
CMPT 295L21 Virtual Memory

CMPT 295 Week 8



CMPT 295L21 Virtual Memory

Processes
❖ A process is an instance of a running program

▪ Provided by the OS
• OS uses a data structure (PCB) to represent each process

▪ Maintains the interface between the program and the 
underlying hardware (CPU + memory)

❖ Process provides each program with two key 
abstractions:

▪ Logical control flow
• Each program seems to have exclusive use of the CPU

• Provided by kernel mechanism called context switching

▪ Private address space
• Each program seems to have exclusive use of main memory

• Provided by kernel mechanism called virtual memory
2

CPU

Registers

Memory

Stack

Heap

Code
Data



CMPT 295L21 Virtual Memory

What is a process?

3

Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process 2

Process 3

Process 4
Process 1

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

It’s an illusion!



CMPT 295L21 Virtual Memory

What is a process?

4

Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process 1

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

Process 2

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

Process 3

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

Process 4

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

Operating
System

It’s an illusion!



CMPT 295L21 Virtual Memory

Multiprocessing:  The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users
• Web browsers, email clients, editors, …

▪ Background tasks
• Monitoring network & I/O devices

5

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data



CMPT 295L21 Virtual Memory

Multiprocessing:  The Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved, CPU runs one at a time

▪ Address spaces managed by virtual memory system (today’s lecture)

▪ Execution context (register values, stack, …) for other processes saved in 
memory 6

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

…



CMPT 295L21 Virtual Memory

Multiprocessing

❖ Context switch
1) Save current registers in memory

7

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

…



CMPT 295L21 Virtual Memory

Multiprocessing

❖ Context switch
1) Save current registers in memory

2) Schedule next process for execution

8

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

…



CMPT 295L21 Virtual Memory

Multiprocessing

9

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

…

❖ Context switch
1) Save current registers in memory

2) Schedule next process for execution

3) Load saved registers and switch address space



CMPT 295L21 Virtual Memory

Multiprocessing on Multicore Processors

❖ Multicore processors
▪ Multiple CPUs (“cores”) on single chip

▪ Share main memory (and some of the 
caches)

▪ Each can execute a separate process

• Kernel schedules processes to cores

• Still constantly swapping processes

10

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

…

CPU

Registers



CMPT 295L21 Virtual Memory

Memory as we know it so far… is virtual!

❖ Programs refer to virtual memory addresses
▪ Conceptually memory is just a very large array of bytes

▪ System provides private address space to each process

❖ Allocation:  Compiler and run-time system
▪ Where different program objects should be stored

▪ All allocation within single virtual address space

❖ But…
▪ We probably don’t have 2w bytes of physical memory 

▪ We certainly don’t have 2w bytes of physical memory
for every process

▪ Processes should not interfere with one another

• Except in certain cases where they want to share code or data

11

0xFF∙∙∙∙∙∙F

0x00∙∙∙∙∙∙0



CMPT 295L21 Virtual Memory

Why Virtual Memory (VM)?

❖ Efficient use of limited main memory (RAM)
▪ Use RAM as a cache for the parts of a virtual address space

• Some non-cached parts stored on disk

• Some (unallocated) non-cached parts stored nowhere

▪ Keep only active areas of virtual address space in memory

• Transfer data back and forth as needed

❖ Simplifies memory management for programmers
▪ Each process “gets” the same full, private linear address space

❖ Isolates address spaces (protection)
▪ One process can’t interfere with another’s memory

• They operate in different address spaces

▪ User process cannot access privileged information

• Different sections of address spaces have different permissions

12



CMPT 295L21 Virtual Memory

A System Using Virtual Addressing

13

❖ Physical addresses are completely invisible to programs
▪ Used in all modern desktops, laptops, servers, smartphones…

▪ One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data (int/float)

8: ...

CPU

Virtual address
(VA)

CPU Chip

0x40x4100

Memory Management Unit



CMPT 295L21 Virtual Memory

Indirection and Address Spaces

❖ Virtual address space: Set of N = 2𝑛 virtual addr
▪ {0, 1, 2, 3, …, N-1}

❖ Physical address space: Set of M = 2𝑚 physical addr
▪ {0, 1, 2, 3, …, M-1}

❖ Every byte in main memory has:
▪ one physical address (PA)

▪ zero, one, or more virtual addresses (VAs)

14

Physical memory

Virtual memory

Virtual memory

Process 1

Process 𝑛

mapping



CMPT 295L21 Virtual Memory

Memory Overview

15

Disk

Main memory
(DRAM)

CacheCPU

Page

Page
Line

Block

requested 32-bits

❖ LD t1, 0 (sp)

TLB

MMU



CMPT 295L21 Virtual Memory

Address Translation

16

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data (int/float)

8: ...

CPU

Virtual address
(VA)

CPU Chip

0x40x4100

Memory Management Unit

How do we perform the virtual 
→ physical address translation?



CMPT 295L21 Virtual Memory

Address Translation:  Page Tables

❖ CPU-generated address can be split into:

▪ Request is Virtual Address (VA), want Physical Address (PA)

▪ Note that Physical Offset = Virtual Offset  (page-aligned)

❖ Use lookup table that we call the page table (PT)

▪ Replace Virtual Page Number (VPN) for Physical Page 
Number (PPN) to generate Physical Address

▪ Index PT using VPN:  page table entry (PTE) stores the PPN 
plus management bits (e.g. Valid, Dirty, access rights)

▪ Has an entry for every virtual page

17

Virtual Page Number Page Offset𝑛-bit address:



CMPT 295L21 Virtual Memory

Address Translation:  Page Hit

18

1) Processor sends virtual address to MMU (memory management unit)

2-3)  MMU fetches PTE from page table in cache/memory
(Uses PTBR to find beginning of page table for current process)

4) MMU sends physical address to cache/memory requesting data

5) Cache/memory sends data to processor

MMU Cache/
MemoryPA

Data

CPU
VA

CPU Chip
PTEA

PTE
1

2

3

4

5

VA = Virtual Address PTEA = Page Table Entry Address PTE= Page Table Entry 
PA = Physical Address Data = Contents of memory stored at VA originally requested by CPU 



CMPT 295L21 Virtual Memory

Address Translation:  Page Fault

19

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in cache/memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7



CMPT 295L21 Virtual Memory

Page Hit

❖ Page hit: VM reference is in physical memory

20

Page Table (DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk Addr
PTE 0

PTE 7
......

Virtual address

Example: Page size = 4 KiB

0x00740bVirtual Addr:

VPN: PPN:

Physical Addr:

Physical memory
(DRAM)

PP 0

PP 3

VP 1

VP 2

VP 7

VP 4

Virtual memory
(DRAM/disk)

VP 6

VP 3



CMPT 295L21 Virtual Memory

Page Fault

❖ Page fault: VM reference is NOT in physical memory 

21

Page Table (DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk Addr
PTE 0

PTE 7
......

Physical memory
(DRAM)

PP 0

PP 3

VP 1

VP 2

VP 7

VP 4

Virtual memory
(DRAM/disk)

VP 6

VP 3

Virtual address

Example: Page size = 4 KiB
Provide a virtual address request (in hex) that 
results in this particular page fault:

Virtual Addr:



CMPT 295L21 Virtual Memory

Address Translation Is Slow

❖ The MMU accesses memory twice: once to get the 
PTE for translation, and then again for the actual 
memory request

▪ The PTEs may be cached in L1 like any other memory word

• But they may be evicted by other data references

• And a hit in the L1 cache still requires 3-4 cycles

❖ What can we do to make this faster?

▪ Solution:  add another cache!  

22



CMPT 295L21 Virtual Memory

Speeding up Translation with a TLB

❖ Translation Lookaside Buffer (TLB):

▪ Small hardware cache in MMU
• Split VPN into TLB Tag and TLB Index based on # of sets in TLB

▪ Maps virtual page numbers to physical page numbers

▪ Stores page table entries for a small number of pages

▪ Much faster than a page table lookup in cache/memory

23

Virtual Page Number Page offset

TLBT TLBI

TLB

PTETLBT

PTE

PTE

PTE

Set

0

1

V

TLBTV

TLBTV

V TLBT



CMPT 295L21 Virtual Memory

TLB Hit

❖ A TLB hit eliminates a memory access!

24

MMU
Cache/

Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

TLB

VPN 3

TLB

PTEVPN →

PTEVPN →

PTEVPN →



CMPT 295L21 Virtual Memory

Address Translation

25

Virtual Address

TLB Lookup

Check the
Page Table

Update 
TLB

Page Fault
(OS loads page)

Protection
Check

Physical
Address

TLB Miss TLB Hit

Page not
in Mem

Access
Denied

Access 
Permitted

Protection
Fault

SIGSEGV

Page 
in Mem

Check cacheFind in Disk Find in Mem
HitMiss



CMPT 295L21 Virtual Memory

Address Manipulation

26

Page offset

Page Offset

Virtual Page Number

TLB Index

request from CPU:

𝑚-bit physical 
address:

split to access TLB:

(on TLB miss) access PT:

𝑛-bit virtual address

Page offsetPhysical Page Number

OffsetCache Index

TLB Tag

Cache Tagsplit to access cache:

TRANSLATION



CMPT 295L21 Virtual Memory

Summary of Address Translation Symbols

❖ Basic Parameters
▪ N = 2𝑛 Number of addresses in virtual address space
▪ M = 2𝑚 Number of addresses in physical address space
▪ P = 2𝑝 Page size (bytes)

❖ Components of the virtual address (VA)
▪ VPO Virtual page offset 
▪ VPN Virtual page number
▪ TLBI TLB index
▪ TLBT TLB tag

❖ Components of the physical address (PA)
▪ PPO Physical page offset (same as VPO)
▪ PPN Physical page number

27



CMPT 295L21 Virtual Memory

Peer Question

❖ How many bits wide are the following fields?

▪ 16 KiB pages

▪ 48-bit virtual addresses

▪ 16 GiB physical memory

28

34 24(A)

32 18(B)

30 20(C)

34 20(D)

VPN PPN



CMPT 295L21 Virtual Memory

Some VM Topics Not Covered in 295

❖ Supporting more than one page size

▪ Small pages lead to more TLB misses; large pages lead to 
fragmentation

▪ Modern CPUs support >1 page size (e.g., 4KB, 2MB, 1GB)

❖ Multi-level page tables

▪ Needed to support large VM address space 

▪ https://en.wikipedia.org/wiki/Intel_5-level_paging

❖ TLB hierarchy

▪ Modern CPUs have more than one level in TLB

▪ L1 usually split into two structures, one for instructions 
(iTLB) and another for data (dTLB). Entries 32-256

▪ L2 TLB unified (instructions and data), 512-2048 entries
29

https://en.wikipedia.org/wiki/Intel_5-level_paging


CMPT 295L21 Virtual Memory

Simple Memory System Example (small)

❖ Addressing

▪ 14-bit virtual addresses

▪ 12-bit physical address

▪ Page size = 64 bytes

30

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

Virtual Page Number Virtual Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

Physical Page Number Physical Page Offset



CMPT 295L21 Virtual Memory

Simple Memory System:  Page Table

❖ Only showing first 16 entries (out of _____)

▪ Note:  showing 2 hex digits for PPN even though only 6 bits

▪ Note: other management bits not shown, but part of PTE

31

VPN PPN Valid

0 28 1

1 – 0

2 33 1

3 02 1

4 – 0

5 16 1

6 – 0

7 – 0

VPN PPN Valid

8 13 1

9 17 1

A 09 1

B – 0

C – 0

D 2D 1

E – 0

F 0D 1



CMPT 295L21 Virtual Memory

Simple Memory System:  TLB

❖ 16 entries total

❖ 4-way set associative

32

13 12 11 10 9 8 7 6 5 4 3 2 1 0

virtual page offsetvirtual page number

TLB indexTLB tag

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Why does the 
TLB ignore the 
page offset?



CMPT 295L21 Virtual Memory

Simple Memory System:  Cache

❖ Direct-mapped with K = 4 B, C/K = 16

❖ Physically addressed

33

11 10 9 8 7 6 5 4 3 2 1 0

physical page offsetphysical page number

cache offsetcache indexcache tag

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag

Index Tag Valid B0 B1 B2 B3

0 19 1 99 11 23 11

1 15 0 – – – –

2 1B 1 00 02 04 08

3 36 0 – – – –

4 32 1 43 6D 8F 09

5 0D 1 36 72 F0 1D

6 31 0 – – – –

7 16 1 11 C2 DF 03

Index Tag Valid B0 B1 B2 B3

8 24 1 3A 00 51 89

9 2D 0 – – – –

A 2D 1 93 15 DA 3B

B 0B 0 – – – –

C 12 0 – – – –

D 16 1 04 96 34 15

E 13 1 83 77 1B D3

F 14 0 – – – –



CMPT 295L21 Virtual Memory

Current State of Memory System

Cache:

TLB:
Page table (partial):

Index Tag V B0 B1 B2 B3

0 19 1 99 11 23 11

1 15 0 – – – –

2 1B 1 00 02 04 08

3 36 0 – – – –

4 32 1 43 6D 8F 09

5 0D 1 36 72 F0 1D

6 31 0 – – – –

7 16 1 11 C2 DF 03

Index Tag V B0 B1 B2 B3

8 24 1 3A 00 51 89

9 2D 0 – – – –

A 2D 1 93 15 DA 3B

B 0B 0 – – – –

C 12 0 – – – –

D 16 1 04 96 34 15

E 13 1 83 77 1B D3

F 14 0 – – – –

Set Tag PPN V Tag PPN V Tag PPN V Tag PPN V

0 03 – 0 09 0D 1 00 – 0 07 02 1

1 03 2D 1 02 – 0 04 – 0 0A – 0

2 02 – 0 08 – 0 06 – 0 03 – 0

3 07 – 0 03 0D 1 0A 34 1 02 – 0

VPN PPN V
0 28 1
1 – 0
2 33 1
3 02 1
4 – 0
5 16 1
6 – 0
7 – 0

VPN PPN V
8 13 1
9 17 1
A 09 1
B – 0
C – 0
D 2D 1
E – 0
F 0D 1



CMPT 295L21 Virtual Memory

Memory Request Example #1

❖ Virtual Address:  0x03D4

❖ Physical Address:  

35

TLBITLBT

0

13

0

12

0

11

0

10

1

9

1

8

1

7

1

6

0

5

1

4

0

3

1

2

0

1

0

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag



CMPT 295L21 Virtual Memory

Memory Request Example #2

❖ Virtual Address:  0x038F

❖ Physical Address:  

36

TLBITLBT

0

13

0

12

0

11

0

10

1

9

1

8

1

7

0

6

0

5

0

4

1

3

1

2

1

1

1

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag



CMPT 295L21 Virtual Memory

Memory Request Example #3

❖ Virtual Address:  0x0020

❖ Physical Address:  

37

TLBITLBT

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

1

5

0

4

0

3

0

2

0

1

0

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag



CMPT 295L21 Virtual Memory

Memory Request Example #4

❖ Virtual Address:  0x036B

❖ Physical Address:  

38

TLBITLBT

0

13

0

12

0

11

0

10

1

9

1

8

0

7

1

6

1

5

0

4

1

3

0

2

1

1

1

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag



CMPT 295L21 Virtual Memory

Practice VM Question

❖ Our system has the following properties
▪ 1 MiB of physical address space

▪ 4 GiB of virtual address space

▪ 32 KiB page size

▪ 4-entry fully associative TLB with LRU replacement

a) Fill in the following blanks:

39

________ Entries in a page table ________ Minimum bit-width of 
PTBR

________ TLBT bits ________ Max # of valid entries 
in a page table



CMPT 295L21 Virtual Memory

Practice VM Question

❖ One process uses a page-aligned square matrix mat[] of 32-
bit integers in the code shown below:

#define MAT_SIZE = 2048

for(int i = 0; i < MAT_SIZE; i++)

mat[i*(MAT_SIZE+1)] = i;

b) What is the largest stride (in bytes) between successive 
memory accesses (in the VA space)?

40



CMPT 295L21 Virtual Memory

Practice VM Question

❖ One process uses a page-aligned square matrix mat[] of 32-
bit integers in the code shown below:

#define MAT_SIZE = 2048

for(int i = 0; i < MAT_SIZE; i++)

mat[i*(MAT_SIZE+1)] = i;

c) Assuming all of mat[] starts on disk, what are the following 
hit rates for the execution of the for-loop?

41

________ TLB Hit Rate ________ Page Table Hit Rate


