
CMPT 295CPU Control, Pipeline and Hazards

CMPT 295 Week 11

CMPT 295CPU Control, Pipeline and Hazards

Control Signals

▪ Control signals are how we get the same hardware to
behave differently and produce different instructions

▪ For every instruction, all control signals are set to one of
their possible values (Not always 0 or 1!) or an
indeterminate (*) value indicating the control signal
doesn’t affect the instruction’s execution

▪ Each control signal has a sub-circuit based on ~nine bits
from the instruction format:
➢ Upper 5 func7 bits (lower 2 are the same for all instructions)
➢ All func3 bits
➢ “2nd” upper opcode bit (others are the same for all instructions)

2

CMPT 295CPU Control, Pipeline and Hazards

Control Signals: ADD

3

IMEM

ALU

Imm.
Gen

+4

DMEM

Branch
Comp.

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

0

1

21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4

alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUn BrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb

CMPT 295CPU Control, Pipeline and Hazards

ADD: Control Signals

Here are the signals and values we’ve compiled for our
ADD instruction:

(green = left 3 cols = control INPUTS)

(orange = right 9 cols = control OUTPUTS)

4

Inst[31:0] BrEq BrLT PCSel ImmSel BrUn ASel BSel ALUSel MemRW RegWEn WBSel

add * * +4 * * Reg Reg Add Read 1 (Y) ALU

CMPT 295CPU Control, Pipeline and Hazards

Control Logic

addi datapath

5

IMEM

ALU

Imm.
Gen

+4

DMEM

Branch
Comp.

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

0

1

21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4

alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUn BrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb

Inst[31:0] PCSel ImmSel RegWEn Br

Un

Br

LT

Br

Eq

BSel ASel ALUSel MemRW WBSel

addi +4 I 1 * * * Imm Reg Add Read ALU

CMPT 295CPU Control, Pipeline and Hazards

6

IMEM

ALU

Imm.
Gen

+4

DMEM

Branch
Comp.

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

0

1

21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4

alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUn BrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb

lw datapath

Inst[31:0] PCSel ImmSel RegWEn Br

Un

Br

Eq

Br

LT

BSel ASel ALUSel MemRW WBSel

lw +4 I 1 * * * Imm Reg Add Read Mem

CMPT 295CPU Control, Pipeline and Hazards

7

IMEM

ALU

Imm.
Gen

+4

DMEM

Branch
Comp.

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

0

1

21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4

alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUn BrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb

Br datapath

Inst[31:0] PCSel ImmSel RegWEn BrUn BrEq BrLT BSel ASel ALUSel MemRW WBSel

beq +4 B 0 * 0 * Imm PC Add Read *

beq ALU B 0 * 1 * Imm PC Add Read *

CMPT 295CPU Control, Pipeline and Hazards

8

IMEM

ALU

Imm.
Gen

+4

DMEM

Branch
Comp.

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

0

1

21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4

alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUn BrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb

jal datapath

Inst[31:0] PCSel ImmSel RegWEn Br

Un

Br

Eq

BrLT BSel ASel ALUSel MemRW WBSel

jal ALU J 1 * * * Imm PC Add Read PC+4

CMPT 295CPU Control, Pipeline and Hazards

9

Inst[31:0] PCSel ImmSel RegWEn Br

Un

Br

Eq

Br

LT

BSel ASel ALUSe

l

MemRW WBSel

add +4 * 1 (Y) * * * Reg Reg Add Read ALU

sub +4 * 1 * * * Reg Reg Sub Read ALU

(R-R

Op)

+4 * 1 * * * Reg Reg (Op) Read ALU

addi +4 I 1 * * * Imm Reg Add Read ALU

lw +4 I 1 * * * Imm Reg Add Read Mem

sw +4 S 0 (N) * * * Imm Reg Add Write *

beq +4 B 0 * 0 * Imm PC Add Read *

beq ALU B 0 * 1 * Imm PC Add Read *

bne ALU B 0 * 0 * Imm PC Add Read *

bne +4 B 0 * 1 * Imm PC Add Read *

blt ALU B 0 0 * 1 Imm PC Add Read *

bltu ALU B 0 1 * 1 Imm PC Add Read *

jalr ALU I 1 * * * Imm Reg Add Read PC+4

jal ALU J 1 * * * Imm PC Add Read PC+4

auipc +4 U 1 * * * Imm PC Add Read ALU

CMPT 295CPU Control, Pipeline and Hazards

Instruction Timing

IF ID EX MEM WB Total

IMEM Reg Read ALU DMEM Reg W

200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

10

CMPT 295CPU Control, Pipeline and Hazards

Instruction Timing

• Maximum clock frequency
− fmax = 1/800ps = 1.25 GHz

• Most blocks idle most of the time! ex. “IF” active every 600ps

Instr IF = 200ps ID = 100ps ALU = 200ps MEM=200ps WB = 100ps Total

add X X X X 600ps

beq X X X 500ps

jal X X X X 600ps

lw X X X X X 800ps

sw X X X X 700ps

Instruction 1 Instruction 2

ID MEM WBALUIF ID MEM WBALUIF

Cl
k

CMPT 295CPU Control, Pipeline and Hazards

“Iron Law” of Processor Performance

12

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

CMPT 295CPU Control, Pipeline and Hazards

Speed Trade-off Example

• For some task (e.g. image compression) …

13

Processor A Processor B

Instructions 1 Million 1.5 Million

Average CPI 2.5 1

Clock rate f 2.5 GHz 2 GHz

Execution time 1 ms 0.75 ms

Processor B is faster for this task, despite executing more
instructions and having a lower clock rate! Why? Each instruction is

less complex! (~2.5 B instructions = 1 A instruction)

CMPT 295CPU Control, Pipeline and Hazards

Pipelined Car Assembly Line

• Pipelined Car assembly takes 7 hours for 4 cars

➢ 1 car finishes every hour (after the car, which takes 4 hours)
14

126 AM 7 8 9 10 11

Time
Station 2 Station 3 Station 4Station 1Car 1

Station 2 Station 3 Station 4Station 1Car 2

Station 2 Station 3 Station 4Station 1Car 3

Station 2 Station 3 Station 4Station 1
Car 4

CMPT 295CPU Control, Pipeline and Hazards

Pipelining Lessons

• Pipelining doesn’t decrease latency of single task; it increases
throughput of entire workload

• Multiple tasks operating simultaneously using different resources

• Potential speedup ~ number of pipeline stages

• Speedup reduced by time to fill and drain the pipeline:
16 hours/7 hours which gives 2.3X speedup v. potential 4X in this
example

15

CMPT 295CPU Control, Pipeline and Hazards

Pipelining with RISC-V

16

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

tcycle

in
stru

ctio
n

 se
q

u
en

ce

tinstruction

Single Cycle Pipelining

Timing tstep = 100 … 200 ps tcycle = 200 ps

Register access only 100 ps All cycles same length

Instruction time, tinstruction = tcycle = 800 ps 1000 ps

Clock rate, fs 1/800 ps = 1.25 GHz 1/200 ps = 5 GHz

CMPT 295CPU Control, Pipeline and Hazards

RISC-V Pipeline

add t0, t1, t2

or t3, t4, t5

slt t6, t0, t3

tcycle

= 200 ps

in
stru

ctio
n

 se
q

u
en

ce

tinstruction = 1000 ps

sw t0, 4(t3)

lw t0, 8(t3)

addi t2, t2, 1

Resource use by
instruction over time

Resource use in a
particular time slot

17

CMPT 295CPU Control, Pipeline and Hazards

Each stage operates on different instruction

18

IMEM

ALU

+4

DMEM

Branch
Comp.

Reg[]

AddrA

AddrB

DataA

AddrD

DataB

DataD

Addr

DataW

DataR

1

0

aluX

pcF+4

+4pcDpcF

pcX
pcM

instD

instX

rs1X

rs2X

aluM

rs2M
immXImm.

instM
instW

add t0,
t1, t2

or t3, t4, t5slt t6, t0, t3sw t0, 4(t3)lw t0, 8(t3)

Pipeline registers separate stages, hold data for each instruction in flight

CMPT 295CPU Control, Pipeline and Hazards

RISC-V Pipeline Example

Address Inst | Cycle 0 1 2 3 4 5 6 7

0x00 add a1,a2,a3 IF ID EX MEM WB

0x04 addi a4,a5,0x2f7 IF ID EX MEM WB

0x08 sub s4,s0,s3 IF ID EX MEM WB

0x0C or s1,s2,s5 IF ID EX MEM WB

19

CMPT 295CPU Control, Pipeline and Hazards

Instruction Level Parallelism (ILP)

• Pipelining allows us to execute parts of
multiple instructions at the same time using
the same hardware!

– This is known as instruction level parallelism

• Later: Other types of parallelism

– DLP: same operation on lots of data (SIMD)

– TLP: executing multiple threads “simultaneously”
(OpenMP)

20

Question: Assume the stage times shown below.
Suppose we remove loads and stores from our
ISA. Consider going from a single-cycle
implementation to a 4-stage pipelined version.

1) The latency will be 1.25x slower.
2) The throughput will be 3x faster.

F F(A)
F T(B)

T F(C)
T T(D)

1 2

21

Instr

Fetch
Reg Read ALU Op Mem Access Reg Write

200ps 100 ps 200ps 200ps 100 ps

No mem access

throughput:

(IF+ID+EX+WB) = 600 →

(4*max_stage)/4 = 200

old/new = 600/200 = 3x faster

F F(A)
F T(B)

T F(C)
T T(D)

1 2

22

Instr

Fetch
Reg Read ALU Op Mem Access Reg Write

200ps 100 ps 200ps 200ps 100 ps

No mem access! Latency:

IF+ID+EX+WB = 600 →

4*max_stage = 800

old/new = 600/800 = negative speedup!

800/600 = 1.33x slower!

Question: Assume the stage times shown below.
Suppose we remove loads and stores from our
ISA. Consider going from a single-cycle
implementation to a 4-stage pipelined version.

1) The latency will be 1.25x slower.
2) The throughput will be 3x faster.

Question: Assume the stage times shown below.
Suppose we remove loads and stores from our
ISA. Consider going from a single-cycle
implementation to a 4-stage pipelined version.

1) The latency will be 1.25x slower.
2) The throughput will be 3x faster.

F F(A)
F T(B)

T F(C)
T T(D)

1 2

23

Instr

Fetch
Reg Read ALU Op Mem Access Reg Write

200ps 100 ps 200ps 200ps 100 ps

CMPT 295CPU Control, Pipeline and Hazards

Agenda

• RISC-V Pipeline
• Hazards

– Structural
– Data

• R-type instructions
• Load

– Control
• Superscalar processors

24

Hazards
Ahead!

CMPT 295CPU Control, Pipeline and Hazards

Pipeline Hazards
A hazard is a situation that prevents starting the

next instruction in the next clock cycle
1) Structural hazard

– A required resource is busy
(e.g. needed in multiple stages)

2) Data hazard
– Data dependency between instructions
– Need to wait for previous instruction to

complete its data write

3) Control hazard
– Flow of execution depends on previous

instruction

25

CMPT 295CPU Control, Pipeline and Hazards

I
n
s
t
r

O
r
d
e
r

Load

Add

Store

Sub

Or

Time (clock cycles)

• RegFile: Used in ID and WB!

Structural Hazard: Regfile!

26

CMPT 295CPU Control, Pipeline and Hazards

RISC-V Pipeline: Regfile Structural Hazard

Addr Inst | Cycle 0 1 2 3 4 5 6 7 8 9 10

0x00 addi a0, zero, 5 IF ID EX MM WB

0x04 addi a1, a4, 5 IF ID EX MM WB

0x08 addi a2, a5, 5 IF ID EX MM WB

0x0C addi a3, a6, 5 IF ID ID EX MM WB

27

CMPT 295CPU Control, Pipeline and Hazards

Regfile Structural Hazards

• Each instruction:
− Can read up to two operands in decode stage

− Can write one value in writeback stage

• Avoid structural hazard by having separate “ports”
− Two independent read ports and one independent write port

• Three accesses per cycle can happen simultaneously

28

Clk

portW

Write Enable

32
32

portA

32
portB

5 5 5
RW RA RB

32 x 32-bit
Registers

CMPT 295CPU Control, Pipeline and Hazards

• Two alternate solutions:

1) Build RegFile with independent read and write ports
(assignment); good for single-stage

2) Double Pumping: split RegFile access in two! Prepare to
write during 1st half, write on falling edge, read during
2nd half of each clock cycle

• Will save us a cycle later...

• Possible because RegFile access is VERY fast
(takes less than half the time of ALU stage)

• Conclusion: Read and Write to registers
during same clock cycle is okay

29

Regfile Structural Hazards

CMPT 295CPU Control, Pipeline and Hazards

Regfile Structural Hazard: 2 Rd+1Wr Ports

Addr Inst | Cycle 0 1 2 3 4 5 6 7 8 9 10

0x00 addi a0, zero, 5 IF ID EX MM WB

0x04 addi a1, a4, 5 IF ID EX MM WB

0x08 addi a2, a5, 5 IF ID EX MM WB

0x0C addi a3, a6, 5 IF ID EX MM WB

30

CMPT 295CPU Control, Pipeline and Hazards

Structural Hazard: Memory Access

add t0, t1, t2

or t3, t4, t5

slt t6, t0, t3

instruction sequence

sw t0, 4(t3)

lw t0, 8(t3)

• Instruction and data memory

used simultaneously

✓ Use two separate

memories

31

CMPT 295CPU Control, Pipeline and Hazards

Structural Hazards – Summary
• Conflict for use of a resource

• In RISC-V pipeline with a single memory unit
− Load/store requires data access
− Without separate memory units, instruction fetch would have to

stall for that cycle
▪ All other operations in pipeline would have to wait

• Pipelined datapaths require separate instruction/data
memory units

− Or separate instruction/data caches

• RISC ISAs (including RISC-V) designed to avoid structural
hazards

− e.g. at most one memory access/instruction
32

CMPT 295CPU Control, Pipeline and Hazards

2. Data Hazards (1/2)

• Consider the following sequence of
instructions:

33

add s0, s1, s2

sub s4, s0, s3

and s5, s0, s6

or s7, s0, s8

xor s9, s0, s10

Stored
during WB

Read
during ID

CMPT 295CPU Control, Pipeline and Hazards

2. Data Hazards (2/2)

34

sub s4, s0, s3

and s5, s0, s6

or s7, s0, s8

xor s9, s0, s10

add s0, s1, s2

Time (clock cycles)

Identifying data hazards:
- Where is data WRITTEN?
- Where is data READ?
- Does the WRITE happen AFTER the READ?

CMPT 295CPU Control, Pipeline and Hazards

Solution 1: Stalling

• Problem: Instruction depends on result from previous instruction
− add s0, s1, s2

sub s4, s0, s3

• Bubble:
− effectively NOP: affected pipeline stages do “nothing” (add x0 x0 x0)

CMPT 295CPU Control, Pipeline and Hazards

Data Hazard

Addr Inst | Cycle 0 1 2 3 4 5 6 7 8 9 10

0x00 add s0, s1, s2 IF ID EX MM WB

0x04 sub s4, s0, s3 IF ID - - EX MM WB

0x08 and s5, s0, s6 IF IF IF ID EX MM WB

0x0C or s7, s0, s8 IF ID EX MM WB

36

CMPT 295CPU Control, Pipeline and Hazards

Data Hazard Solution: Forwarding

• Forward result as soon as it is available, even
though it’s not stored in RegFile yet

37

sub s4, s0, s3

and s5, s0, s6

or s7, s0, s8

xor s9, s0, s10

add s0, s1, s2

Forwarding: get operand from pipeline stage, rather than register file

CMPT 295CPU Control, Pipeline and Hazards

Data Hazard with Forwarding

Addr Inst | Cycle 0 1 2 3 4 5 6 7 8 9 10

0x00 add s0, s1, s2 IF ID EX MM WB

0x04 sub s4, s0, s3 IF ID EX MM WB

0x08 and s5, s0, s6 IF ID EX MM WB

0x0C or s7, s0, s8 IF ID EX MM WB

38

CMPT 295CPU Control, Pipeline and Hazards

Data Hazard: Loads (1/2)

• Recall: Dataflow backwards in time are
hazards

• Can’t solve all cases with forwarding
– Must stall instruction dependent on load (sub), then forward after the

load is done (more hardware)

39

sub t3, t0, t2

lw t0, 0(t1)

CMPT 295CPU Control, Pipeline and Hazards

Data Hazard: Loads (2/2)

• Slot after a load is called a load delay slot
– If that instruction uses the result of the load,

then the hardware will stall for one cycle
– Equivalent to inserting an explicit nop in the

slot
• except the latter uses more code space

– Performance loss

• Idea: Let the compiler/assembler put an
unrelated instruction in that slot → no stall!

40

CMPT 295CPU Control, Pipeline and Hazards

3. Control Hazards

• Branch (beq, bne,...) determines flow of
control
– Fetching next instruction depends on branch

outcome

– Pipeline can’t always fetch correct instruction
• Result isn’t known until end of execute

• Simple Solution: Stall or flush on every
branch until we have the new PC value
– How long must we stall?

41

CMPT 295CPU Control, Pipeline and Hazards

42

• How many instructions after beq are affected
by the control hazard?

A) 1
B) 2
C) 3
D) 4
E) 5

beq

Instr 1

Instr 2

Instr 3

Instr 4

CMPT 295CPU Control, Pipeline and Hazards

Branch Stall

43

• How many bubbles required for branch?

beq

Instr 1

Instr 2

Instr 3

Instr 4

Time (clock cycles)

CMPT 295CPU Control, Pipeline and Hazards

Taken Branch & ecall

44

CMPT 295CPU Control, Pipeline and Hazards

Not-Taken Branch

45

CMPT 295CPU Control, Pipeline and Hazards

3. Control Hazard: Branching

• RISC-V Solution: Branch Prediction – guess
outcome of a branch, fix afterwards if
necessary

– Must cancel (flush) all instructions in pipeline that
depended on guess that was wrong

– How many instructions do we end up flushing?

46

CMPT 295CPU Control, Pipeline and Hazards

Clear Instructions after Branch if Taken

beq t0, t1, label

sub t2, s0, t5

or t6, s0, t3

label: xxxxxx
PC updated reflecting
branch outcome

47

Taken branch

Convert to NOP

Convert to NOP

Two instructions are affected by an incorrect branch, just like we’d have to
insert two NOP’s/stalls in the pipeline to wait on the correct value!

CMPT 295CPU Control, Pipeline and Hazards

Branch Prediction

beq t0, t1, label

label: …..

…..

48

Taken branch

Guess next PC!

Check guess correct

In the correct case, we don’t have any stalls/NOP’s at all!
Prediction, if done correctly, is better on average than stalling

