
CS295L07 – RISC V Final

Roadmap

1

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Arrays & structs
Integers & floats
RISC V assembly
Procedures & stacks
Executables
Memory & caches
Processor Pipeline
Performance
Parallelism

CS295L07 – RISC V Final

• Stored-Program Concept
• R-Format
• I-Format
• S-Format
• SB-Format
• U-Format
• UJ-Format

Agenda

2

CS295L07 – RISC V Final

So how do we represent instructions?
Remember: Computer only understands 1s and
0s, so assembler string “add x10,x11,x0”
is meaningless to hardware

CS295L07 – RISC V Final

4

top

bottom

system reserved

stack

system reserved

Anatomy of an executing program
0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000
code (text)

static data

dynamic data (heap)$gp

CS295L07 – RISC V Final

Big Idea: Stored-Program Concept

• programs can be stored in memory as numbers
• Before: a number can mean anything
• Now: make convention for interpreting numbers as

instructions

5

INSTRUCTIONS ARE DATA

CS295L07 – RISC V Final

6

top
system reserved

stack

.data

.text

0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

code (text)

static data

dynamic data (heap)

*Layout in 295
On actual hw
code starts at
0x00400000

CS295L07 – RISC V Final

• Divide the 32 bits of an instruction into “fields”
– regular field sizes → simpler hardware
– will need some variation….

Instructions as Numbers

7

31 0

• By convention, RISCV instructions are each
1 word = 4 bytes = 32 bits

CS295L07 – RISC V Final

Assembler demo

8

CS295L07 – RISC V Final

Jump Table Demo

9

CS295L07 – RISC V Final

Switch Statement
Example

v Multiple case labels
§ Here: 5 & 6

v Fall through cases
§ Here: 2

v Missing cases
§ Here: 4

v Implemented with:
§ Jump table
§ Indirect jump instruction

10

long switch_ex
(long x, long y, long z)

{
long w = 1;
switch (x) {

case 1:
w = y*z;
break;

case 2:
w = y/z;

/* Fall Through */
case 3:

w += z;
break;

case 5:
case 6:

w -= z;
break;

default:
w = 2;

}
return w;

}

CS295L07 – RISC V Final

Jump Table Structure

11

Code
Block 0

Targ0:

Code
Block 1

Targ1:

Code
Block 2

Targ2:

Code
Block n–1

Targn-1:

•
•
•

Targ0

Targ1

Targ2

Targn-1

•
•
•

JTab:

target = JTab[x];
goto target;

switch (x) {
case val_0:

Block 0
case val_1:

Block 1
• • •

case val_n-1:
Block n–1

}

Switch Form

Approximate Translation

Jump Table Jump Targets

CS295L07 – RISC V Final

Jump Table Structure

12

switch (x) {
case 1: <some code>

break;
case 2: <some code>
case 3: <some code>

break;
case 5:
case 6: <some code>

break;
default: <some code>

}

Code
Blocks

Memory

Use the jump table when x ≤ 6:

if (x <= 6)
target = JTab[x];
goto target;

else
goto default;

C code:

0
1
2
3
4
5
6

Jump
Table

CS295L07 – RISC V Final

.section .rodata
.align 8

.L4:
.quad .L8 # x = 0
.quad .L3 # x = 1
.quad .L5 # x = 2
.quad .L9 # x = 3
.quad .L8 # x = 4
.quad .L7 # x = 5
.quad .L7 # x = 6

Jump Table

13

Jump table switch(x) {
case 1: // .L3

w = y*z;
break;

case 2: // .L5
w = y/z;
/* Fall Through */

case 3: // .L9
w += z;
break;

case 5:
case 6: // .L7

w -= z;
break;

default: // .L8
w = 2;

}

declaring data, not instructions 8-byte memory alignment

this data is 64-bits wide

CS295L07 – RISC V Final

SMC Demo

14

CS295L07 – RISC V Final

The 6 Instruction Formats
• R-Format: instructions using 3 register inputs
– add, xor, mul —arithmetic/logical ops

• I-Format: instructions with immediates, loads
– addi, lw, jalr, slli

• S-Format: store instructions: sw,sb
• SB-Format: branch instructions: beq, bge
• U-Format: instructions with upper immediates
– lui, auipc —upper immediate is 20-bits

• UJ-Format: the jump instruction: jal

CS295L07 – RISC V Final

• RISCV Instruction: add x5,x6,x7

Field representation (decimal):

Field representation (binary):

R-Format Example

16

two

0 0x337 6 0 5
31 0

0000000 011001100111 00110 000 00101
31 0

hex representation: 0x 0073 02B3

decimal representation: 7,537,331

Called a Machine Language Instruction

CS295L07 – RISC V Final

• opcode (7): uniquely specifies the
instruction

• rs1 (5): specifies a register operand
• rd (5): specifies destination register that

receives result of computation

17

imm[11:0] func3 rd opcode
31 0

rs1

I-Format Instructions (3/4)

CS295L07 – RISC V Final

I-Format Instructions (4/4)

• immediate (12): 12 bit number
– All computations done in words, so 12-bit

immediate must be extended to 32 bits
– always sign-extended to 32-bits before use in an

arithmetic operation

18

imm[11:0] func3 rd opcode
31 0

rs1

• Can represent 212 different immediates
– imm[11:0] can hold values in range [-211 , +211)

CS295L07 – RISC V Final

???

I-Format Example (1/2)

19

addi x15,x1,-50

rd = x15
rs1 = x1

??? ? ??? ???
31 0

00001

imm[11:0] func3 rd opcoders1

111111001110 011110 0x13

CS295L07 – RISC V Final

Load Instructions are also I-Type

• The 12-bit signed immediate is added to the base
address in register rs1 to form the memory
address
– This is very similar to the add-immediate operation but

used to create address, not to create final result
• Value loaded from memory is stored in rd

20

imm[11:0] func3 rd opcode
31 0

rs1

offset[11:0] width dst LOADbase

CS295L07 – RISC V Final

S-Format Used for Stores

• Store needs to read two registers, rs1 for base memory
address, and rs2 for data to be stored, as well as need
immediate offset!

• Can’t have both rs2 and immediate in same place as other
instructions!

• Note: stores don’t write a value to the register file, no rd!
• RISC-V design decision is move low 5 bits of immediate to

where rd field was in other instructions – keep rs1/rs2
fields in same place

• register names more critical than immediate bits in hardware
design

21

imm[11:5] opcoders2 rs1 func3 imm[4:0]
31 0

CS295L07 – RISC V Final

S-Format Example

sw x14, 8(x2)

22

imm[11:5] opcoders2 rs1 func3 imm[4:0]
31 0

00000000 010001101110 00010 010 01000
off[11:5]

= 0 STORErs2=14 rs1=2 SW off[4:0]
= 8

CS295L07 – RISC V Final

• B-format is mostly same as S-Format, with two
register sources (rs1/rs2) and a 12-bit
immediate

• But now immediate represents values -212 to
+212-2 in 2-byte increments

• The 12 immediate bits encode even 13-bit
signed byte offsets (lowest bit of offset is always
zero, so no need to store it)

RISC-V B-Format for Branches

23

imm[12|10:5] opcoders2 rs1 func3 imm[4:1|11]

31 0

7 75 5 3 5

CS295L07 – RISC V Final

Branch Example (1/2)

• RISCV Code:
Loop: beq x19,x10,End

add x18,x18,x10
addi x19,x19,-1
j Loop

End: <target instr>

• Branch offset =
• (Branch with offset of 0, branches to itself)

24

Start counting from
instruction AFTER
the branch

1
2
3
4

4×32-bit instructions = 16 bytes

CS295L07 – RISC V Final

Branch Example (1/2)

• RISCV Code:
Loop: beq x19,x10,End

add x18,x18,x10
addi x19,x19,-1
j Loop

End: <target instr>

25

Start counting from
branch

1
2
3
4

??????? 110001101010 10011 000 ?????
31 07 75 5 3 5

BRANCHrs2=10 rs1=19 BEQ

CS295L07 – RISC V Final

beq x19,x10,offset = 16 bytes
13-bit immediate, imm[12:0], with value 16

0000000010000

Branch Example (1/2)

26

0 000000 110001101010 10011 000 1000 0
31 0

imm[12|10:5] imm[4:1|11]

imm[0] discarded,
always zero

CS295L07 – RISC V Final

U-Format for “Upper Immediate”
instructions

• Has 20-bit immediate in upper 20 bits of 32-bit
instruction word

• One destination register, rd
• Used for two instructions
– LUI – Load Upper Immediate
– AUIPC – Add Upper Immediate to PC

27

imm[31:12] opcoderd
31 0

20
U-immediate[31:12]

7
LUI/AUIPC

5
dest

CS295L07 – RISC V Final

• lui writes the upper 20 bits of the destination with
the immediate value, and clears the lower 12 bits

• Together with an addi to set low 12 bits, can create
any 32-bit value in a register using two instructions
(lui/addi).

lui x10, 0x87654 # x10 =
0x87654000
addi x10, x10, 0x321 # x10 = 0x87654321

LUI to create long immediates

28

CS295L07 – RISC V Final

jalr

ret and jr psuedo-instructions

ret = jr ra = jalr x0, ra, 0

Call function at any 32-bit absolute address

lui x1, <hi 20 bits>

jalr ra, x1, <lo 12 bits>

Jump PC-relative with 32-bit offset

auipc x1, <hi 20 bits>

jalr x0, x1, <lo 12 bits>

29

imm[11:0] func3 rd opcode
31 0

rs1
offset 0 dest JALRbase

CS295L07 – RISC V Final

Summary of RISC-V Instruction Formats

30

CS295L07 – RISC V Final

• Function calls and Jumps
• Call Stack
• Register Convention
• Program memory layout

Agenda

31

CS295L07 – RISC V Final

Transfer Control
§ Caller à Routine
§ Routine à Caller

Pass Arguments to and from the routine
§ fixed length, variable length, recursively
§ Get return value back to the caller

Manage Registers
§ Allow each routine to use registers
§ Prevent routines from clobbering each others’ data

Calling Convention for Procedure Calls

32

CS295L07 – RISC V Final

Six Steps of Calling a Function
1. Put arguments in a place where the function

can access them
2. Transfer control to the function
3. The function will acquire any (local) storage

resources it needs
4. The function performs its desired task
5. The function puts return value in an

accessible place and “cleans up”
6. Control is returned to you

33

CS295L07 – RISC V Final

34

Jumps are not enough

main:
j myfn

after1:
add x1,x2,x3

myfn:
…

…
j after1

Jumps to the callee
Jumps back

1

2

CS295L07 – RISC V Final

myfn:
…

…

35

Jumps are not enough

main:
j myfn

after1:
add x1,x2,x3

j myfn
after2:

sub x3,x4,x5

Jumps to the callee
Jumps back
What about multiple sites?

1

2

??? Change target
on the fly ???

j after2

3

4

j after1

CS295L07 – RISC V Final

36

Takeaway 1: Need Jump And Link
JAL (Jump And Link) instruction moves a
new value into the PC, and simultaneously
saves the old value in register x1 (aka $ra
or return address)

Thus, can get back from the subroutine to
the instruction immediately following the
jump by transferring control back to PC in
register x1

CS295L07 – RISC V Final

37

Jump-and-Link / Jump Register

main:
jal myfn

after1:
add x1,x2,x3

jal myfn
after2:

sub x3,x4,x5

myfn:
…

…
jr x1

JAL saves the PC in register $31
Subroutine returns by jumping to $31

1

2

x1 after1First call

CS295L07 – RISC V Final

after1

38

Jump-and-Link / Jump Register

main:
jal myfn

after1:
add x1,x2,x3

jal myfn
after2:

sub x3,x4,x5

myfn:
…

…
jr x1

JAL saves the PC in register x1
Subroutine returns by jumping to x1

What happens for recursive invocations?

1

2

x1 after2Second call

4

3

CS295L07 – RISC V Final

39

int main (int argc, char* argv[]) {
int n = 9;
int result = myfn(n);

}

int myfn(int n) {

if(n > 0) {
return n * myfn(n - 1);

} else {
return 1;

}
}

JAL / JR for Recursion?

CS295L07 – RISC V Final

40

JAL / JR for Recursion?

main:
jal myfn

after1:
add x1,x2,x3

myfn:
if (test)

jal myfn
after2:

jr x1

Problems with recursion:
• overwrites contents of x1

1

x1 after1First call

CS295L07 – RISC V Final

41

JAL / JR for Recursion?

main:
jal myfn

after1:
add x1,x2,x3

myfn:
if (test)

jal myfn
after2:

jr x1

Problems with recursion:
• overwrites contents of x1

1

x1Recursive Call

2
after1after2

CS295L07 – RISC V Final

42

JAL / JR for Recursion?

main:
jal myfn

after1:
add x1,x2,x3

myfn:
if (test)

jal myfn
after2:

jr x1

Problems with recursion:
• overwrites contents of x1

1

x1 after2Return from Recursive Call

2

3

CS295L07 – RISC V Final

43

JAL / JR for Recursion?

main:
jal myfn

after1:
add x1,x2,x3

myfn:
if (test)

jal myfn
after2:

jr x1

Problems with recursion:
• overwrites contents of x1

1

x1 after2Return from Original Call???

2

3 4 Stuck!

CS295L07 – RISC V Final

44

JAL / JR for Recursion?

main:
jal myfn

after1:
add x1,x2,x3

myfn:
if (test)

jal myfn
after2:

jr x1

Problems with recursion:
• overwrites contents of x1

• Need a way to save and restore register contents

1

x1 after2Return from Original Call???

2

3 4 Stuck!

CS295L07 – RISC V Final

• Function calls and Jumps
• Call Stack
• Register Convention
• Program memory layout

Agenda

45

CS295L07 – RISC V Final

46

Takeaway2: Need a Call Stack
JAL (Jump And Link) instruction moves a new value
into the PC, and simultaneously saves the old value
in register x1 (aka ra or return address) Thus, can get
back from the subroutine to the instruction
immediately following the jump by transferring
control back to PC in register x1

Need a Call Stack to return to correct calling
procedure. To maintain a stack, need to store an
activation record (aka a “stack frame”) in memory.
Stacks keep track of the correct return address by
storing the contents of x1 in memory (the stack).

CS295L07 – RISC V Final

47

Need a “Call Stack”
Call stack
• contains activation records (aka stack frames)

Each activation record contains
• the return address for that invocation
• the local variables for that procedure

A stack pointer (sp) keeps track of the top of the stack
• dedicated register (x2) on the RISC-V

Manipulated by push/pop operations
• push: move sp down, store
• pop: load, move sp up

CS295L07 – RISC V Final

Stack Before, During, After Call

48

ra

CS295L07 – RISC V Final

Local Variables and Arrays
• Any local variables the compiler cannot assign

to registers will be allocated as part of the
stack frame (Recall: spilling to memory)

• Locally declared arrays and structs are also
allocated as part of the stack frame

• Stack manipulation is same as before
– Move sp down an extra amount and use the

space it created as storage
49

CS295L07 – RISC V Final

Function Call Example
int Leaf(int g, int h, int i, int j) {

int f;
f = (g + h) – (i + j);
return f;

}

v Parameter variables g, h, i, and j in argument registers a0, a1,
a2, and a3, and f in s0

v Assume need one temporary register s1

CS295L07 – RISC V Final

RISC-V Code for Leaf()
Leaf: addi sp,sp,-8 # adjust stack for 2 items

sw s1, 4(sp) # save s1 for use afterwards
sw s0, 0(sp) # save s0 for use afterwards

add s0,a0,a1 # f = g + h
add s1,a2,a3 # s1 = i + j
sub a0,s0,s1 # return value (g + h) – (i + j)
lw s0, 0(sp) # restore register s0 for caller
lw s1, 4(sp) # restore register s1 for caller
addi sp,sp,8 # adjust stack to delete 2 items
jr ra # jump back to calling routine

CS295L07 – RISC V Final

Stack Before, During, After Function

v Need to save old values of s0 and s1

sp

Before call

sp
Saved s1

During call

Saved s0

sp

After call

Saved s1
Saved s0

CS295L07 – RISC V Final

• Function calls and Jumps
• Call Stack
• Register Convention
• Program memory layout

Agenda

53

CS295L07 – RISC V Final

v CalleR: the calling function
v CalleE: the function being called

v When callee returns from executing, the caller needs
to know which registers may have changed and which
are guaranteed to be unchanged.

v Register Conventions: A set of generally accepted
rules as to which registers will be unchanged after a
procedure call (jal) and which may be changed.

Register Conventions

CS295L07 – RISC V Final

Basic Structure of a Function

func_label:
addi sp,sp, -framesize
sw ra, <framesize-4>(sp)
save other regs if need be

restore other regs if need be
lw ra, <framesize-4>(sp)
addi sp,sp, framesize
jr ra

55

Epilogue

Prologue

Body (call other functions…)

ra

stack

...

$ra

$ra

...

CS295L07 – RISC V Final

Using Stack to Backup Registers

• Limited number of registers for everyone to use
(limited desk space)

• All functions use the same conventions -- look for
arguments/return addresses in the same places
–What happens if a function calls another

function?
(ra would get overwritten!)

56

To reduce expensive loads and stores from spilling and restoring registers, RISC-V function-calling
convention divides registers into two categories:

CS295L07 – RISC V Final

57

CS295L07 – RISC V Final

Saved Registers
• These registers are expected to be the same

before and after a function call
– If calleE uses them, it must restore values before

returning
– This means save the old values, use the registers, then

reload the old values back into the registers
• s0-s11 (saved registers)
• sp (stack pointer)
– If not in same place, the caller won’t be able to

properly restore values from the stack
• ra (return address)

58

ra

CS295L07 – RISC V Final

Volatile Registers

• These registers can be freely changed by the
calleE
– If calleR needs them, it must save those values before

making a procedure call

• t0-t6 (temporary registers)
• a0-a7 (return address and arguments)
– These will change if calleE invokes another function

(nested function means calleE is also a calleR)

59

$t

a

CS295L07 – RISC V Final

Example: sumSquare

int sumSquare(int x, int y) {
return mult(x,x)+ y; }

• What do we need to save?
– Call to mult will overwrite ra, so save it
– Reusing a1 to pass 2nd argument to mult, but

need current value (y) later, so save a1
• To save something to the Stack, move sp

down the required amount and fill the
“created” space

60

CS295L07 – RISC V Final

Example: sumSquare
int sumSquare(int x, int y) {

return mult(x,x)+ y; }

sumSquare:
addi sp,sp,-8 # make space on stack
sw ra, 4(sp) # save ret addr
sw a1, 0(sp) # save y
add a1,a0,x0 # set 2nd mult arg
jal mult # call mult
lw a1, 0(sp) # restore y
add a0,a0,a1 # ret val = mult(x,x)+y
lw ra, 4(sp) # get ret addr
addi sp,sp,8 # restore stack
jr ra

mult: ...

61

“push”

“pop”

CS295L07 – RISC V Final

Choosing Your Registers
• Minimize register footprint
– Optimize to reduce number of registers you need to

save by choosing which registers to use in a function
– Only save when you absolutely have to

• Function does NOT call another function
– Use only t0-t6 and there is nothing to save!

• Function calls other function(s)
– Values you need throughout go in s0-s11, others go

in t0-t6
– At each function call, check number arguments and

return values for whether you or not you need to save

62

CS295L07 – RISC V Final

63

Pros of Argument Passing Convention

• Consistent way of passing arguments to and from subroutines
• Creates single location for all arguments

• Caller makes room for a0-a7 on stack
• Callee must copy values from a0-a7 to stack
à callee may treat all args as an array in memory
§ Particularly helpful for functions w/ variable length inputs: printf(“Scores:

%d %d %d\n”, 1, 2, 3);

• Aside: not a bad place to store inputs if callee needs to call a
function (your input cannot stay in $a0 if you need to call another
function!)

CS295L07 – RISC V Final

• Function calls and Jumps
• Call Stack
• Register Convention
• Program memory layout

Agenda

64

CS295L07 – RISC V Final

65

Stack contains stack frames (aka “activation records”)
• 1 stack frame per dynamic function
• Exists only for the duration of function
• Grows down, “top” of stack is sp, x2
• Example: lw x5, 0(sp) puts word at top of stack into x5
Each stack frame contains:
§Local variables, return address (later), register

backups (later)
int main(…) {

...

myfn(x);
}
int myfn(int n) {

...

myfn();
}

system reserved

stack

code

heap

system reserved

static data

myfn stack frame

myfn stack frame

main stack frame

$spà

CS295L07 – RISC V Final

66

Frame Pointer
It is often cumbersome to keep track of location of
data on the stack
• The offsets change as new values are pushed onto and

popped off of the stack

Keep a pointer to the bottom of the top stack frame
• Simplifies the task of referring to items on the stack

A frame pointer, x8, aka fp/s0
• Value of sp upon procedure entry
• Can be used to restore sp on exit

CS295L07 – RISC V Final

67

The Heap
v Heap holds dynamically allocated memory
• Program must maintain pointers to anything allocated

• Example: if x5 holds x
• lw x6, 0(x5) gets first word x points to

• Data exists from malloc() to free()

void some_function() {
int *x = malloc(1000);
int *y = malloc(2000);
free(y);
int *z = malloc(3000);

}

system reserved

stack
X
Y
z

code

heap

system reserved

static data 1000 bytes

2000 bytes
3000 bytes

CS295L07 – RISC V Final

68

Data Segment
Data segment contains global variables
• Exist for all time, accessible to all routines
• Accessed w/global pointer

• gp, x3, points to middle of segment
• Example: lw x5, 0(gp) gets middle-most word

(here, max_players)

int max_players = 4;

int main(...) {
...

}

gpà 4

system reserved

stack

code

heap

system reserved

static data

CS295L07 – RISC V Final

69

int n = 100;
int main (int argc, char* argv[]) {

int i, m = n, sum = 0;
int* A = malloc(4*m + 4);
for (i = 1; i <= m; i++) {

sum += i; A[i] = sum; }
printf ("Sum 1 to %d is %d\n", n, sum);

}

Variables Visibility Lifetime Location
Function-Local

Global

Dynamic

Where is i ?
(A) Stack
(B)Heap
(C)Global Data
(D)Text

Where is n ?
(A) Stack
(B)Heap
(C)Global Data
(D)Text

Where is main ?
(A) Stack
(B)Heap
(C)Global Data
(D)Text

CS295L07 – RISC V Final

70

top

bottom

system reserved

stack

system reserved

0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000
code (text)

static data

dynamic data (heap)

“Data Memory”

“Program Memory”

CS295L07 – RISC V Final

71

int n = 100;
int main (int argc, char* argv[]) {

int i, m = n, sum = 0;
int* A = malloc(4*m + 4);
for (i = 1; i <= m; i++) {

sum += i; A[i] = sum; }
printf ("Sum 1 to %d is %d\n", n, sum);

}

Variables Visibility Lifetime Location

Function-Local

Global

Dynamic

i, m, sum, A

n, str

w/in function function
invocation stack

whole program program
execution .data

b/w malloc
and free heap

Anywhere that
has a pointer*A

CS295L07 – RISC V Final

72

Global and Locals
How does a function load global data?
§ global variables are just above 0x10000000

Convention: global pointer
§ x3 is gp (pointer into middle of global data section)
gp = 0x10000800

§ Access most global data using LW at gp +/- offset
LW t0, 0x800(gp)
LW t1, 0x7FF(gp)

CS295L07 – RISC V Final

73

top

bottom

system reserved

stack

system reserved

Anatomy of an executing program
0xfffffffc

0x00000000

0x7ffffffc
0x80000000

0x10000000

0x00400000
code (text)

static data

dynamic data (heap)$gp

