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Processes
❖ A process is an instance of a running program

▪ Provided by the OS
• OS uses a data structure (PCB) to represent each process

▪ Maintains the interface between the program and the 
underlying hardware (CPU + memory)

❖ Process provides each program with two key 
abstractions:

▪ Logical control flow
• Each program seems to have exclusive use of the CPU

• Provided by kernel mechanism called context switching

▪ Private address space
• Each program seems to have exclusive use of main memory

• Provided by kernel mechanism called virtual memory
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What is a process?
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What is a process?
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Multiprocessing:  The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users
• Web browsers, email clients, editors, …

▪ Background tasks
• Monitoring network & I/O devices
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Multiprocessing:  The Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved, CPU runs one at a time

▪ Address spaces managed by virtual memory system (today’s lecture)

▪ Execution context (register values, stack, …) for other processes saved in 
memory 6
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Multiprocessing

❖ Context switch
1) Save current registers in memory
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Multiprocessing

❖ Context switch
1) Save current registers in memory

2) Schedule next process for execution
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Multiprocessing
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Multiprocessing on Multicore Processors

❖ Multicore processors
▪ Multiple CPUs (“cores”) on single chip

▪ Share main memory (and some of the 
caches)

▪ Each can execute a separate process

• Kernel schedules processes to cores

• Still constantly swapping processes
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Memory as we know it so far… is virtual!

❖ Programs refer to virtual memory addresses
▪ Conceptually memory is just a very large array of bytes

▪ System provides private address space to each process

❖ Allocation:  Compiler and run-time system
▪ Where different program objects should be stored

▪ All allocation within single virtual address space

❖ But…
▪ We probably don’t have 2w bytes of physical memory 

▪ We certainly don’t have 2w bytes of physical memory
for every process

▪ Processes should not interfere with one another

• Except in certain cases where they want to share code or data
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Why Virtual Memory (VM)?

❖ Efficient use of limited main memory (RAM)
▪ Use RAM as a cache for the parts of a virtual address space

• Some non-cached parts stored on disk

• Some (unallocated) non-cached parts stored nowhere

▪ Keep only active areas of virtual address space in memory

• Transfer data back and forth as needed

❖ Simplifies memory management for programmers
▪ Each process “gets” the same full, private linear address space

❖ Isolates address spaces (protection)
▪ One process can’t interfere with another’s memory

• They operate in different address spaces

▪ User process cannot access privileged information

• Different sections of address spaces have different permissions

12
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A System Using Virtual Addressing
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❖ Physical addresses are completely invisible to programs
▪ Used in all modern desktops, laptops, servers, smartphones…

▪ One of the great ideas in computer science
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Indirection and Address Spaces

❖ Virtual address space: Set of N = 2𝑛 virtual addr
▪ {0, 1, 2, 3, …, N-1}

❖ Physical address space: Set of M = 2𝑚 physical addr
▪ {0, 1, 2, 3, …, M-1}

❖ Every byte in main memory has:
▪ one physical address (PA)

▪ zero, one, or more virtual addresses (VAs)
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Memory Overview
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Address Translation
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Address Translation:  Page Tables

❖ CPU-generated address can be split into:

▪ Request is Virtual Address (VA), want Physical Address (PA)

▪ Note that Physical Offset = Virtual Offset  (page-aligned)

❖ Use lookup table that we call the page table (PT)

▪ Replace Virtual Page Number (VPN) for Physical Page 
Number (PPN) to generate Physical Address

▪ Index PT using VPN:  page table entry (PTE) stores the PPN 
plus management bits (e.g. Valid, Dirty, access rights)

▪ Has an entry for every virtual page

17

Virtual Page Number Page Offset𝑛-bit address:
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Address Translation:  Page Hit
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1) Processor sends virtual address to MMU (memory management unit)

2-3)  MMU fetches PTE from page table in cache/memory
(Uses PTBR to find beginning of page table for current process)

4) MMU sends physical address to cache/memory requesting data

5) Cache/memory sends data to processor
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PA = Physical Address Data = Contents of memory stored at VA originally requested by CPU 
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Address Translation:  Page Fault
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1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in cache/memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory
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Page Hit

❖ Page hit: VM reference is in physical memory
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Page Fault

❖ Page fault: VM reference is NOT in physical memory 
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Address Translation Is Slow

❖ The MMU accesses memory twice: once to get the 
PTE for translation, and then again for the actual 
memory request

▪ The PTEs may be cached in L1 like any other memory word

• But they may be evicted by other data references

• And a hit in the L1 cache still requires 3-4 cycles

❖ What can we do to make this faster?

▪ Solution:  add another cache!  

22
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Speeding up Translation with a TLB

❖ Translation Lookaside Buffer (TLB):

▪ Small hardware cache in MMU
• Split VPN into TLB Tag and TLB Index based on # of sets in TLB

▪ Maps virtual page numbers to physical page numbers

▪ Stores page table entries for a small number of pages

▪ Much faster than a page table lookup in cache/memory

23
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TLB Hit

❖ A TLB hit eliminates a memory access!
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Address Translation
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Address Manipulation
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Page offset

Page Offset
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TRANSLATION



CMPT 295L21 Virtual Memory

Summary of Address Translation Symbols

❖ Basic Parameters
▪ N = 2𝑛 Number of addresses in virtual address space
▪ M = 2𝑚 Number of addresses in physical address space
▪ P = 2𝑝 Page size (bytes)

❖ Components of the virtual address (VA)
▪ VPO Virtual page offset 
▪ VPN Virtual page number
▪ TLBI TLB index
▪ TLBT TLB tag

❖ Components of the physical address (PA)
▪ PPO Physical page offset (same as VPO)
▪ PPN Physical page number

27
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Peer Question

❖ How many bits wide are the following fields?

▪ 16 KiB pages

▪ 48-bit virtual addresses

▪ 16 GiB physical memory

28

34 24(A)

32 18(B)

30 20(C)

34 20(D)

VPN PPN
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Some VM Topics Not Covered in 295

❖ Supporting more than one page size

▪ Small pages lead to more TLB misses; large pages lead to 
fragmentation

▪ Modern CPUs support >1 page size (e.g., 4KB, 2MB, 1GB)

❖ Multi-level page tables

▪ Needed to support large VM address space 

▪ https://en.wikipedia.org/wiki/Intel_5-level_paging

❖ TLB hierarchy

▪ Modern CPUs have more than one level in TLB

▪ L1 usually split into two structures, one for instructions 
(iTLB) and another for data (dTLB). Entries 32-256

▪ L2 TLB unified (instructions and data), 512-2048 entries
29

https://en.wikipedia.org/wiki/Intel_5-level_paging
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Simple Memory System Example (small)

❖ Addressing

▪ 14-bit virtual addresses

▪ 12-bit physical address

▪ Page size = 64 bytes

30

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

Virtual Page Number Virtual Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

Physical Page Number Physical Page Offset
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Simple Memory System:  Page Table

❖ Only showing first 16 entries (out of _____)

▪ Note:  showing 2 hex digits for PPN even though only 6 bits

▪ Note: other management bits not shown, but part of PTE

31

VPN PPN Valid

0 28 1

1 – 0

2 33 1

3 02 1

4 – 0

5 16 1

6 – 0

7 – 0

VPN PPN Valid

8 13 1

9 17 1

A 09 1

B – 0

C – 0

D 2D 1

E – 0

F 0D 1
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Simple Memory System:  TLB

❖ 16 entries total

❖ 4-way set associative

32

13 12 11 10 9 8 7 6 5 4 3 2 1 0

virtual page offsetvirtual page number

TLB indexTLB tag

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Why does the 
TLB ignore the 
page offset?
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Simple Memory System:  Cache

❖ Direct-mapped with K = 4 B, C/K = 16

❖ Physically addressed

33

11 10 9 8 7 6 5 4 3 2 1 0

physical page offsetphysical page number

cache offsetcache indexcache tag

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag

Index Tag Valid B0 B1 B2 B3

0 19 1 99 11 23 11

1 15 0 – – – –

2 1B 1 00 02 04 08

3 36 0 – – – –

4 32 1 43 6D 8F 09

5 0D 1 36 72 F0 1D

6 31 0 – – – –

7 16 1 11 C2 DF 03

Index Tag Valid B0 B1 B2 B3

8 24 1 3A 00 51 89

9 2D 0 – – – –

A 2D 1 93 15 DA 3B

B 0B 0 – – – –

C 12 0 – – – –

D 16 1 04 96 34 15

E 13 1 83 77 1B D3

F 14 0 – – – –
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Current State of Memory System

Cache:

TLB:
Page table (partial):

Index Tag V B0 B1 B2 B3

0 19 1 99 11 23 11

1 15 0 – – – –

2 1B 1 00 02 04 08

3 36 0 – – – –

4 32 1 43 6D 8F 09

5 0D 1 36 72 F0 1D

6 31 0 – – – –

7 16 1 11 C2 DF 03

Index Tag V B0 B1 B2 B3

8 24 1 3A 00 51 89

9 2D 0 – – – –

A 2D 1 93 15 DA 3B

B 0B 0 – – – –

C 12 0 – – – –

D 16 1 04 96 34 15

E 13 1 83 77 1B D3

F 14 0 – – – –

Set Tag PPN V Tag PPN V Tag PPN V Tag PPN V

0 03 – 0 09 0D 1 00 – 0 07 02 1

1 03 2D 1 02 – 0 04 – 0 0A – 0

2 02 – 0 08 – 0 06 – 0 03 – 0

3 07 – 0 03 0D 1 0A 34 1 02 – 0

VPN PPN V
0 28 1
1 – 0
2 33 1
3 02 1
4 – 0
5 16 1
6 – 0
7 – 0

VPN PPN V
8 13 1
9 17 1
A 09 1
B – 0
C – 0
D 2D 1
E – 0
F 0D 1
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Memory Request Example #1

❖ Virtual Address:  0x03D4

❖ Physical Address:  

35

TLBITLBT

0

13

0
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0

10

1

9

1

8

1

7

1

6

0

5

1

4

0

3

1

2

0

1

0

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag
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Memory Request Example #2

❖ Virtual Address:  0x038F

❖ Physical Address:  

36

TLBITLBT

0

13

0

12

0

11

0

10

1

9

1

8

1

7

0

6

0

5

0

4

1

3

1

2

1

1

1

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag
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Memory Request Example #3

❖ Virtual Address:  0x0020

❖ Physical Address:  

37

TLBITLBT

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

1

5

0

4

0

3

0

2

0

1

0

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag
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Memory Request Example #4

❖ Virtual Address:  0x036B

❖ Physical Address:  

38

TLBITLBT

0

13

0

12

0

11

0

10

1

9

1

8

0

7

1

6

1

5

0

4

1

3

0

2

1

1

1

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag
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Practice VM Question

❖ Our system has the following properties
▪ 1 MiB of physical address space

▪ 4 GiB of virtual address space

▪ 32 KiB page size

▪ 4-entry fully associative TLB with LRU replacement

a) Fill in the following blanks:

39

________ Entries in a page table ________ Minimum bit-width of 
PTBR

________ TLBT bits ________ Max # of valid entries 
in a page table
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Practice VM Question

❖ One process uses a page-aligned square matrix mat[] of 32-
bit integers in the code shown below:

#define MAT_SIZE = 2048

for(int i = 0; i < MAT_SIZE; i++)

mat[i*(MAT_SIZE+1)] = i;

b) What is the largest stride (in bytes) between successive 
memory accesses (in the VA space)?

40
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Practice VM Question

❖ One process uses a page-aligned square matrix mat[] of 32-
bit integers in the code shown below:

#define MAT_SIZE = 2048

for(int i = 0; i < MAT_SIZE; i++)

mat[i*(MAT_SIZE+1)] = i;

c) Assuming all of mat[] starts on disk, what are the following 
hit rates for the execution of the for-loop?

41

________ TLB Hit Rate ________ Page Table Hit Rate


