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When and Where?
• When and Where:

➢Mondays 12:30-2:20 in AQ3150, Wednesdays 12:30-1:20 in AQ3149

➢SFU IT will be recording live lectures. Link to class recordings available next Wed if needed

• Instructors: Alaa Alameldeen and Arrvindh Shriraman (alaa, 

ashriram@sfu.ca)

• TAs: Parker Tian, Yonas Kelemework, Abdelrahman Hussein

• Office hours: Check webpage for instructor and TA office hours

• Webpage: https://www.cs.sfu.ca/~ashriram/Courses/CS7ARCH/index.html

• Webpage updated frequently:

➢Class slides, online lecture zoom links, lecture recordings, homework assignments, projects

➢Changes in class schedule

https://www.cs.sfu.ca/~alaa/courses/cmpt450/fall2022/index.html
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Course Logistics
• Delivery:

➢ Live lectures in-person (AQ3150, AQ3149)

❑ Slides will be posted online, but could change (don’t print before class)

➢ We encourage everyone to attend and participate in class. Lecture recordings will hopefully be available 

from SFU IT (but no promises) 

➢ Office hours: Schedule Instructor and TA office hours from course webpage

➢ Exams will be online during class time on canvas. You have to be in the classroom (or via zoom) for 

proctoring

• Communications: 

➢ Feel free to ask questions during class

❑ Lectures are recorded. See privacy notice on course webpage

➢ Announcements sent on class mailing list (cmpt-450@sfu.ca or cmpt-750@sfu.ca)

➢ Participate in office hours

➢ Discussions on Piazza

❑ Ask course-related questions there since many people might have similar questions

❑ Other students can answer. Instructors and TAs will monitor discussions and answer questions. 

➢ Use email only for urgent questions or concerns.

mailto:cmpt-450@sfu.ca
mailto:cmpt-750@sfu.ca
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Safety Guidelines
• Use common sense since Covid is still around

• Don’t come to class if:

➢You’re sick or have any symptoms

➢If you’ve tested positive for COVID

➢If you were in contact with anyone who has been sick AND/OR tested positive with 

COVID

• If you miss class for the above reasons, you can request access to 

recorded lectures. 

• Quality masks are highly recommended (but not required). 

• Please respect your classmates’ choices whether to wear masks. 

• If instructors are sick or exposed to COVID, lectures will move 

temporarily online (zoom). 
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About the Course
• Principles of the architecture of computing systems, including:

➢Superscalar processor microarchitecture, speculative out-of-order execution

➢Branch prediction, precise interrupts, issue logic, memory ordering

➢Cache and memory hierarchy, cache management policies

➢Impact of technology on architecture, power, energy, dark silicon

➢Domain-specific accelerators

➢Multiprocessors, cache coherence, memory consistency models 

➢Multi-threading: Simultaneous multi-threading, speculative multi-threading, 

runahead execution

➢Other architectures: Vector architectures, Single-Instruction Multiple-Data 

architectures, Dataflow architectures, Graphics Processing Units, Very-Large 

Instruction Word architectures
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Expected Background
• Understanding of Computer Systems

➢CMPT 295 or equivalent (instruction sets, computer arithmetic, datapath design, data formats, 

addressing modes, memory hierarchies including caches and virtual memory, multicore 

architectures, assembly programming)

• Programming experience in C/C++ and Python

➢ Needed for assignments and project

• Good knowledge of Linux/Unix

• Please complete Quiz 1 (canvas) by Monday. This indicates whether you have the 

necessary background for this course. Quiz available tomorrow.

• Warning: Don’t take this course if

➢You don’t have time for a heavy workload (textbook + readings, assignments, project, exams)

➢Coding skills are not strong 

➢Primary motivation is to get a good grade!

➢ “Simply need a course to graduate”
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Grading

• Grade Breakdown (tentative)

➢Exams: 35%

❑ Four Exams, each worth 8%. Open book/notes. No midterm or final exams

❑ Exams during class time on September 28, October 26, November 16, and December 05

❑ Quiz 1 (due Monday): 3%

➢Homework assignments: 40% 

❑ 4 programming/simulation assignments

➢Project: 25%

❑ Group project with 2-3 students per group

❑ Most projects require implementing architectural mechanisms inside a simulator

➢Different grading requirements for 450 and 750 students

➢Class participation encouraged (lectures or online discussions)
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Grading Guidelines (Subject to Change)

• Grade Scale 

➢A+: 95% and higher

➢A:   90-94.9%

➢A-:  85-89.9%

➢B+: 80-84.9%

➢B:   75-79.9%

➢B-:  70-74.9%

➢C+: 65-69.9%

➢C:   60-64.9%

➢C-:  55-59.9%

➢D:   50-54.9%

➢F:    Below 50%

Students need 50% or higher in total exam score to pass the course
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Important Dates

• Exam dates:

➢28-Sept, 26-Oct, 16-Nov, 05-Dec 

➢Exam time: During class (three Wednesday classes and a Monday class)

• Exam attendance is mandatory, either

➢In person, in the classroom  OR

➢Online: Attend the class zoom meeting and turn on camera 

• Project Due Date: 12-Dec (report, code and presentation video)

• Last lecture: 30-Nov

• Check course webpage for any schedule changes
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Textbooks and Readings

• Textbook (available online via SFU library):

➢[ARCH] Computer Architecture: A Quantiative Approach by

John Hennessy and David Patterson 

➢We’ll only cover selected chapters/sections from the book

• Original research papers (check webpage)

• Please actively read textbook & papers as course progresses 

(don’t procrastinate)

https://sfu-primo.hosted.exlibrisgroup.com/permalink/f/15tu09f/01SFUL_ALMA21184520760003611


Academic Integrity
• Do not cheat!

➢No sharing of code or solutions

➢Penalties may including getting 0 points on the assignment and/or more severe 
penalties (suspension or expulsion)

• Do not post your code on a public code repository
➢Use GitHub Education Pack to get a private repository

➢Use Bitbucket’s private repo feature, setup a private repo on SFU CSIL GitLab

❑https://csil-git1.cs.surrey.sfu.ca

❑Guide: https://coursys.sfu.ca/2018su-cmpt-470-e1/pages/GitLab

➢Don’t post to public repository even after course is over (except projects). 

• Homework assignments must be your own work. 
➢Be sure to provide proper citations

➢Discussion ok on course discussion boards, but no sharing of solutions

• See SFU policies: https://www.sfu.ca/policies/gazette/student.html
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https://csil-git1.cs.surrey.sfu.ca/
https://coursys.sfu.ca/2018su-cmpt-470-e1/pages/GitLab
https://www.sfu.ca/policies/gazette/student.html


Introduction to Computer 
Architecture
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Why Study Computer Architecture?

• Technology advancements require continuous optimization of cost, 

performance, and power

➢Moore’s law

❑Original version: Transistor scaling exponential

❑Popular version: Processor performance exponentially increasing

• Innovation needed to satisfy market trends

➢User and software requirements keep on changing

➢Software developers expecting improvements in computing power

➢New (and old) applications becoming feasible because of improved systems

• So what is computer architecture?

➢ Instruction Set Architecture (ISA): The interface between hardware and software

➢Computer Architecture: Designing the organization and hardware to meet functional 

requirements of software and achieve goals such as price, performance, power, availability.

13



Moore’s Law
• 1965: Since the integrated circuit was invented, 

the number of transistors in an integrated circuit 
has roughly doubled every year; this trend would 
continue for the foreseeable future

• 1975: Revised - circuit complexity doubles every 
two years

14

Gordon Moore
(co-founder of Intel)



15

Moore’s Law (1965)
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Growth in Processor Performance Over Time

Figure from ARCH Chapter 1
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Technology Trends

17

42 Years of Microprocessor Trend Data, Karl Rup: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/ Slide from Prof. Keval Vora
CMPT 431

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/


Why Study Parallel Architectures?

• Technology made multi-core processors both feasible AND 

necessary for performance
➢Moore’s law: too many transistors on a die than can be used (efficiently) for a 

single processor

➢Traditional out-of-order processors face memory and power walls

• Software requirements need more computing power than a 
single processor
➢Scientific computations

➢Commercial applications

➢And yes, machine learning!

18
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The Memory Wall
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➢ CPU cycle time: 500 times faster since 1982

➢ DRAM Latency: Only ~5 times faster since 1982
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42 Years of Microprocessor Trend Data, Karl Rup: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Technology Trends

20

Slide from Prof. Keval Vora
CMPT 431

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/


The Power Wall
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42 Years of Microprocessor Trend Data, Karl Rup: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

21

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
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Achieve 
better 

Performance 
Using 

Multicore 
Processors

42 Years of Microprocessor Trend Data, Karl Rup: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Technology Trends

22

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/


Introduction to Superscalar 
Processors
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Performance

• Two important metrics

➢Latency

❑Response time

• For different hardware structures (e.g, cache access, store buffer lookup)

• For different instructions/operations

❑Execution time from start to finish

➢Throughput or bandwidth

❑Rate of task completion

❑Rate of data transfer

24



Latency vs. Bandwidth
Figure from ARCH Chapter 1

• Points represent Intel 20286 (1982), 

80386 (1985), 80486 (1989), Pentium 

(1993), Pentium Pro (1997), Pentium 

4 (2001), Core i7 (2010)

• Latency improvement 6-80X

• Bandwidth improvement 300-

25,000X

25



Instruction Cycle

• Simple five stages (cycles) for instruction processing:

➢Instruction fetch (IF)

➢Instruction decode, read operands (ID)

➢Execute (EX)

➢Memory read/write (MEM)

➢Write back results (WB)

• Most modern processors have many more stages

26

IF ID EX MEM WB 

 

 



Simplified Instruction Cycle

• For the remainder of this lecture, let’s simplify the instruction 

processing to three stages (cycles):

➢Instruction Fetch (f)

➢Instruction Decode and Read Operands (d)

➢Execute and write results (e)

27

f d e



Execution Time

• Iron Law of Processor Performance:

Execution time (Runtime) for a program is given by:

Instructions per program 

x Cycles per instruction 

x Time per cycle (Cycle time)

28

Runtime = I x CPI x tc



Execution Time

• For a scalar processor (with a  3-cycle  instruction processing), 

CPI = 3

29

Runtime = I x 3 x tc



Improving Performance via Basic Pipelining 

F D E

F D E

F D E

F D E

30

Runtime = I x 1 x tc



Superscalar Processors
• Superscalar processors: Multiple pipelines operate in parallel

• Superscalar techniques have been applied to both CISC and RISC 
processors

31

F D E

F D E

F D E

F D E

F D E

F D E

Runtime = I x 0.5 x tc



Superscalar Processors

• It is not guaranteed that a wide superscalar executes at maximum 

throughput for any given sequence of instructions

➢Instructions are not independent

❑Can’t always find more than one instruction to issue per cycle

➢Branches

❑Don’t know what instruction to fetch next

➢The processor execution resources are limited

➢Fetch and execution mechanisms

➢Cache misses

32



True Data Dependencies

• Also called data hazards, read-after-write (RAW) hazards

• An instruction may use a result produced by the previous 

instruction

➢Both instructions may not execute simultaneously in multiple pipelines

➢The second instruction must typically be stalled

33

F D E  

F D S E 
 

 



Procedural Dependencies
• Also called control or branch hazards

• Instruction fetch implicitly depends on knowing the correct value for the 

program counter (PC)

➢This is (in a sense) a true dependence on the PC

➢Branches may change the program counter late in their execution, leading to pipeline stalls

• CISC variable length instructions introduce another procedural dependency:  

➢Portions of an instruction must be decoded before the instruction length is known

34

F D E    

F D E    

 S S F D E 

 S S F D E 
 

 



Resource Conflicts
• Also called structural hazards

• If two instructions try to use the same hardware resource simultaneously, 

then one must wait

• Solution 1: Duplicate hardware resources

➢Can be expensive

• Solution 2: Pipeline long latency execution units

35

F D E E E
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Instruction Issue Methods

• Instruction Issue is the process of initiating instruction execution 

in functional units

• Instruction Issue Policy is the mechanism the processor uses to 

issue instructions (and to find and examine instructions)

36



IO Issue and IO Execution

• In-order (IO) issue and in-order (IO) execution requires 

instructions to be issued, executed and to complete in the same 

order they appear in the program

➢Simple strategy to implement BUT

➢More hazards hinder performance

37



IO Issue and IO Execution

• Example: I1 requires 2 cycles to execute, I3 and I4 use same functional unit, same for 
I5 and I6, I5 has true dependence on I4

38

 Decode  Execute  Writeback 

1 I1 I2        

2 I3 I4  I1 I2     

3 I3 I4  I1      

4  I4    I3  I1 I2 

5 I5 I6    I4  I3  

6  I6   I5    I4 

7     I6   I5  

8         I6 
 

 



IO Issue and OO Execution

• In-order (IO) issue and out-of-order (OO) execution allows 

instructions to complete in a different order

➢This prevents long operations from overly reducing performance, even for scalar 

processors (e.g., unrelated instructions can execute while a load from the L2 

cache or a floating point divide is in progress)

39



IO Issue and OO Execution

 Decode  Execute  Writeback 

1 I1 I2        

2 I3 I4  I1 I2     

3  I4  I1  I3  I2  

4 I5 I6    I4  I1 I3 

5  I6   I5   I4  

6     I6   I5  

7        I6  
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• Same example: I1 requires 2 cycles to execute, I3 and I4 use same functional 
unit, same for I5 and I6, I5 has true dependence on I4



IO Issue and OO Execution

➢If out-of-order completion is allowed, it is also possible to have an 

output dependence

❑Two outstanding instructions write to the same location

❑They must complete in the correct order to make sure the correct result is 

stored

❑This is also called a write-after-write (WAW) hazard
DIV R3,R4,R5

…

ADD R3,R4,R1

ADD R5,R3,R3 ; Which R3?

❑This can be overcome with register renaming

41



OO Issue and OO Execution

• Out-of-order (OO) issue and out-of-order (OO) execution further 

improve performance by not stalling the processor in the 

presence of resource conflicts or true and output dependences

➢Instructions that would cause a problem are left in an instruction window to be 

issued when the problem has cleared

➢The processor thus can look ahead to the size of the window to find instructions 

to issue

42



OO Issue and OO Execution

 Decode  Window  Execute  Writeback 

1 I1 I2          

2 I3 I4  I1,I2  I1 I2     

3 I5 I6  I3,I4  I1  I3  I2  

4    I4,I5,I6   I6 I4  I1 I3 

5    I5   I5   I4 I6 

6          I5  
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Same example: I1 requires 2 cycles to execute, I3 and I4 use same functional 
unit, same for I5 and I6, I5 has true dependence on I4



OO Issue and OO Execution

• This method can cause antidependences

➢An instruction that needs to read a result may have that result overwritten by a 

following instruction that was issued first

➢We must make sure that the value is not overwritten until it has been read by all 

users

➢This is also called a write-after-read (WAR) hazard.
DIV R3,R4,R5

STORE A,R3

ADD R3,R4,1 ;Can’t until after store

ADD R5,R3,R3

• Antidependences (WAR) and output dependences (WAW) are both 

called “Name Dependences”

44



Register Renaming

• Hardware can automatically rename registers (as specified in the 

program code) to ensure that each refers to a unique location

➢Register renaming can remove storage conflicts

DIV R3a,R4a,R5a

STORE A,R3a

ADD R3b,R4a,1

ADD R5b,R3b,R3b

45
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Instruction-Level Parallelism (ILP)
• To improve performance, a processor needs to overlap execution of multiple 

instructions simultaneously 

• Overlap in instruction execution is called Instruction-Level Parallelism (ILP)

➢Key idea: processor can execute independent instructions in parallel

• ILP within a basic block is limited since basic block length is fairly short 

(average 4-6 instructions)

• Loop-Level Parallelism exploits independent instructions across loop 

iterations

• To exploit higher ILP,  processors need to examine large “instruction 

windows” that span many basic blocks (detailed discussion later)
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RISC I Design Approach

• New architectures should be designed for HLL

• Does not matter which part of the system is in hardware and 

which is in software

• Architecture tradeoffs to build a cost-effective system:

➢Which language constructs are used frequently?

➢What is the distribution of various instructions?

➢Dedicate available area for the most frequent constructs and operations

❑Remember Amdahl’s law
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Amdahl’s Law

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

1 − 𝑃 + 𝑃/𝑆

P = proportion of computation improved

S = improvement speedup

Example: Parallel Execution

P: Parallel portion, S: Serial portion = 1-P

N: Number of Cores

NPPNPS
Speedup

/1

1

/

1

+−
=

+
=



Introduction to 
Computer System Simulation
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Simulating a Computer System
• At a very high level, a computer system simulator reproduces the behavior or 

predicts the timing of a computer system

• Why simulate a computer system?

➢Building software faster than building hardware

➢Cheaper than building hardware

➢Permits more design space exploration before deciding on final design parameters

➢Enables validation of system before building expensive hardware

➢Provides more intuition about system performance and behavior

50

Computer 
System 

Simulator

Input (e.g., 
Program)

Output (e.g., 
execution time, 

program output)



Computer System Simulation Taxonomy

• A Functional simulator reproduces the behavior of an application running on a 

computer system. Models the architecture of the system. 

• A Timing (Performance) simulator reproduces the timing of an application 

running on a computer system. Models the microarchitecture of the system. 

• A simulator could be both a functional and a timing simulator
51

Computer System Simulator

Functional Timing (Performance)

Trace-Driven Execution-Driven Inst. Schedulers 
(Discrete-Event 

Simulation)

Cycle-Accurate



Functional Simulation
• Reproduces the functionality (behavior) of a computer system when running a workload

• Should give the same results, and should end with the same architectural state as a real workload 

run on a real system that is the same as the simulated system

• Architectural State includes:

➢Register state, memory state, disk state, I/O

➢Cache state if caches are architecturally visible

• Trace-driven functional simulation: Models system behavior from a workload trace.

➢Repeatable. Different simulation runs should produce the same results.

• Execution-driven functional simulation: Models system behavior by executing workload 

instructions and modeling the architectural effects of each instruction (e.g., virtual machine or 

software emulation environment)

➢May generate trace as instructions are executed

➢Execution-driven simulation could have variability. Different runs could have different outcomes 

depending on system state. 

52



Timing Simulation
• Reproduces the timing needed by computer system when running a workload

• Needs to model the microarchitectural state of the system, not just the architectural state

• Microarchitectural (uarch) State includes:

➢State of instruction and data caches

➢State of branch predictors, memory dependence predictors, etc. 

➢State of other uarch structures (e.g., reorder buffer, load and store buffers, instruction buffers, 

register alias tables, etc.)

➢Dependences between instructions

➢Pipeline state

• Instruction Schedulers uses techniques similar to discrete event simulation to update system timing 

and state, generate dynamic instruction stream

➢Clock starts at time zero, advances to the time of the next event

➢An instruction is scheduled when its dependences are satisfied

• Cycle-accurate simulators model the change in the system every cycle. Clock advances one cycle at 

a time. 
53



Full-System Simulation
• A full-system simulator needs to be able to model the whole system, not just a single workload, 

including:

➢Boot an operating system

➢Multi-core processors and multi-processor systems

➢Device drivers

➢Network stacks

➢ Interfaces between different system components (e.g., CPU-memory, CPU-GPU)

➢Controllers for different components (memory, disk, I/O, SSD devices)

➢System interrupts and exceptions

• A full-system simulation could be just an emulation platform (e.g., virtual machine monitors) which 

just models the functionality of the system and can help debug and validate designs

• The most accurate simulators are full-system, execution-driven, functional simulators that are also 

cycle-accurate timing simulators

➢Tradeoff: Speed vs. Accuracy

54



Introduction to Superscalar 
Processors & Dynamic Scheduling
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Program Representation

• An application is written as a program, typically using a high level 

language

• Program is compiled into static machine code (binary)

• Sequencing model implicit in the program

• The sequence of executed instructions forms a dynamic 

instruction stream

• The address of the next dynamic instruction:

➢Incremented program counter

➢Target of a taken branch

56



Sequential Execution Model

• Inherent in instruction sets and program binaries

• Led to the concept of precise architecture state

➢Interrupt and restart

➢Exceptions

➢Branch mispredictions

• Out-of-order issue deviates from sequential execution

➢But we still need to maintain binary compatibility and retain appearance of 

sequential execution

57



Dependences and Parallel Execution

• To execute more instructions in parallel, control dependences need to 
be addressed:
➢Program Counter (PC)

➢Branches

• To overcome PC dependence, one can view the program as a collection 
of basic blocks, separated by branches
➢There is a limited number of parallel instructions on average within basic blocks

• Instructions have be serialized according to true data dependences
➢A true dependence appears as a read after write (RAW) sequence

• Ideally, we should eliminate output dependences and anti-dependences
➢An output dependence appears as write after write (WAW) sequence 

➢An anti-dependence appears as write after read (WAR) sequence

58



Elements of Superscalar Processing

• Fetch: Strategies for fetching multiple instructions every cycle, supported by

➢Predicting branch outcomes

➢Fetching beyond conditional branch instructions, well before branches are executed

• Decode: Methods for determining true register dependencies and eliminating 

artificial dependencies

➢Register renaming

➢Mechanisms to communicate register values during execution

• Issue/Dispatch: Methods for issuing multiple instructions in parallel

➢Based upon availability of inputs, not upon program order

59



Elements of Superscalar Processing (Cont.)

• Execution: Parallel execution resources 

➢Multiple pipelined functional units

➢Memory hierarchies capable of simultaneously serving multiple memory requests

• Memory: Methods for communicating data through memory via load and 

store instructions, potentially issued out of order

➢Memory interfaces have to allow for the dynamic and often unpredictable behavior of memory 

hierarchies

• Commit: Methods for committing architecture state in order

➢Maintain an outward appearance of sequential execution

60



Superscalar Microarchitecture: High Level

61

Smith & Sohi 1995, Figure 3



Typical Superscalar Microarchitecture: Organization

62

Smith & Sohi 1995, Figure 4



Instruction Fetch

• Read instructions from the instruction cache and write them to a 

queue (instr. buffer in previous figure)

➢The number of instructions fetched per cycle should at  least match the peak 

decode rate (why?)

➢The fetcher must be told the address of the next block of instructions to fetch

• An instruction cache is usually organized as lines of several 

instructions

➢A cache line starts on a fixed boundary (regardless of the instruction needed 

from the line)

➢Question: What are the pros and cons of having separate I- and D- caches?

63



Instruction Fetch (Cont.)

• Calculating the next address to fetch

➢Non-branch instructions:

❑PC is incremented by the number of bytes in current instruction

❑Can require fetching next cache block

➢Branch instructions: the fetch unit has to

❑Recognize a branch

❑Determine its outcome (taken or not taken)

❑Compute branch target address

❑Fetch the next block using

• Next sequential address or

• Branch target address
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Instruction Fetch (Cont.)

• Branch prediction is used to avoid having to wait for the branch 

execution to complete

➢Target comes from Branch target buffer (BTB)

➢Outcome comes from

❑Static prediction based on branch type or profile (or even compiler hints)

❑Dynamic prediction based on result of previous branches 

• If branch is mispredicted, we must be able to undo the work and 

fetch the correct instruction

➢This incurs a significant misprediction penalty

• Branch prediction discussed in more detail next class
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Instruction Fetch (Cont.)
• Transferring control to target address on a taken branch could cause 

pipeline bubbles
➢Stockpile instructions in instruction queue

➢Or keep next address in cache block

➢Or use delayed branches?

• The instruction queue helps: 
➢Smooth fetch irregularities caused by cache misses

➢Sustain fetch bandwidth in cycles when fewer than the maximum #instructions can be 
fetched

• Superscalar machines pay a penalty for instruction misalignment
➢Branches and targets don't always fall on cache line boundaries

➢Fetched instructions that are not executed waste fetch bandwidth

➢Sometimes called instruction cache fragmentation due to branches
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Instruction Cache Fragmentation

X

X+32 BR X+188 Discard

X+64

X+96

X+128

X+160 Discard X+188

X+192
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Instruction Fetch (Cont.)
• Cache fragmentation caused by branches places a severe limit on 

very wide superscalars

➢Easy to fetch sequential runs of instructions

➢However, the average sequential run length is ~6 for general integer programs

➢The distribution is very broad, with a few long runs raising the average

➢How many decode cycles are needed for 6 fetched instructions?

❑3 decode cycles for a two instruction decoder

❑Only 1.5 decode cycles for a four instruction decoder
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Instruction Fetch (Cont.)

• Given enough fetch bandwidth, the instruction fetch unit can 

realign or merge instructions from multiple lines to make more 

efficient use of the decoder

➢For a branch target in the middle of a cache line, the fetcher combines the 

cache line with the one following it

➢Decoder "lines" are not aligned with cache lines

➢Harder to find the program counter associated with one instruction 

➢The instruction fetch unit is essentially creating dynamic instruction traces and 

caching in them in a “trace cache”
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Instruction Decode
• Instructions are removed from the instruction queue

• Execution tuples are set for each decoded instruction containing
➢Opcode: Operation to be executed

➢Sources: Identities of storage elements where the inputs reside

➢Destination: Identity of the storage element where result must be placed

• In the static program, the input and output identifiers represent: 

➢Storage locations in the “logical” register file OR 

➢Storage locations in memory

• To overcome WAR and WAW hazards, register renaming maps the register 
“logical” identifiers into “physical” storage locations

• Allocation logic assigns each instruction physical storage for the result as 
well as entries in all required instruction buffers
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Instruction Rename

• The decoder looks at one or more instructions and releases them to 

scheduling stations after renaming

• Register values created by an instruction are assigned physical locations, 

and recorded in a map table

➢Map table has as many entries as there are logical registers

• Source register mappings are read from the map table and attached to the 

instruction

• Renaming happens sequentially 

➢Map table bypass is sometimes necessary 

• Subsequent stages in the pipeline use mappings attached to an instruction 

tuple to read and write the physical locations of register values
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Rename Map Table 

72

Physical Source 
Registers

Logical Source
Registers

Logical
Destination 
Registers

Register Map
Table

Allocate 
physical registers
from free pool 

Physical Destination 
Registers

Also called Register Alias Table (RAT)



Renaming Methods

• There are two methods commonly used:

➢Renaming with a physical register file larger than the logical register file

➢Renaming using a Reorder Buffer (ROB) and a physical register file equal in 

size to the number of logical registers
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Renaming with a Physical RF
• A free list of unused physical 

registers is kept

• New register results are 
assigned physical registers 
from the free list

• Reclaiming of physical 
registers into the free list:
➢Usage count is 0 and logical 

register has been renamed to 
another physical register

➢Subsequent instruction writing to 
the same logical register is 
committed

• Register map table could be 
checkpointed at conditional 
branches (why?) 74

Smith & Sohi 1995, Figure 5



Freeing Physical Registers at Retirement

I1 → r5 → P3

…

…

I4 → r5 → P5  (free P3 when retired)

…

…

I7 ← r5 ← P5 
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Renaming with a Reorder Buffer
• Physical registers are allocated sequentially in the Reorder Buffer

• Physical registers are freed and their values are copied to the register file at 

retirement
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Renaming with a Reorder Buffer
• Mapping table 

maps logical 

registers to 

entries in the 

Reorder Buffer or 

the Register File

• Branch handling 

options:

➢Map table 

checkpoints

➢Resume renaming 

from the correct 

path after 

mispredicted

branch has retired
77
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Instruction Issue
• After instructions are fetched, decoded and renamed, they are placed in 

instruction buffers where they wait until issue

• An instruction can be issued when its input operands are ready, and there is a 

functional unit available
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Instruction Issue (Cont.)

• All out-of-order issue methods must handle the same basic steps

➢Identify all instructions that are ready to issue

➢Select among ready instructions to issue as many as possible

➢Issue the selected instructions, e.g., pass operands and other information to the 

functional units

➢Reclaim instruction window storage used by the now issued instructions
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Methods of Organizing Instruction Issue Buffers
1. Single shared queue

➢Only for in-order issue

2. Multiple queues, one 

per instruction type

3. Multiple reservation 

stations, one per 

instruction type

4. Single central 

reservation stations 

buffer

80
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Multiple Queues

• Requiring instructions to be issued in order at a functional unit 

greatly simplifies the identification and selection logic

• Instructions from different queues could be allowed to issue out of 

order
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Reservation Stations

• Benefits

➢Logic to identify and select ready instructions is simpler since it need only consider a few 

locations

➢Storage can be optimized for each type of functional unit

❑e.g., stores need not have storage for two source operands

• Drawback

➢Storage is statically allocated to functional units

➢This can result in either wasted storage or a resource bottleneck for some programs
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Central Window

• Benefits

➢Only one copy of identification and selection logic

➢Only one copy of storage reclamation logic

➢Dynamically allocated storage

• Drawbacks

➢Complex identification and selection logic

➢Complex storage reclamation logic

➢Each storage location must be as big as the largest instruction

➢Functional unit arbitration must be handled
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Memory Ordering
• Stores consist of address and data uops

• Store addresses are buffered in a queue

• Store addresses remain buffered until:

➢ Store data is available

➢ Store instruction is committed in the reorder buffer

• New load addresses are checked with the waiting 

store addresses. If there is a match:

➢ The load waits OR

➢ Store data is bypassed to the matching load

• Memory ordering discussed later in the course
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Commit (Retire)

• Implements appearance of sequential execution

• Recovering a precise state:

➢Need to maintain both state required for recovery and state being updated

➢Recovery options:

❑History buffer

❑Future File

• Precise interrupts discussed next week
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Announcements
• Reading Assignments

➢ARCH “Hennessy & Patterson”

❑Appendix C.1, C.2 before Branch Prediction (Read)

❑Chapter 3.1 (Read)

❑Chapter 3.8 (Skim)

➢J. Smith and G. Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, 1995. 
(Read)

• Please complete first steps in our Welcome email

• Quiz 1 Due Monday @11:59 PM

• Make sure you complete the gem5 lab (link off webpage)

• Assignment 1 available soon

• Office hours this week: Tuesday and Wed 9-10 AM in TASC1-9011 

➢By appointment, booking link on webpage


