build control wires to parametrize its function

Function Unit:

32

opA

32

opB

res

4
FS

Function Select:

CMPT 295Combinational and Sequential Logic, CPU Datapath

32

Functional Unit: Adder-Subtractor

Adder-32

32

32

A

32

B

S

C

FS

● if FS == 0 then

S = A + B

● if FS == 1 then

= A − B

S = A + B + 1

CMPT 295Combinational and Sequential Logic, CPU Datapath

Combinational vs. Sequential Logic

• Digital Systems consist of two basic types of
circuits:

• Combinational Logic (CL)
– Output is a function of the inputs only, not the history

of its execution

– Example: add A, B (ALUs)

• Sequential Logic (SL)
– Circuits that “remember” or store information

– Also called “State Elements”

– Example: Memory and registers

21

CMPT 295Combinational and Sequential Logic, CPU Datapath

Want: S=0;

for X1,X2,X3 over time...

S = S + Xi

An example of why we would need sequential logic

Assume:
• Each X value is applied in succession, one per cycle
• The sum since time 1 (cycle) is present on S

SUMXi S

Accumulator Example

22

CMPT 295Combinational and Sequential Logic, CPU Datapath

No!
1) How to control the next iteration of the ‘for’ loop?
2) How do we say: ‘S=0’?

Feedback

First Try: Does this work?

23

X

+
S

CMPT 295Combinational and Sequential Logic, CPU Datapath

Second Try: How About This?

A Register is the state
element that is used here
to hold up the transfer
of data to the adder

24

Xi

+
S

register
Load/Clk

reset

CMPT 295Combinational and Sequential Logic, CPU Datapath

Uses for State Elements

• Place to store values for some amount of
time:

– Register files (like in RISCV)

– Memory (caches and main memory)

• Help control flow of information between
combinational logic blocks

– State elements are used to hold up the movement
of information at the inputs to combinational logic
blocks and allow for orderly passage

25

CMPT 295Combinational and Sequential Logic, CPU Datapath

Registers

Same as registers in assembly:
➢ Small memory storage locations

26

Clock input
(inputs active only on
a clock “tick”)

Data input
(can be various bit widths) Data output

(can be various bit widths)

Reset
(sets value to zero)

Write Enable
(can it be written to?)

CMPT 295Combinational and Sequential Logic, CPU Datapath

First State Element: RS Latch

27

By Napalm Llama - Modification of Wikimedia Commons file R-S.gif (shown below), CC BY 2.0,

https://commons.wikimedia.org/w/index.php?curid=4845402

When R = 1 and S = 0 → Q is 0
When S = 1 and R = 0 → Q is 1
When both S and R are 0 → Q stays the same
When both S and R are 1 → Undefined

CMPT 295Combinational and Sequential Logic, CPU Datapath

RS Latch with Enable

28

❖ Only changes state when E = 1.

❖ Stays the same when E = 0

By Inductiveload - Own Drawing in Inkscape 0.43, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=873598

CMPT 295Combinational and Sequential Logic, CPU Datapath

D Latch

29

❖ Avoids undefined state of RS Latch when R=S=1

❖ Q is set to D when E = 1; Q stays the same when E = 0

By Inductiveload - Own work, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=6712572

Circuit

By Inductiveload - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?cur
id=6712594

Schematic

CMPT 295Combinational and Sequential Logic, CPU Datapath

D Flip-Flop

30

❖ Changes state only on falling edge of Clock (i.e., Clock
changes from 1 to 0)

❖ Use Clock to change on rising edge

By Nolanjshettle at English Wikipedia, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=40852395

CMPT 295Combinational and Sequential Logic, CPU Datapath

• Signals transmitted over wires continuously

• Transmission is effectively instantaneous

– Implies that any wire only contains one value at
any given time

Signals and Waveforms: Clocks

31

Rising Edge Falling Edge

Clock period
(CPU cycle time)

T T =
1

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

Time

Voltage

High

Low

CMPT 295Combinational and Sequential Logic, CPU Datapath

Dealing with Waveform Diagrams

• Easiest to start with CLK on top

– Solve signal by signal, from inputs to outputs

– Can only draw the waveform for a signal if all of
its input waveforms are drawn

• When does a signal update?

– A state element updates based on CLK triggers

– A combinational element updates ANY time ANY
of its inputs changes

32

CMPT 295Combinational and Sequential Logic, CPU Datapath

Accumulator 2nd Try: How About This?

Delay through Adder

33

Xi

+
S

register
Load/Clk

reset

Load/Clk

X0 X0+X1
X0+X1
+X2

X0+X1+
X2+X3

X0 X0+X1Xi

S

Time

CMPT 295Combinational and Sequential Logic, CPU Datapath

• N-bit register  n instances of a “Flip-Flop”
– Output flips and flops between 0 and 1

• Specifically this is a “D-type Flip-Flop”
– D is “data input”, Q is “data output”
– A group of wires when interpreted as a bit field is

called a bus

Register Internals

34

FF

d0

q

CLK
FF

d1

q

CLK
FF

dn-1

q

CLK
Register

D (n-bit)

Q(n-bit)

CLK
…

CMPT 295Combinational and Sequential Logic, CPU Datapath

35

Flip-Flop Timing Behavior
FF

d q

CLK

CMPT 295Combinational and Sequential Logic, CPU Datapath

36

Setup Time

FF
d q

CLK

Flip-Flop Timing Behavior

CMPT 295Combinational and Sequential Logic, CPU Datapath

37

Hold Time

FF
d q

CLK

Flip-Flop Timing Behavior

CMPT 295Combinational and Sequential Logic, CPU Datapath

38

Clock-to-Q

Flip-Flop Timing Behavior
FF

d q

CLK

CMPT 295Combinational and Sequential Logic, CPU Datapath

Accumulator Revisited: Proper Timing

• Reset signal shown

• In practice Xi might not arrive to the
adder at the same time as Si-1

• Si temporarily is wrong, but register
always captures correct value

• In good circuits, instability never
happens around rising edge of CLK

39

Xi

+
Si

register
Clk

reset

Si-1

“Undefined” (unknown) signal

X0 X0+X1
X0+X1
+X2

X0+X1+
X2+X3

X0 X1 X2 X3Xi

Si

0 X0 X0+X1
X0+X1
+X2Si-1

Reset

CLK

CMPT 295Combinational and Sequential Logic, CPU Datapath

Timing Terms

• Clock: Steady square wave that synchronizes system

• Register: Several bits of state that samples on rising edge of

Clock (positive edge-triggered); also has RESET

• Setup Time: When input must be stable before Clock trigger

• Hold Time: When input must be stable after Clock trigger

• Clock-to-Q Delay: How long it takes output to change from

Clock trigger

40

CMPT 295Combinational and Sequential Logic, CPU Datapath

Digital State Machines

Memory holds state information

memory
combinational

circuit

current

state

inputs

next state

outputs

➢ compute next state based on (current state, inputs)
➢ compute outputs based on (current state, inputs)

Q. What does this imply about the clock period?

➢ clock period must exceed (tpd of combinational circuit + tpd of
registers) where tpd is propagational delay

CMPT 295Combinational and Sequential Logic, CPU Datapath

Waveform Example: RS Latch

42

By Napalm Llama - Modification

of Wikimedia Commons file R-

S.gif (shown below), CC BY 2.0,

https://commons.wikimedia.org/w

/index.php?curid=4845402

Q

ഥ𝑸

R

S

Time

a b a NOR b

0 0 1

0 1 0

1 0 0

1 1 0

CMPT 295Combinational and Sequential Logic, CPU Datapath

Waveform Example: D Flip-Flop

43

Q

ഥ𝑸

D

Time

By Nolanjshettle at English Wikipedia, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=40852395

Clock

CMPT 295Combinational and Sequential Logic, CPU Datapath

CPU Hardware

Goal: Given an instruction set architecture, construct a machine

that reliably executes instructions.

Design choices will influence speed of instructions:

➢ Some instructions will be faster than others

➢ Order of instructions may matter

➢ Order of memory accesses may matter
“conflicts” or “hazards”

CMPT 295Combinational and Sequential Logic, CPU Datapath

Model for Synchronous Systems

• Combinational logic blocks separated by registers

– Clock signal connects only to sequential logic elements

– Feedback is optional depending on application

• How do we ensure proper behavior?

– How fast can we run our clock?

45

CMPT 295Combinational and Sequential Logic, CPU Datapath

Maximum Clock Frequency

•

46

Max Delay =

Min Period = Max Delay
Max Freq = 1/Min Period

CLK-to-Q Delay

+ CL Delay

+ Setup Time

Assumes Max Delay > Hold Time

CMPT 295Combinational and Sequential Logic, CPU Datapath

+R
e

g

R
e

g

The Critical Path

• The critical path is the longest delay between
any two registers in a circuit

• The clock period must be longer than this
critical path, or the signal will not propagate
properly to that next register

CMPT 295Combinational and Sequential Logic, CPU Datapath

How do we go faster?

Pipelining!

➢ Split operation into smaller parts and add a register
between each one.

48

CMPT 295Combinational and Sequential Logic, CPU Datapath

RISC-V CPU Datapath, Control Intro

CMPT 295Combinational and Sequential Logic, CPU Datapath

CPU Design Principles

1) Analyze instruction set →
datapath requirements

2) Select set of datapath
components & establish
clock methodology

3) Assemble datapath meeting
the requirements

4) Analyze implementation of each instruction to determine
setting of control points that effects the register transfer

5) Assemble the control logic
• Formulate Logic Equations
• Design Circuits

50

Control

Datapath

Memory

Processor

Input

Output

CMPT 295Combinational and Sequential Logic, CPU Datapath

RISC-V Single-Cycle CPU

• Universal datapath
− Capable of executing all RISC-V instructions in one cycle each

− Not all units (hardware) used by all instructions

• 5 Phases of execution
− IF (Instruction Fetch), ID (Instruction Decode), EX (Execute),

MEM (Memory), WB (Write Back)

− Not all instructions are active in all phases (except for loads!)

• Controller specifies how to execute instructions

51

CMPT 295Combinational and Sequential Logic, CPU Datapath

RISC-V CPU in two parts

• Central Processing Unit (CPU):
➢ Datapath: Contains the hardware necessary to perform

operations required by the processor

• Reacts to what the controller tells it. (i.e., “I was told to do an add, so
I”ll feed these arguments through an adder)

➢ Control: Decides what each piece of the datapath should do

• What operation am I performing? Do I need to get info from
memory? Should I write to a register? Which register?

• Has to make decisions based on the input instruction only.

52

CMPT 295Combinational and Sequential Logic, CPU Datapath

Design Principles

• Determining control signals

– Any time a datapath element has an input that
changes behavior, it requires a control signal
(e.g. ALU operation, read/write)

– Any time you need to pass a different input based
on the instruction, add a MUX with a control
signal as the selector
(e.g. next PC, ALU input, register to write to)

• Control signals will change based on exact
datapath

• Datapath will change based on ISA
53

CMPT 295Combinational and Sequential Logic, CPU Datapath

Storage Element: Register File

• Register File consists of 32 registers:
– Output ports portA and portB

– Input port portW

• Register selection
– Place data of register RA (number) onto portA

– Place data of register RB (number) onto portB

– Store data on portW into register RW (number) when
Write Enable is 1

• Clock input (CLK)
– CLK is passed to all internal registers so they can be written

to if they match RW and Write Enable is 1

54

Clk

portW

Write Enable

32
32

portA

32
portB

5 5 5
RW RA RB

32 x 32-bit
Registers

CMPT 295Combinational and Sequential Logic, CPU Datapath

Implementing R-Types

55

Perform operation

- New hardware: ALU
(Arithmetic Logic Unit)

- Abstraction for adders,
multipliers, dividers,
etc.

- How do we know what
operation to execute?
- Our first control bit!

ALUSel(ect)

IMEM

+4

ALU
pc inst[11:7]

inst[19:15]

inst[24:20]

Control

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

R[rs1]

R[rs2]

ALUSel

inst[31:0]

31 0

func7(7) opcode(7)rs2(5) rs1(5)
Func3

(3)
rd(5)

7 612 1115 1420 1925 24

CMPT 295Combinational and Sequential Logic, CPU Datapath

Control Logic

Adding addi to datapath

56

+4

pc

pc+4
inst[11:7]

inst[19:15]

inst[24:20]

IMEM

inst[31:0]

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Reg[rs1]

Reg[rs2]

alu
ALU

ALUSel=Add

Imm.

Gen

0

1

RegWEn=1

inst[31:20]
imm[31:0]

ImmSel=I BSel=1

Also works for all other I-format

arithmetic instruction
(slti,sltiu,andi,ori,

xori,slli,srli,srai)

just by changing ALUSel

31 0

imm(12) opcode(7)rs1(5)
Func3

(3)
rd(5)

7 612 1115 1420 19

CMPT 295Combinational and Sequential Logic, CPU Datapath

Adding lw to datapath

57

IMEM
ALU

Imm.

Gen

+4

DMEM

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr
DataR 0

1
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:20]

alu

mem

wb

pc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=I RegWEn=1 Bsel=1 ALUSel=Add MemRW=Read WBSel=0

wb

31 0

offset(12) opcodebase width dst

7 612 1115 1420 19

CMPT 295Combinational and Sequential Logic, CPU Datapath

Storage Element: Idealized Memory

• Memory (idealized)
– One input port: Data In

– One output port: Data Out

• Memory access:
– Read: Write Enable = 0, data at Address is placed on

Data Out

– Write: Write Enable = 1, Data In written to Address

• Clock input (CLK)
– CLK input is a factor ONLY during write operation

– During read, behaves as a combinational logic block:
Address valid → Data Out valid after “access time”

58

CLK

Data In

Write Enable

32 32

DataOut

Address

CMPT 295Combinational and Sequential Logic, CPU Datapath

Current Datapath

59

IMEM

ALU

Imm.
Gen

+4

DMEM

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr
DataR 0

1

pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:20]

ALU

mem

wb

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel BSel ALUSel MemRW WBSel

wb

pc+4

CMPT 295Combinational and Sequential Logic, CPU Datapath

Adding sw to datapath

60

IMEM
ALU

Imm.

Gen

+4

DMEM

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR 0

1pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wbpc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=S RegWEn=0 Bsel=1 ALUSel=Add MemRW=Write WBSel=*

wb

*= “Don’t Care”

31 0

imm(11:5) opcoders2 rs1 func3 imm(4:0)

7 612 1115 1420 1925 24

CMPT 295Combinational and Sequential Logic, CPU Datapath

Adding branches to datapath

61

IMEM
ALU

Imm.

Gen

+4

DMEM

Branch

Comp.

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

0

1
1

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=B RegWEn=0 BrUn BrEq BrLT ASel=1Bsel=1

ALUSel=Add

MemRW=Read WBSel=*PCSel=taken/not-taken

wb

31 0

imm(12|10:5) opcoders2 rs1 func3
imm(4:1|

11)

7 612 1115 1420 1925 24

CMPT 295Combinational and Sequential Logic, CPU Datapath

Adding jalr to datapath

62

IMEM
ALU

Imm.

Gen

+4

DMEM

Branch

Comp.

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

0

1

21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=B RegWEn=1

BrUn=* BrEq=* BrLT=*

Asel=0Bsel=1

ALUSel=Add

MemRW=Read
WBSel=2

PCSel

wb

31 0

offset opcodebase Func3 dest

7 612 1115 1420 19

• Writes PC+4 to dest (return address)

• Sets PC = base + offset

CMPT 295Combinational and Sequential Logic, CPU Datapath

Adding jal to datapath

63

IMEM
ALU

Imm.

Gen

+4

DMEM

Branch

Comp.

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

0

1

21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=J RegWEn=1

BrUn=* BrEq=* BrLT=*

Asel=1Bsel=1

ALUSel=Add

MemRW=Read
WBSel=2

PCSel

wb

imm[20|10:1|11|19:12] opcoderd

31 0

• jal saves PC+4 in register rd (the return address)

• Set PC = PC + offset (PC-relative jump)

7 612 11

CMPT 295Combinational and Sequential Logic, CPU Datapath

Implementing lui

64

IMEM
ALU

Imm.

Gen

+4

DMEM

Branch

Comp.

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

0

1

21

0
0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=U RegWEn=1

BrUn=* BrE=* BrLT=*

Asel=*Bsel=1 ALUSel=B MemRW=Read WBSel=1PCSel=pc+4

wb

pc

imm[31:12] opcoderd

31 0

lui writes the upper 20 bits of the destination with the immediate value, and clears the lower 12 bits

7 612 11

CMPT 295Combinational and Sequential Logic, CPU Datapath

Implementing auipc

65

IMEM
ALU

Imm.

Gen

+4

DMEM

Branch

Comp.

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

0

1

21

0
0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=U RegWEn=1

BrUn=* BrE=* BrLT=*

Asel=1Bsel=1 ALUSel=Add MemRW=0 WBSel=1PCSel=pc+4

wb

pc

imm[31:12] opcoderd

31 0

Adds upper immediate value to PC and places result in destination register

7 612 11

