
CMPT 450/750: Computer Architecture

Fall 2022

Introduction &

Superscalar Processors

Alaa Alameldeen & Arrvindh Shriraman
© Copyright 2022 Alaa Alameldeen and Arrvindh Shriraman

2

When and Where?
• When and Where:

➢Mondays 12:30-2:20 in AQ3150, Wednesdays 12:30-1:20 in AQ3149

➢SFU IT will be recording live lectures. Link to class recordings available next Wed if needed

• Instructors: Alaa Alameldeen and Arrvindh Shriraman (alaa,

ashriram@sfu.ca)

• TAs: Parker Tian, Yonas Kelemework, Abdelrahman Hussein

• Office hours: Check webpage for instructor and TA office hours

• Webpage: https://www.cs.sfu.ca/~ashriram/Courses/CS7ARCH/index.html

• Webpage updated frequently:

➢Class slides, online lecture zoom links, lecture recordings, homework assignments, projects

➢Changes in class schedule

https://www.cs.sfu.ca/~alaa/courses/cmpt450/fall2022/index.html

3

Course Logistics
• Delivery:

➢ Live lectures in-person (AQ3150, AQ3149)

❑ Slides will be posted online, but could change (don’t print before class)

➢ We encourage everyone to attend and participate in class. Lecture recordings will hopefully be available

from SFU IT (but no promises)

➢ Office hours: Schedule Instructor and TA office hours from course webpage

➢ Exams will be online during class time on canvas. You have to be in the classroom (or via zoom) for

proctoring

• Communications:

➢ Feel free to ask questions during class

❑ Lectures are recorded. See privacy notice on course webpage

➢ Announcements sent on class mailing list (cmpt-450@sfu.ca or cmpt-750@sfu.ca)

➢ Participate in office hours

➢ Discussions on Piazza

❑ Ask course-related questions there since many people might have similar questions

❑ Other students can answer. Instructors and TAs will monitor discussions and answer questions.

➢ Use email only for urgent questions or concerns.

mailto:cmpt-450@sfu.ca
mailto:cmpt-750@sfu.ca

4

Safety Guidelines
• Use common sense since Covid is still around

• Don’t come to class if:

➢You’re sick or have any symptoms

➢If you’ve tested positive for COVID

➢If you were in contact with anyone who has been sick AND/OR tested positive with

COVID

• If you miss class for the above reasons, you can request access to

recorded lectures.

• Quality masks are highly recommended (but not required).

• Please respect your classmates’ choices whether to wear masks.

• If instructors are sick or exposed to COVID, lectures will move

temporarily online (zoom).

5

About the Course
• Principles of the architecture of computing systems, including:

➢Superscalar processor microarchitecture, speculative out-of-order execution

➢Branch prediction, precise interrupts, issue logic, memory ordering

➢Cache and memory hierarchy, cache management policies

➢Impact of technology on architecture, power, energy, dark silicon

➢Domain-specific accelerators

➢Multiprocessors, cache coherence, memory consistency models

➢Multi-threading: Simultaneous multi-threading, speculative multi-threading,

runahead execution

➢Other architectures: Vector architectures, Single-Instruction Multiple-Data

architectures, Dataflow architectures, Graphics Processing Units, Very-Large

Instruction Word architectures

6

Expected Background
• Understanding of Computer Systems

➢CMPT 295 or equivalent (instruction sets, computer arithmetic, datapath design, data formats,

addressing modes, memory hierarchies including caches and virtual memory, multicore

architectures, assembly programming)

• Programming experience in C/C++ and Python

➢ Needed for assignments and project

• Good knowledge of Linux/Unix

• Please complete Quiz 1 (canvas) by Monday. This indicates whether you have the

necessary background for this course. Quiz available tomorrow.

• Warning: Don’t take this course if

➢You don’t have time for a heavy workload (textbook + readings, assignments, project, exams)

➢Coding skills are not strong

➢Primary motivation is to get a good grade!

➢ “Simply need a course to graduate”

7

Grading

• Grade Breakdown (tentative)

➢Exams: 35%

❑ Four Exams, each worth 8%. Open book/notes. No midterm or final exams

❑ Exams during class time on September 28, October 26, November 16, and December 05

❑ Quiz 1 (due Monday): 3%

➢Homework assignments: 40%

❑ 4 programming/simulation assignments

➢Project: 25%

❑ Group project with 2-3 students per group

❑ Most projects require implementing architectural mechanisms inside a simulator

➢Different grading requirements for 450 and 750 students

➢Class participation encouraged (lectures or online discussions)

8

Grading Guidelines (Subject to Change)

• Grade Scale

➢A+: 95% and higher

➢A: 90-94.9%

➢A-: 85-89.9%

➢B+: 80-84.9%

➢B: 75-79.9%

➢B-: 70-74.9%

➢C+: 65-69.9%

➢C: 60-64.9%

➢C-: 55-59.9%

➢D: 50-54.9%

➢F: Below 50%

Students need 50% or higher in total exam score to pass the course

9

Important Dates

• Exam dates:

➢28-Sept, 26-Oct, 16-Nov, 05-Dec

➢Exam time: During class (three Wednesday classes and a Monday class)

• Exam attendance is mandatory, either

➢In person, in the classroom OR

➢Online: Attend the class zoom meeting and turn on camera

• Project Due Date: 12-Dec (report, code and presentation video)

• Last lecture: 30-Nov

• Check course webpage for any schedule changes

10

Textbooks and Readings

• Textbook (available online via SFU library):

➢[ARCH] Computer Architecture: A Quantiative Approach by

John Hennessy and David Patterson

➢We’ll only cover selected chapters/sections from the book

• Original research papers (check webpage)

• Please actively read textbook & papers as course progresses

(don’t procrastinate)

https://sfu-primo.hosted.exlibrisgroup.com/permalink/f/15tu09f/01SFUL_ALMA21184520760003611

Academic Integrity
• Do not cheat!

➢No sharing of code or solutions

➢Penalties may including getting 0 points on the assignment and/or more severe
penalties (suspension or expulsion)

• Do not post your code on a public code repository
➢Use GitHub Education Pack to get a private repository

➢Use Bitbucket’s private repo feature, setup a private repo on SFU CSIL GitLab

❑https://csil-git1.cs.surrey.sfu.ca

❑Guide: https://coursys.sfu.ca/2018su-cmpt-470-e1/pages/GitLab

➢Don’t post to public repository even after course is over (except projects).

• Homework assignments must be your own work.
➢Be sure to provide proper citations

➢Discussion ok on course discussion boards, but no sharing of solutions

• See SFU policies: https://www.sfu.ca/policies/gazette/student.html

11

https://csil-git1.cs.surrey.sfu.ca/
https://coursys.sfu.ca/2018su-cmpt-470-e1/pages/GitLab
https://www.sfu.ca/policies/gazette/student.html

Introduction to Computer
Architecture

12

Why Study Computer Architecture?

• Technology advancements require continuous optimization of cost,

performance, and power

➢Moore’s law

❑Original version: Transistor scaling exponential

❑Popular version: Processor performance exponentially increasing

• Innovation needed to satisfy market trends

➢User and software requirements keep on changing

➢Software developers expecting improvements in computing power

➢New (and old) applications becoming feasible because of improved systems

• So what is computer architecture?

➢ Instruction Set Architecture (ISA): The interface between hardware and software

➢Computer Architecture: Designing the organization and hardware to meet functional

requirements of software and achieve goals such as price, performance, power, availability.

13

Moore’s Law
• 1965: Since the integrated circuit was invented,

the number of transistors in an integrated circuit
has roughly doubled every year; this trend would
continue for the foreseeable future

• 1975: Revised - circuit complexity doubles every
two years

14

Gordon Moore
(co-founder of Intel)

15

Moore’s Law (1965)

#Transistors Per Chip (Intel)

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

19
71

19
74

19
77

19
80

19
83

19
86

19
89

19
92

19
95

19
98

20
01

20
04

Year

Almost 75%

increase per

year

Growth in Processor Performance Over Time

Figure from ARCH Chapter 1

16

Technology Trends

17

42 Years of Microprocessor Trend Data, Karl Rup: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/ Slide from Prof. Keval Vora
CMPT 431

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Why Study Parallel Architectures?

• Technology made multi-core processors both feasible AND

necessary for performance
➢Moore’s law: too many transistors on a die than can be used (efficiently) for a

single processor

➢Traditional out-of-order processors face memory and power walls

• Software requirements need more computing power than a
single processor
➢Scientific computations

➢Commercial applications

➢And yes, machine learning!

18

19

The Memory Wall

0.1

1

10

100

1000

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

Year

T
im

e
 (

n
s

)

CPU Cycle Time

DRAM latency

➢ CPU cycle time: 500 times faster since 1982

➢ DRAM Latency: Only ~5 times faster since 1982

20

42 Years of Microprocessor Trend Data, Karl Rup: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Technology Trends

20

Slide from Prof. Keval Vora
CMPT 431

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

The Power Wall

21

42 Years of Microprocessor Trend Data, Karl Rup: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

21

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

22

Achieve
better

Performance
Using

Multicore
Processors

42 Years of Microprocessor Trend Data, Karl Rup: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Technology Trends

22

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Introduction to Superscalar
Processors

23

Performance

• Two important metrics

➢Latency

❑Response time

• For different hardware structures (e.g, cache access, store buffer lookup)

• For different instructions/operations

❑Execution time from start to finish

➢Throughput or bandwidth

❑Rate of task completion

❑Rate of data transfer

24

Latency vs. Bandwidth
Figure from ARCH Chapter 1

• Points represent Intel 20286 (1982),

80386 (1985), 80486 (1989), Pentium

(1993), Pentium Pro (1997), Pentium

4 (2001), Core i7 (2010)

• Latency improvement 6-80X

• Bandwidth improvement 300-

25,000X

25

Instruction Cycle

• Simple five stages (cycles) for instruction processing:

➢Instruction fetch (IF)

➢Instruction decode, read operands (ID)

➢Execute (EX)

➢Memory read/write (MEM)

➢Write back results (WB)

• Most modern processors have many more stages

26

IF ID EX MEM WB

Simplified Instruction Cycle

• For the remainder of this lecture, let’s simplify the instruction

processing to three stages (cycles):

➢Instruction Fetch (f)

➢Instruction Decode and Read Operands (d)

➢Execute and write results (e)

27

f d e

Execution Time

• Iron Law of Processor Performance:

Execution time (Runtime) for a program is given by:

Instructions per program

x Cycles per instruction

x Time per cycle (Cycle time)

28

Runtime = I x CPI x tc

Execution Time

• For a scalar processor (with a 3-cycle instruction processing),

CPI = 3

29

Runtime = I x 3 x tc

Improving Performance via Basic Pipelining

F D E

F D E

F D E

F D E

30

Runtime = I x 1 x tc

Superscalar Processors
• Superscalar processors: Multiple pipelines operate in parallel

• Superscalar techniques have been applied to both CISC and RISC
processors

31

F D E

F D E

F D E

F D E

F D E

F D E

Runtime = I x 0.5 x tc

Superscalar Processors

• It is not guaranteed that a wide superscalar executes at maximum

throughput for any given sequence of instructions

➢Instructions are not independent

❑Can’t always find more than one instruction to issue per cycle

➢Branches

❑Don’t know what instruction to fetch next

➢The processor execution resources are limited

➢Fetch and execution mechanisms

➢Cache misses

32

True Data Dependencies

• Also called data hazards, read-after-write (RAW) hazards

• An instruction may use a result produced by the previous

instruction

➢Both instructions may not execute simultaneously in multiple pipelines

➢The second instruction must typically be stalled

33

F D E

F D S E

Procedural Dependencies
• Also called control or branch hazards

• Instruction fetch implicitly depends on knowing the correct value for the

program counter (PC)

➢This is (in a sense) a true dependence on the PC

➢Branches may change the program counter late in their execution, leading to pipeline stalls

• CISC variable length instructions introduce another procedural dependency:

➢Portions of an instruction must be decoded before the instruction length is known

34

F D E

F D E

 S S F D E

 S S F D E

Resource Conflicts
• Also called structural hazards

• If two instructions try to use the same hardware resource simultaneously,

then one must wait

• Solution 1: Duplicate hardware resources

➢Can be expensive

• Solution 2: Pipeline long latency execution units

35

F D E E E

F D S S S E E E

F D E1 E2 E3

F D S E1 E2 E3

Instruction Issue Methods

• Instruction Issue is the process of initiating instruction execution

in functional units

• Instruction Issue Policy is the mechanism the processor uses to

issue instructions (and to find and examine instructions)

36

IO Issue and IO Execution

• In-order (IO) issue and in-order (IO) execution requires

instructions to be issued, executed and to complete in the same

order they appear in the program

➢Simple strategy to implement BUT

➢More hazards hinder performance

37

IO Issue and IO Execution

• Example: I1 requires 2 cycles to execute, I3 and I4 use same functional unit, same for
I5 and I6, I5 has true dependence on I4

38

 Decode Execute Writeback

1 I1 I2

2 I3 I4 I1 I2

3 I3 I4 I1

4 I4 I3 I1 I2

5 I5 I6 I4 I3

6 I6 I5 I4

7 I6 I5

8 I6

IO Issue and OO Execution

• In-order (IO) issue and out-of-order (OO) execution allows

instructions to complete in a different order

➢This prevents long operations from overly reducing performance, even for scalar

processors (e.g., unrelated instructions can execute while a load from the L2

cache or a floating point divide is in progress)

39

IO Issue and OO Execution

 Decode Execute Writeback

1 I1 I2

2 I3 I4 I1 I2

3 I4 I1 I3 I2

4 I5 I6 I4 I1 I3

5 I6 I5 I4

6 I6 I5

7 I6

40

• Same example: I1 requires 2 cycles to execute, I3 and I4 use same functional
unit, same for I5 and I6, I5 has true dependence on I4

IO Issue and OO Execution

➢If out-of-order completion is allowed, it is also possible to have an

output dependence

❑Two outstanding instructions write to the same location

❑They must complete in the correct order to make sure the correct result is

stored

❑This is also called a write-after-write (WAW) hazard
DIV R3,R4,R5

…

ADD R3,R4,R1

ADD R5,R3,R3 ; Which R3?

❑This can be overcome with register renaming

41

OO Issue and OO Execution

• Out-of-order (OO) issue and out-of-order (OO) execution further

improve performance by not stalling the processor in the

presence of resource conflicts or true and output dependences

➢Instructions that would cause a problem are left in an instruction window to be

issued when the problem has cleared

➢The processor thus can look ahead to the size of the window to find instructions

to issue

42

OO Issue and OO Execution

 Decode Window Execute Writeback

1 I1 I2

2 I3 I4 I1,I2 I1 I2

3 I5 I6 I3,I4 I1 I3 I2

4 I4,I5,I6 I6 I4 I1 I3

5 I5 I5 I4 I6

6 I5

43

Same example: I1 requires 2 cycles to execute, I3 and I4 use same functional
unit, same for I5 and I6, I5 has true dependence on I4

OO Issue and OO Execution

• This method can cause antidependences

➢An instruction that needs to read a result may have that result overwritten by a

following instruction that was issued first

➢We must make sure that the value is not overwritten until it has been read by all

users

➢This is also called a write-after-read (WAR) hazard.
DIV R3,R4,R5

STORE A,R3

ADD R3,R4,1 ;Can’t until after store

ADD R5,R3,R3

• Antidependences (WAR) and output dependences (WAW) are both

called “Name Dependences”

44

Register Renaming

• Hardware can automatically rename registers (as specified in the

program code) to ensure that each refers to a unique location

➢Register renaming can remove storage conflicts

DIV R3a,R4a,R5a

STORE A,R3a

ADD R3b,R4a,1

ADD R5b,R3b,R3b

45

46

Instruction-Level Parallelism (ILP)
• To improve performance, a processor needs to overlap execution of multiple

instructions simultaneously

• Overlap in instruction execution is called Instruction-Level Parallelism (ILP)

➢Key idea: processor can execute independent instructions in parallel

• ILP within a basic block is limited since basic block length is fairly short

(average 4-6 instructions)

• Loop-Level Parallelism exploits independent instructions across loop

iterations

• To exploit higher ILP, processors need to examine large “instruction

windows” that span many basic blocks (detailed discussion later)

47

RISC I Design Approach

• New architectures should be designed for HLL

• Does not matter which part of the system is in hardware and

which is in software

• Architecture tradeoffs to build a cost-effective system:

➢Which language constructs are used frequently?

➢What is the distribution of various instructions?

➢Dedicate available area for the most frequent constructs and operations

❑Remember Amdahl’s law

48

Amdahl’s Law

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

1 − 𝑃 + 𝑃/𝑆

P = proportion of computation improved

S = improvement speedup

Example: Parallel Execution

P: Parallel portion, S: Serial portion = 1-P

N: Number of Cores

NPPNPS
Speedup

/1

1

/

1

+−
=

+
=

Introduction to
Computer System Simulation

49

Simulating a Computer System
• At a very high level, a computer system simulator reproduces the behavior or

predicts the timing of a computer system

• Why simulate a computer system?

➢Building software faster than building hardware

➢Cheaper than building hardware

➢Permits more design space exploration before deciding on final design parameters

➢Enables validation of system before building expensive hardware

➢Provides more intuition about system performance and behavior

50

Computer
System

Simulator

Input (e.g.,
Program)

Output (e.g.,
execution time,

program output)

Computer System Simulation Taxonomy

• A Functional simulator reproduces the behavior of an application running on a

computer system. Models the architecture of the system.

• A Timing (Performance) simulator reproduces the timing of an application

running on a computer system. Models the microarchitecture of the system.

• A simulator could be both a functional and a timing simulator
51

Computer System Simulator

Functional Timing (Performance)

Trace-Driven Execution-Driven Inst. Schedulers
(Discrete-Event

Simulation)

Cycle-Accurate

Functional Simulation
• Reproduces the functionality (behavior) of a computer system when running a workload

• Should give the same results, and should end with the same architectural state as a real workload

run on a real system that is the same as the simulated system

• Architectural State includes:

➢Register state, memory state, disk state, I/O

➢Cache state if caches are architecturally visible

• Trace-driven functional simulation: Models system behavior from a workload trace.

➢Repeatable. Different simulation runs should produce the same results.

• Execution-driven functional simulation: Models system behavior by executing workload

instructions and modeling the architectural effects of each instruction (e.g., virtual machine or

software emulation environment)

➢May generate trace as instructions are executed

➢Execution-driven simulation could have variability. Different runs could have different outcomes

depending on system state.

52

Timing Simulation
• Reproduces the timing needed by computer system when running a workload

• Needs to model the microarchitectural state of the system, not just the architectural state

• Microarchitectural (uarch) State includes:

➢State of instruction and data caches

➢State of branch predictors, memory dependence predictors, etc.

➢State of other uarch structures (e.g., reorder buffer, load and store buffers, instruction buffers,

register alias tables, etc.)

➢Dependences between instructions

➢Pipeline state

• Instruction Schedulers uses techniques similar to discrete event simulation to update system timing

and state, generate dynamic instruction stream

➢Clock starts at time zero, advances to the time of the next event

➢An instruction is scheduled when its dependences are satisfied

• Cycle-accurate simulators model the change in the system every cycle. Clock advances one cycle at

a time.
53

Full-System Simulation
• A full-system simulator needs to be able to model the whole system, not just a single workload,

including:

➢Boot an operating system

➢Multi-core processors and multi-processor systems

➢Device drivers

➢Network stacks

➢ Interfaces between different system components (e.g., CPU-memory, CPU-GPU)

➢Controllers for different components (memory, disk, I/O, SSD devices)

➢System interrupts and exceptions

• A full-system simulation could be just an emulation platform (e.g., virtual machine monitors) which

just models the functionality of the system and can help debug and validate designs

• The most accurate simulators are full-system, execution-driven, functional simulators that are also

cycle-accurate timing simulators

➢Tradeoff: Speed vs. Accuracy

54

Introduction to Superscalar
Processors & Dynamic Scheduling

55

Program Representation

• An application is written as a program, typically using a high level

language

• Program is compiled into static machine code (binary)

• Sequencing model implicit in the program

• The sequence of executed instructions forms a dynamic

instruction stream

• The address of the next dynamic instruction:

➢Incremented program counter

➢Target of a taken branch

56

Sequential Execution Model

• Inherent in instruction sets and program binaries

• Led to the concept of precise architecture state

➢Interrupt and restart

➢Exceptions

➢Branch mispredictions

• Out-of-order issue deviates from sequential execution

➢But we still need to maintain binary compatibility and retain appearance of

sequential execution

57

Dependences and Parallel Execution

• To execute more instructions in parallel, control dependences need to
be addressed:
➢Program Counter (PC)

➢Branches

• To overcome PC dependence, one can view the program as a collection
of basic blocks, separated by branches
➢There is a limited number of parallel instructions on average within basic blocks

• Instructions have be serialized according to true data dependences
➢A true dependence appears as a read after write (RAW) sequence

• Ideally, we should eliminate output dependences and anti-dependences
➢An output dependence appears as write after write (WAW) sequence

➢An anti-dependence appears as write after read (WAR) sequence

58

Elements of Superscalar Processing

• Fetch: Strategies for fetching multiple instructions every cycle, supported by

➢Predicting branch outcomes

➢Fetching beyond conditional branch instructions, well before branches are executed

• Decode: Methods for determining true register dependencies and eliminating

artificial dependencies

➢Register renaming

➢Mechanisms to communicate register values during execution

• Issue/Dispatch: Methods for issuing multiple instructions in parallel

➢Based upon availability of inputs, not upon program order

59

Elements of Superscalar Processing (Cont.)

• Execution: Parallel execution resources

➢Multiple pipelined functional units

➢Memory hierarchies capable of simultaneously serving multiple memory requests

• Memory: Methods for communicating data through memory via load and

store instructions, potentially issued out of order

➢Memory interfaces have to allow for the dynamic and often unpredictable behavior of memory

hierarchies

• Commit: Methods for committing architecture state in order

➢Maintain an outward appearance of sequential execution

60

Superscalar Microarchitecture: High Level

61

Smith & Sohi 1995, Figure 3

Typical Superscalar Microarchitecture: Organization

62

Smith & Sohi 1995, Figure 4

Instruction Fetch

• Read instructions from the instruction cache and write them to a

queue (instr. buffer in previous figure)

➢The number of instructions fetched per cycle should at least match the peak

decode rate (why?)

➢The fetcher must be told the address of the next block of instructions to fetch

• An instruction cache is usually organized as lines of several

instructions

➢A cache line starts on a fixed boundary (regardless of the instruction needed

from the line)

➢Question: What are the pros and cons of having separate I- and D- caches?

63

Instruction Fetch (Cont.)

• Calculating the next address to fetch

➢Non-branch instructions:

❑PC is incremented by the number of bytes in current instruction

❑Can require fetching next cache block

➢Branch instructions: the fetch unit has to

❑Recognize a branch

❑Determine its outcome (taken or not taken)

❑Compute branch target address

❑Fetch the next block using

• Next sequential address or

• Branch target address

64

Instruction Fetch (Cont.)

• Branch prediction is used to avoid having to wait for the branch

execution to complete

➢Target comes from Branch target buffer (BTB)

➢Outcome comes from

❑Static prediction based on branch type or profile (or even compiler hints)

❑Dynamic prediction based on result of previous branches

• If branch is mispredicted, we must be able to undo the work and

fetch the correct instruction

➢This incurs a significant misprediction penalty

• Branch prediction discussed in more detail next class

65

Instruction Fetch (Cont.)
• Transferring control to target address on a taken branch could cause

pipeline bubbles
➢Stockpile instructions in instruction queue

➢Or keep next address in cache block

➢Or use delayed branches?

• The instruction queue helps:
➢Smooth fetch irregularities caused by cache misses

➢Sustain fetch bandwidth in cycles when fewer than the maximum #instructions can be
fetched

• Superscalar machines pay a penalty for instruction misalignment
➢Branches and targets don't always fall on cache line boundaries

➢Fetched instructions that are not executed waste fetch bandwidth

➢Sometimes called instruction cache fragmentation due to branches

66

Instruction Cache Fragmentation

X

X+32 BR X+188 Discard

X+64

X+96

X+128

X+160 Discard X+188

X+192

67

Instruction Fetch (Cont.)
• Cache fragmentation caused by branches places a severe limit on

very wide superscalars

➢Easy to fetch sequential runs of instructions

➢However, the average sequential run length is ~6 for general integer programs

➢The distribution is very broad, with a few long runs raising the average

➢How many decode cycles are needed for 6 fetched instructions?

❑3 decode cycles for a two instruction decoder

❑Only 1.5 decode cycles for a four instruction decoder

68

Instruction Fetch (Cont.)

• Given enough fetch bandwidth, the instruction fetch unit can

realign or merge instructions from multiple lines to make more

efficient use of the decoder

➢For a branch target in the middle of a cache line, the fetcher combines the

cache line with the one following it

➢Decoder "lines" are not aligned with cache lines

➢Harder to find the program counter associated with one instruction

➢The instruction fetch unit is essentially creating dynamic instruction traces and

caching in them in a “trace cache”

69

Instruction Decode
• Instructions are removed from the instruction queue

• Execution tuples are set for each decoded instruction containing
➢Opcode: Operation to be executed

➢Sources: Identities of storage elements where the inputs reside

➢Destination: Identity of the storage element where result must be placed

• In the static program, the input and output identifiers represent:

➢Storage locations in the “logical” register file OR

➢Storage locations in memory

• To overcome WAR and WAW hazards, register renaming maps the register
“logical” identifiers into “physical” storage locations

• Allocation logic assigns each instruction physical storage for the result as
well as entries in all required instruction buffers

70

Instruction Rename

• The decoder looks at one or more instructions and releases them to

scheduling stations after renaming

• Register values created by an instruction are assigned physical locations,

and recorded in a map table

➢Map table has as many entries as there are logical registers

• Source register mappings are read from the map table and attached to the

instruction

• Renaming happens sequentially

➢Map table bypass is sometimes necessary

• Subsequent stages in the pipeline use mappings attached to an instruction

tuple to read and write the physical locations of register values

71

Rename Map Table

72

Physical Source
Registers

Logical Source
Registers

Logical
Destination
Registers

Register Map
Table

Allocate
physical registers
from free pool

Physical Destination
Registers

Also called Register Alias Table (RAT)

Renaming Methods

• There are two methods commonly used:

➢Renaming with a physical register file larger than the logical register file

➢Renaming using a Reorder Buffer (ROB) and a physical register file equal in

size to the number of logical registers

73

Renaming with a Physical RF
• A free list of unused physical

registers is kept

• New register results are
assigned physical registers
from the free list

• Reclaiming of physical
registers into the free list:
➢Usage count is 0 and logical

register has been renamed to
another physical register

➢Subsequent instruction writing to
the same logical register is
committed

• Register map table could be
checkpointed at conditional
branches (why?) 74

Smith & Sohi 1995, Figure 5

Freeing Physical Registers at Retirement

I1 → r5 → P3

…

…

I4 → r5 → P5 (free P3 when retired)

…

…

I7 ← r5 ← P5

75

Renaming with a Reorder Buffer
• Physical registers are allocated sequentially in the Reorder Buffer

• Physical registers are freed and their values are copied to the register file at

retirement

76

Smith & Sohi 1995, Figure 6: Reorder Buffer

Renaming with a Reorder Buffer
• Mapping table

maps logical

registers to

entries in the

Reorder Buffer or

the Register File

• Branch handling

options:

➢Map table

checkpoints

➢Resume renaming

from the correct

path after

mispredicted

branch has retired
77

Smith & Sohi 1995, Figure 7

Instruction Issue
• After instructions are fetched, decoded and renamed, they are placed in

instruction buffers where they wait until issue

• An instruction can be issued when its input operands are ready, and there is a

functional unit available

78

Smith & Sohi 1995, Figure 8

Instruction Issue (Cont.)

• All out-of-order issue methods must handle the same basic steps

➢Identify all instructions that are ready to issue

➢Select among ready instructions to issue as many as possible

➢Issue the selected instructions, e.g., pass operands and other information to the

functional units

➢Reclaim instruction window storage used by the now issued instructions

79

Methods of Organizing Instruction Issue Buffers
1. Single shared queue

➢Only for in-order issue

2. Multiple queues, one

per instruction type

3. Multiple reservation

stations, one per

instruction type

4. Single central

reservation stations

buffer

80
Smith & Sohi 1995, Figure 9

Multiple Queues

• Requiring instructions to be issued in order at a functional unit

greatly simplifies the identification and selection logic

• Instructions from different queues could be allowed to issue out of

order

81

Reservation Stations

• Benefits

➢Logic to identify and select ready instructions is simpler since it need only consider a few

locations

➢Storage can be optimized for each type of functional unit

❑e.g., stores need not have storage for two source operands

• Drawback

➢Storage is statically allocated to functional units

➢This can result in either wasted storage or a resource bottleneck for some programs

82

Smith & Sohi 1995, Figure 10: Typical Reservation Station

Central Window

• Benefits

➢Only one copy of identification and selection logic

➢Only one copy of storage reclamation logic

➢Dynamically allocated storage

• Drawbacks

➢Complex identification and selection logic

➢Complex storage reclamation logic

➢Each storage location must be as big as the largest instruction

➢Functional unit arbitration must be handled

83

Memory Ordering
• Stores consist of address and data uops

• Store addresses are buffered in a queue

• Store addresses remain buffered until:

➢ Store data is available

➢ Store instruction is committed in the reorder buffer

• New load addresses are checked with the waiting

store addresses. If there is a match:

➢ The load waits OR

➢ Store data is bypassed to the matching load

• Memory ordering discussed later in the course

84

Smith & Sohi 1995, Figure 11

Commit (Retire)

• Implements appearance of sequential execution

• Recovering a precise state:

➢Need to maintain both state required for recovery and state being updated

➢Recovery options:

❑History buffer

❑Future File

• Precise interrupts discussed next week

85

86

Announcements
• Reading Assignments

➢ARCH “Hennessy & Patterson”

❑Appendix C.1, C.2 before Branch Prediction (Read)

❑Chapter 3.1 (Read)

❑Chapter 3.8 (Skim)

➢J. Smith and G. Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, 1995.
(Read)

• Please complete first steps in our Welcome email

• Quiz 1 Due Monday @11:59 PM

• Make sure you complete the gem5 lab (link off webpage)

• Assignment 1 available soon

• Office hours this week: Tuesday and Wed 9-10 AM in TASC1-9011

➢By appointment, booking link on webpage

