- HONOR CODE
- Questions Sheet.
- A. Easy. Lets C. [6 Points]
 - o Q1-6
- B. Easy. RISCV Magic. [7 Points]
 - 7. What is the minimum set of registers need to be stored onto the stack at this point: line 4.
 ? [1]
 - 8. What is the minmum set of registers need to be stored onto the stack at this point: line 14.
 ? [1]
 - 9. What is the minmum set of registers need to be restored from the stack at this point: line
 30 ? [1]
 - 10. Assume you have the prologue and epilogue correctly coded. You set a breakpoint at `line 6: CHECK". What does result contain when your program pauses at the breakpoint? [4]
- C. RISC-V Instructions Encoding [5 points]
 - 11. For the instruction line 7: beq s1, x0, end . What is the immediate field
 - 12. What is actual opcode, rs1 and rs2 (not pseudo-names)?
 - 13. What is funct7 and funct3?
 - 14. What is the instruction corresponding to 0x0004A503 ?
- D. RISC-V Custom Opcodes [6]
 - 15. What is the minimum bits would be required for the opcode field? [1]
 - 16. If the opcode was encoded 5 bits and we would like to support the usual R-type instructions, 2 source and 1 destination. What is the maximum number of registers we can use? [1]
 - 17. Given the opcode is 5 bits wide. Each register field is 3 bits. What is the offset in terms
 of bytes that the branch instruction can jump forward. Note that instructions are 19 bits
 wide. [2]
 - 18. What is the max negative offset that an I instruction can use? Opcode bits is same as
 Q15. Assume that register width is same as Q16. [2]
- E. Easy Floating Point [5 points]
 - 19. What is the smallest non-zero positive value that can be represented? [1]
 - 20. How do you represent the number 4.5 ? [1]
 - \circ 21. How do you represent -2^{-9} [1]
 - 22. How many numbers can this 10 bit floating point represent in the range 1 ≤ f < 8). Hint:
 Write does the floating point expressions for 1 and 8 and the answer should be apparent. [1]
 - 23. Sort the following numbers 0x300, 0x100, 0x104, 0x328, 0x12c smallest to largest [1]
- F. Unsigned/Signed Numbers [5]
 - 24. Represent -133 as a 8-bit NOT number. [1]
 - 25. Represent -124 as 8-bit NOT number. [1]

- 26. What is the range of numbers represented by 8 bit NOT8. [1]
- 27. What is the representation that requires fewest number of bits needed to cover the given range 0 to 10. [1]
- 28. What is the representation that requires fewest number of bits needed to cover the given range -1 to 4. [1]
- G. Bitgames. Write down single line expressions that calculate the following. [4]
 - 29. NegativeFloat(x) Return bit-level equivalent of expression -f for floating point argument
 f. Assume f is N bits
 - 30. is_float_power_of_2(float x, int e, int m).
- H. Assembler Linker Compiler [6]
 - 31. How many pseudo instructions and registers ? [2]
 - 32. What is the symbol and relocation table ? [2]
 - 33. Replace the labels of PC-relative targets with their immediate values. What is the offset value of bnez at address 0x20? Write your answer in decimal. [2]
- G. RISCV
 - 34. What is the value of s2 at the end of the program? Write in hex (e.g., 0xFFFF) [3]

HONOR CODE

- I have not used any online resources during the exam.
- I have not obtained any help either from anyone in the class or outside when completing this
 exam.
- No sharing of notes/slides/textbook between students.
- NO SMARTPHONES.
- CANVAS ANSWERS WILL BE LOCKED AFTER 1ST TRY.

Questions Sheet.

Read all of the following information before starting the exam:

- For each question fill out the appropriate choice or write text on Canvas page. Also type clearly on in the exam on the appropriate text.
- IF THE MULTIPLE CHOICE ANSWER IS WRONG WE WILL MARK THE ANSWER WRONG. IF THE MULTIPLE-CHOICE ANSWER IS CORRECT. WE WILL READ THE WRITTEN PORTION.
- Show all work, clearly and in order, if you want to get full credit.
- We reserve the right to take off points if we cannot see how you logically got to the answer (even
 if your final answer is correct).
- Circle or otherwise indicate your final answers.

- Please keep your written answers brief; be clear and to the point.
- I will take points off for rambling and for incorrect or irrelevant statements. This test has seven problems.

A. Easy. Lets C. [6 Points]

Q1-6

Grayscale color values can be represented as an ascii value between 0---255. Consider square images of $N \times N$ pixels.

We can organize these 2D images into a 1D array of N^2 elements.

Each element is an 8 bit number.

```
char *img = malloc(sizeof(char) * 4);
img[0] = 0xA;
img[1] = 0xB;
img[2] = 0xC;
img[3] = 0xD;
```

Fill out the following function tile. It returns a new, larger image array, which is the same image tiled rep times in both the x and y direction. You may or may not need all of the lines. For a better idea of what must be accomplished, consider the above example:

```
char *t_img = tile(img, 2, 2);
// The contents of tiled_image
would then look like:
[0xA, 0xB, 0xA, 0xB
0xC, 0xD, 0xC, 0xD
0xA, 0xB, 0xA, 0xB
7 0xC, 0xD, 0xC, 0xD];
```

Now fill-in-the blanks for the code shown below on canvas.

```
char *tile(char*b, int n, int rep) {
1
      int w = ____Q1____
2
      char *t_img = malloc(_______);
3
      for (int j = 0; j < w; j++) {
4
            for (int i = 0; i < w; i++) {
5
                int x = __Q3___;
6
                int y = ___Q4____;
7
                int loc = _Q5___;
8
                t_{img}[loc] = b[x + y*n];
9
                }
10
11
              _Q6 (could be multiple lines)____;
12
        return t_img;
13
    }
14
```

```
Q1: n * rep  
Q2: w*w or w*w*sizeof(char)  
Q3: i%n  
Q4: j%n  
Q5: j*w+i  
Q6: Blank or nothing
```

B. Easy. RISCV Magic. [7 Points]

Assume we have two arrays input and output.

```
int *input = malloc(8*sizeof(int));
int *result = malloc(8, sizeof(int));
for (int i = 0; i < 8; i++) {
    input[i] = i;
}</pre>
```

Study the following RISC-V code shown below and answer the questions. You can assume a0:input a1:result a2:8

```
| main:
2
     addi a2, zero, 8
3
  | # Q7 What registers need to be stored onto the stack?
4
     jal ra, MAGIC # a0 holds input, a1 holds result a2 holds 8.
5
     # CHECK finished calling BLACKBOX...
6
   .... # Other code and function calls.
7
    exit:
8
      addi a0, x0, 10
9
      add a1, x0, x0
10
      ecall
                       # Terminate ecall
11
12
    BLACKBOX:
13
    # Q8 What registers need to be stored onto the stack?
14
     mv s0, zero
15
     mv s1,a1
16
     mv t0, zero
17
    loop:
18
      beq t0, a2, done
19
      lw t1, 0(a0)
20
     add s0, s0, t1
21
      slli t2, t0, 2
22
      add t2, t2, s1
23
      sw s0, \theta(t2)
24
      addi t0, t0, 1
25
      addi a0, a0, 4
26
      jal x0, loop
27
   done:
28
     mv a0, s0
29
   # Q9 TODO: epilogue. What registers need to be restored?
30
   | jr ra
31
```

7. What is the minimum set of registers need to be stored onto the stack at this point: line 4. ? [1]

t0, t1, t2

8. What is the minmum set of registers need to be stored onto the stack at this point: line 14. ? [1]

s0 s1

9. What is the minmum set of registers need to be restored from the stack at this point: line 30 ? [1]

10. Assume you have the prologue and epilogue correctly coded. You set a breakpoint at `line 6: CHECK". What does result contain when your program pauses at the breakpoint? [4]

0 1 3 6 10 15 21 28

C. RISC-V Instructions Encoding [5 points]

Consider the standard RISC-V encoding below. Standard 32 bit instructions. Answer questions below

```
∣ main:
1
            mv s1, a0
2
           addi t2, t2 4
3
  | Start:
4
           beq s1, x0, End
5
       lw a0, 0(s1)
6
           addi a0,a0,4
7
            add s1, t2, s1
8
        lw s1, 0(s1)
9
        jal x0, Start
10
   End:
11
           addi a0,a0,10
12
      ecall
13
```

11. For the instruction line 7: beq s1, x0, end . What is the immediate field

12. What is actual opcode, rs1 and rs2 (not pseudo-names)?

```
opcode: 0x63
rs1: 01001 (x9)
rs2: 00000 (x0)
```

13. What is funct7 and funct3?

f3 - 0 f7 N/A

14. What is the instruction corresponding to 0x0004A503 ?

```
lw x10 0(x9) or lw a0, 0(s1) or line 6
```

D. RISC-V Custom Opcodes [6]

Prof. Shriraman is designing a new CPU with fewer operations. He decides to adapt and rethink the design of RISC-V instruction. He only needs to support 9 different operations: ADD, MUL, XOR, LD, SW, LUI, ADDI, MULI and BLT. He decides that each instruction should be 19 bits wide.

The fields in each instruction are listed below (no funct3 and funct7)

- R-type: rs2,rs1,rd,opcode
- I-type and Loads: imm,rs1,rd,opcode
- S-type: imm,rs2,rs1,opcode
- B-type: imm,rs2,rs1,opcode
- U-type: imm,rd,opcode
- UJ-type: imm,rd,opcode

15. What is the minimum bits would be required for the opcode field? [1]

4 bits

16. If the opcode was encoded 5 bits and we would like to support the usual R-type instructions, 2 source and 1 destination. What is the maximum number of registers we can use? [1]

4 bits. 16 registers.

17. Given the opcode is 5 bits wide. Each register field is 3 bits. What is the offset in terms of bytes that the branch instruction can jump forward. Note that instructions are 19 bits wide. [2]

19 -
$$(3 + 3 + 5) = 8$$
 bits for imm $(2^7 - 1) * 2 = 128$

18. What is the max negative offset that an I instruction can use? Opcode bits is same as Q15. Assume that register width is same as Q16. [2]

Opcode: 4 bits

Register: 4 bits. Addl requires 1 rd and 1rs.

Imm= 19 - 4 + 4 + 4 = 7 bits. -2^6

E. Easy Floating Point [5 points]

The TAs get tired of having to convert floating-point values into 32 bits. As a result they propose the following smaller floating-point representation which is useful in a number of machine learning applications. It consists of a total of 10 bits as show below.

Exponent is biased similar to conventional floating point.

Sign	Exponent	Mantissa
1 bit	5 bits.	4 bits.

• Numbers are rounded to the closest representable value. Any numbers that have 2 equidistant representations are rounded down towards zero.

19. What is the smallest non-zero positive value that can be represented? [1]

 $2^{-}18$ = Denormalized form. exponent is $2^{-}14$ and mantissa is $2^{-}4$

20. How do you represent the number 4.5 ? [1]

0x112

0 10001 0010

exppnent: 17 - 15 = 2 $2^2 * 1.125 = 4.5$

21. How do you represent -2^{-9} [1]

0x260

1 00110 0000

22. How many numbers can this 10 bit floating point represent in the range $1 \le f < 8$). Hint: Write does the floating point expressions for 1 and 8 and the answer should be apparent. [1]

- 1 is 0x70 . 0 0111 0000 = 1×2^0
- 8 is 0xa0 . 0 1010 0000 = 1×2^3

There are 16 numbers, 0111 0000

There are 16 numbers, 1000 0000

There are 16 numbers, 1001 0000

23. Sort the following numbers 0x300, 0x100, 0x104, 0x328, 0x12c smallest to largest [1]

Shown are the hex representations.

0x300 (-2), 0x100 (2), 0x104 (2.5), 0x328 (-12), 0x12c (14)

F. Unsigned/Signed Numbers [5]

Suppose that we define a new number format, NOT.

Negative numbers are represented by the binary NOT \sim

of the binary representations of their corresponding positive numbers. Like 2's complement most significant bit of NOT denotes the number's sign (0 for positive, 1 for negative). Answer the following questions.

NOT (~)

Input	Output
1	0
0	1

24. Represent -133 as a 8-bit NOT number. [1]

N/A

25. Represent -124 as 8-bit NOT number. [1]

124 - 0111 1100

-124 - 1000 0011

26. What is the range of numbers represented by 8 bit NOT8. [1]

-127 to +127

27. What is the representation that requires fewest number of bits needed to cover the given range 0 to 10. [1]

Unsigned. 4 bits

28. What is the representation that requires fewest number of bits needed to cover the given range -1 to 4. [1]

G. Bitgames. Write down single line expressions that calculate the following. [4]

29. NegativeFloat(x) - Return bit-level equivalent of expression -f for floating point argument f. Assume f is N bits

```
N \mid 0x1 << (31)
```

30. is_float_power_of_2(float x, int e, int m).

```
Normalized number : 1.m * (2^e - 1 - bias) 
 ((x & (2^e-1) << m) != (2^e -1)) && (x & (2^m -1)) == 0
```

H. Assembler Linker Compiler [6]

```
.data
1
    str: string "The sum of 1..100 is %d \n"
 3
    .text
 4
 5
    main:
     add sp,sp -4
 6
      sw ra, 0 (sp)
      mv a1, zero
 8
      li x9, 100
9
       j check
10
11
    loop:
12
       mul s2, x9, x9
13
     add a1,a1,s2
14
       add x9, x9, -1
15
16
    chk:
17
      bnez x9, loop
18
      la a0, str
19
       jal printf
20
       mv a0, zero
21
       lw ra, 0(sp)
22
       addi sp,sp,4
23
       ret
24
```

31. How many pseudo instructions and registers ? [2]

8 instructions, 7 registers (sp,ra,a1,zero,s2,a1,a0) mv,li,j,bnez,la,jal,mv,ret

Assume data segment starts at 0x80. This was mentioned in class

32. What is the symbol and relocation table? [2]

main	0x0
loop	0x14
chk	0x20
str	0x80

Relocation

Inst	Addr	Dep
la	0x24	std
jal printf	0x28	printf

33. Replace the labels of PC-relative targets with their immediate values. What is the offset value of bnez at address 0x20? Write your answer in decimal. [2]

-12

G. RISCV

34. What is the value of s2 at the end of the program? Write in hex (e.g., 0xFFFF) [3]

Initial values: s0 = 0xC, s1 = 0xA, a0 = 3, a1 = 0, a2 = 2

```
.text
1
      la a3, start
2
3
    start:
            beq a1,a0,End
4
      lw a4,20(a3)
5
      slli a5,a2,12
6
      add a4,a4,a5
7
      sw a4, 20(a3)
8
      add s2,s1,s0
9
      addi a1,a1,1
10
      j start
11
12
    End:
13
        addi a0,zero,10
14
       ecall
15
```

Answer: 0xE