Week 7 - Summary CMPT 295

Week 7 - Summary

Processor-Memory Gap

Performance

CMPT 295

100,000
“Moore’s Law”
e e e WProC | e aaea e
VEDe0 55%/year
(2X/1.5yr) \
2 10,00 1 oo e
Processor-Memory
SN SO . I W Performance Gap.
(grows 50%/year)
10T e oy L e
1 | | | | T |
1980 1985 1990 1995 2000 2005 2010
Year DRAM
1989 first Intel CPU with cache on chip 7%/year
1998 Pentium Ill has two cache levels on chip (2X/10yrs)

Week 7 - Summary CMPT 295

Problem: Processor-Memory Bottleneck

Processor performance
doubled about
every 18 months

Bus latency / bandwidth
evolved much slower

Main

CPU | Reg
Memory

Problem: lots of waiting on memory

Week 7 - Summary CMPT 295

Problem: Processor-Memory Bottleneck

Processor performance
doubled about
every 18 months

Bus latency / bandwidth
evolved much slower

Main

CPU | Reg Cache
Memory

Solution: caches
Smaller memories, closer to CPU - faster

Week 7 - Summary CMPT 295

General Cache Mechanics

* Smaller, faster, more expensive
Cache 7 9 14 3 memory
* (Caches a subset of the blocks

Data is copied in block-sized
transfer units

Memory 0 1 2 3 * Larger, slower, cheaper memory.
* Viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15

Week 7 - Summary CMPT 295

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Block b is in cache:
Cache 7 9 14 3)
Hit!
Data is returned to CPU

Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
©00000c000000000000

Week 7 - Summary CMPT 295

General Cache Concepts: Miss

Request: 12 Data in block b is needed
Block b is not in cache:
Cache 7 12 14 3 :
Miss!
Block b is fetched from
12 Request: 12
memory
Block b is stored in cache
Memory 0 1 2 3 :
* Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
8 9 10 11
determines which block
12 13 14 15 gets evicted (victim)
00000000000 O0CGOCOOGOO

Data is returned to CPU

Why Caches Work

+ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

recently Q

+ Temporal locality: block
= Recently referenced items are likely
to be referenced again in the near future ﬂ
+» Spatial locality: block

" |tems with nearby addresses tend
to be referenced close together in time

+» How do caches take advantage of this?

Week 7 - Summary CMPT 295

Example: Any Locality?

sum = 0;
for (1 =

{

O, 1 < n; i++)

sum += alf[i];

4

}

return sum;

«» Data:
" Temporal: sumreferenced in each iteration
= Spatial: array a [] accessed in stride-1 pattern

« Instructions:

" Temporal: cycle through loop repeatedly

= Spatial: reference instructions in sequence

Week 7 - Summary CMPT 295

<+ Access Pattern
fori=0to 8, i++ vs. fori=0to 8§, i=i+2

+» Data layout
int a[8] vs. short a[8]
int a[8] vs. int a[16]

+» Cache Geometry
Direct mapped vs. Set Associative (more later..)

10

Int. Stride 1

// Block size 64 bytes

int a[8];

for(i=0;i<8;i++){
tmp = ali]

Number of elements per block = 64/4 = 16
Hit:Access = 7.8 (Hit Rate)
Miss:Access = 1:8 (Miss Rate)

If we change loop to “i<16” and change array definition
to int a[16], how would hit rate change?

Week 7 - Summa ry

Short Stride 1

// Block size 64 bytes

short a[20];

for(i=0;i<20; i++) {
tmp = ali]

Number of elements per block = 64/2 = 32
Hit:Access = 19:20
Miss:Access = 1:20

Int Stride 2

// Block size 64 bytes

int a[16];

for(i=0;i<16;i=i+2){
tmp = ali]

Number of elements per block = 64/4 = 16
Accessed Elements per block = 16/2 = 8
Hit:Access = 7.8

Miss:Access = 1:8

Week 7 - Summary CMPT 295

+» Caching in general

= Successively higher levels contain “most used” data from
lower levels

= Exploits temporal and spatial locality

= Caches are intermediate storage levels used to optimize
data transfers between any system elements with different
characteristics

+ Cache Performance
= |deal case: found in cache (hit)

= Bad case: not found in cache (miss), search in next level

= Average Memory Access Time (AMAT) = HT + MR x MP
- Hurt by Miss Rate and Miss Penalty

14

Week 7 - Summary CMPT 295

Row Major

for(i=0;i<4;i++){
for(j=0;j<4;j++){
Ali]lj]

Hits: N-1 (N: number of elements per block)

Week 7 - Summary CMPT 295

int sum array rows (int a[M] [N]) M =3, N=4

{ a[o][0]||al[o][1]]||al0][2]||alO][3]
int 1, j, sum = 0;

a[1][0]||al1][1]||all](2]||al1l][3]

for (1 = 0;, 1 < M; 1i++)
for (3 = 0; j < N; j++) a[2][0] |[al2][1]]]al2][2] | |al2][3]
sum += al[i][]];

Access Pattern: 1)] a[0] [0]

ELLEn 5o stride = ? 2)| a1071 1]

} 3) a[0][2]
4)1 al0] [3]

Layout in Memory 5) alll[0]
a a a a a a a a a a a a 6) a[l] [1]
to1fro1|rorfrorfrai|{rzrfrar|rrrfr21|r21|r21|r2 Nl alllfz]
o111 21| t31fror|rr1|r21|e31frorfr1|r21|r3 8) a[1][3]
| I | 9) al2] 0]
76 92 108 10)f al2] [1]
11| ar2112]

12)| ar271 1317

16

Week 7 - Summa ry

Column Major

for(i=0;i<4;i++){
for(j=0;j<4;j++) {
Alj]l]

Hits: 0

Week 7 - Summary CMPT 295

int sum array cols (int a[M] [N]) M =3, N=4

{ a[o][0]||al[o][1]]||al0][2]||alO][3]
int 1, j, sum = 0;

a[1][0]||al1][1]||all](2]||al1l][3]

for (3 = 0; 7 < N; j++)
for (1 = 0; 1 < M; 1i++) al2][0]||al2][1]]|al2][2]||al2]3]
sum += al[i][]];

Access Pattern: 1)] a[0] [0]

ELLEn 5o stride = ? 2)[a[1] (0]

} 3)| ar2110]
4)1 al0] [1]

Layout in Memory S)|alllf1]
a a a a a a a a a a a a 6) a[z] [1]
to1fro1|rorfrorfrai|{rzrfrar|rrrfr21|r21|r21|r2 7] alo]f2]
o111 21| t31fror|rr1|r21|e31frorfr1|r21|r3 8) all]([2]
| I | 9al2ll2]
76 92 108 10) a[O0] [3]
1) ar1113]

12)] ar27113]

18

Week 7 - Summary CMPT 295

Cache Performance

+» Two things hurt the performance of a cache:
= Miss rate and miss penalty

+ Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses
AMAT = Hit time + Miss rate x Miss penalty
(abbreviated AMAT = HT + MR x MP)

+» 99% hit rate can be twice as good as 97% hit rate!
= Assume HT of 1 clock cycle and MP of 100 clock cycles
"= 97%: AMAT =
" 99%: AMAT =

19

Week 7 - Summary CMPT 295

Can we have more than one cache?

+» Why would we want to do that?
= Avoid going to memory!
+ Typical performance numbers:

" Miss Rate
- L1 MR=3-10%
« L2 Global MR = Quite small (e.g. < 1%), depending on parameters, etc.
« L2 (Local) MR typically larger than L1 MR (filtered by L1 hits)
" Hit Time
« L1 HT =4 clock cycles
« L2 HT =10 clock cycles

= Miss Penalty

- P =50-200 cycles for missing in L2 & going to main memory

- Trend: increasing! 20

Week 7 - Summary CMPT 295

An Example Memory Hierarchy

A
explicitly program-controlled
registers & (e.g. refer to exactly %t1, %t2)
on-chip L1
Smaller, G (U4 program sees “memory”;
faster, .
costlier o hardware manages caching
e 2 transparentl
per byte cache (SRAM) P y
Larger main memory
slower, (DRAM)
cheaper
per byte local secondary storage
(local disks)

remote secondary storage
(distributed file systems, web servers)

21

Week 7 - Summary CMPT 295

Intel Core i7 Cache Hierarchy

Processor package

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles

L3 unified cache
(shared by all cores)

Core 0 Core 3 ' Block size:

: \ 64 bytes for all caches

! Regs Regs !

L1 i-cache and d-cache:
oS || s L1D$ || L11$ | | ! 32 KiB, 8-way,

: ! Access: 4 cycles

. L2 unified cache:

: L2 unified cache L2 unified cache ! 256 KiB, 8-way,
Access: 11 cycles

__

Main memory

22

Making memory accesses fast!

+ Cache basics
+ Principle of locality
+» Memory hierarchies

+» Cache organization
= Direct-mapped (sets; index + tag)
= Associativity (ways)
= Replacement policy
= Handling writes

+» Program optimizations that consider caches

23

Week 7 - Summary CMPT 295

Note: The textbook
uses “b” for offset bits

Cache Organization (1)

+ Block Size (K): Unit of transfer between $ and Mem
= Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

«» Offset field

" Low-order log,(K) = k bits of address tell you which byte
within a block
- (address) mod 2™ = n lowest bits of address

= (address) modulo (# of bytes in a block)

m — k bits k bits

m-bit address: Block Number Block Offset
(refers to byte in memory)

24

CMPT 295

How to identify different blocks in cache?

o fori=0to N | =0-0x000000 Block: 0000
’ | =1- 0x000004 Block: 0001
Calculate(A[i]) |=1- 0x000008 Block: 0002
1w a0, 0(sl) Cache (16 bytes, 4 blocks)
beqz a0, LBB1_2 L]
call calculate
N
[T 71
addi s0,s0,-1

addi

Main Memory (64bytes, 16 blocks)

Week 7 - Summary CMPT 295

Tags Differentiate Blocks in Cache

Memory

Block Addr Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

_HaeK=4B
and C/K =4

« Tag = rest of address bits
" [bits=m—k
® Check this during a cache lookup

26

Week 7 - Summary CMPT 295

Tags Differentiate Blocks in Same Index

Memory Cache
Block Addr Block Data Index Tag Block Data
oooo [T T 1 00 [00 T
0001 11 01 I | _HereK=4B
0010 L 10 01 L and C/K =4
0011 L 11 |o1 -
0100 T
0101 v _ fadd bi
o110 [Tag = rest of address bits
oliif + 1 | " tbits=m—s—k
1000 L
1001 | 4 1 ® Check this during a cache lookup
1010 T
1011 L
1100 11
1101 -
1110 -7
1111 B

27

Week 7 - Summary CMPT 295

block size: 16 B

Example Placement capacity: 8 blocks

address: 16 bits

+» Where would data from address 0x1833 be placed?
" Binary: Ob 0001 1000 0011 0011

- m-s—k S=10g(C/(K+E)) [=log,(K)

m-bit address: Tag (1) Index (s) Offset (k)
s=7 s=7 s=7 s=0
Direct-mapped 2-way set associative 4-way set associative Fully associative
Set Tag Data Set Tag Data Set Tag Data Set Tag Data
° 0
0 0

2 1

3

4 2

> 1

6 3

7

28

Week 7 - Summary CMPT 295

Mapping Memory Address to Cache

+» CPU sends address request for chunk of data
+» Address breakdown:

m-bit address: Tag (1) Index (s) | Offset (k)

\ J
Y
Block Number

* Index field tells you where to look in cache

o field lets you check that data is the block you want

= Offset field selects specified start byte within block

" k=log,(K); s = log,(C/(K*E)); t=m-s-k

= K: Block Size (bytes), E: Associativity; C: Cache Size (bytes)

29

Week 7 - Summary CMPT 295

CaChe Read Z Locate set

Check if any line in set
is valid and has

E = blocks/lines per set matching tag: hit
r A ~ 3) Locate data starting
4 at offset
[3 I)

Address of byte in memory:

eee & bits s bits | k bits
5= #Ssets< eee tag set block
=2 index offset
o000
[3 I)
\.
data begins at this offset
v tag OJ12] cccc-- K-1
o — _/
valid bit M

K = bytes per block 20

Week 7 - Summary CMPT 295

Example: Direct-Mapped Cache (£ =1)

Direct-mapped: One line per set
Block Size K =8 B

4 Address of int:
v tag ol1]l213]a]ls]le]|7 _
G bits 0..01 | 100
v ta ol1]l213]als]le]|7 _
° find set
S = 2% set{
v tag ol1]l213]als]le]|7
[3)
vV tag Oj11213141|15]|617
\.

31

Week 7 - Summary CMPT 295

Example: Direct-Mapped Cache (£ =1)

Direct-mapped: One line per set
Block Size K =8B

Address of int:
G bits 0..01 | 100

valid? + match?: yes = hit

Y tag O1112|314]51]16]|7

block offset

32

Week 7 - Summary CMPT 295

Example: Direct-Mapped Cache (£ =1)

Direct-mapped: One line per set
Block Size K =8B

Address of int:
G bits 0..01 | 100

valid? + match?: yes = hit

v tag ol1]2|3]4|5]6]7
block offset
int (4 B) is here
(48) This is why we
want alignment!

No match? Then old line gets evicted and replaced

33

Week 7 - Summary CMPT 295

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short int:

& bits 0..01 | 100

v tag 0111213]415]61]7 v tag | |0]1]2)13]4]5]6]7
vl | tag | lol1]2]3]4]s]6]7 v tag_|01234567_ﬂndset
vl tag | lol1]2]3]4ls]6]7 v] | e | lo]1]2]3]4]5]6]7
[BN I)
vi| tae | lo]lz]l2]3]4]s]6]~ v | tg | |o]l1]2]3]2ls5]6]7

34

Week 7 - Summary CMPT 295

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short int:

B bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| Ltag | |ofaf2]3]a]s]6]7 v] | g | [o]zl2]3]als]el7]] —

block offset

35

Week 7 - Summary CMPT 295

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short int:

B bits 0..01 | 100

compare both

valid? + | match: yes = hit

v |Ltag | [olal2]3]als]el7]| [Lv] | tee | [o]al2]3]als]e]l7]| —

block offset

short int (2 B)is here

No match?
* Onelinein setis selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

36

Week 7 - Summary CMPT 295

Example Code Analysis Problem

+» Assuming the cache starts cold (all blocks invalid) and
sum is stored in a register, calculate the miss rate:

" m=12bits, C =256B,K=328B,E =2

#define SIZE 8

long ar[SIZE] [SIZE], sum = 0; // &ar=0x800
for (int i = 0; i < SIZE; i++)
for (int j = 0; j < SIZE; j++)

sum += ar[i][7];

37

Week 7 - Summary CMPT 295

Sources of Cache Misses: The 3Cs

 Compulsory: (Many names: cold start, process
migration (switching processes), 15t reference)

— First access to block impossible to avoid;
Effect is small for long running programs

* Capacity:

— Cache cannot contain all blocks accessed by the
program, so full associativity won’t hold all blocks

e Conflict: (collision)

— Multiple memory locations mapped to the same
cache location, so there is a lack of associativity

Peer Instruction Question

+» We have a cache of size 2 KiB with block size of 128 B.
If our cache has 2 sets, what is its associativity?

A.

B. 4

C. 8

D. 16

E. We're lost...

+ If addresses are 16 bits wide, how wide is the Tag
field?

39

Other Questions

<~ We have a cache with block size of 128 B. Cache is 4-
way set-associative and has 8 sets. How big is the
cache? (What is the cache capacity)?

+~ A 4KB Cache is 4-way set associative with 64 B blocks.
Which bits are used for set index? (Also: How many
sets does the cache have?)

+» A 32KB Cache is 8-way set associative and has 16 sets.
Which bits are used for byte offset? (Also: What is the
block size?)

+» A direct-mapped cache uses 4 bits for set index and 6
bits for byte offset. How big is the cache?

40

